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ABSTRACT

Several applications including community detection in social
networks and discovering correlated genes involve finding
large subgraphs of high density. We propose the problem of
finding the largest subgraph of a given density. The problem
is a generalization of the Max-Clique problem which seeks
the largest subgraph that has an edge density of 1. We de-
fine an objective function and prove that its optimization
results in the largest graph of given density. We propose an
algorithm that finds the subgraph by running multiple local
search heuristics with random restarts. For massive graphs,
where running the algorithm directly may be intractable,
we use a sampling technique that reduces the graph to a
smaller one which is likely to contain large dense subgraphs.
We evaluate our algorithm on multiple real life and syn-
thetic datasets. Our experiments show that our algorithm
performs as well as the state-of-the-art for finding large sub-
graphs of high density, while providing density guarantees.

Keywords

Social Networks; Dense subgraphs; Discrete Otimization

1. INTRODUCTION
Finding the largest clique in a given graph (the Max-

Clique problem) is an NP-hard problem. Since large cliques
are not very common in real-world graphs, finding dense
subgraphs is more meaningful. In fact, extracting dense sub-
graphs from large graphs is a key primitive in a variety of
application domains. For a given graph G, we define the
problem of finding largest subgraph with density at least
ρ, where ρ ∈ (0, 1]. Here, we define density as the num-
ber of edges divided by the number of edges in a clique of
the same size. The Max-Clique problem is a special case of
our formulation when ρ = 1. We propose an objective func-
tion which when minimized, is guaranteed to find the largest
subgraph with the given density. To optimize the objective
function, we provide an algorithm based on local search with
random restarts. We evaluate its performance on real and
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synthetic datasets. We show that when compared with the
state-of-the-art [1], our algorithm returns denser and larger
subgraphs while also having the additive advantage of pro-
viding density guarantees.

2. METHODOLOGY
Given a graph G(V,E) and a real number ρ, we wish to

find the largest subgraph with a density at least ρ. It is
easy to see that in any graph with at least one edge, there
always exists a subgraph with a density at least ρ ∀ρ ∈ (0, 1].
Selecting a pair of nodes that are connected by an edge pro-
duces a subgraph which satisfies this condition. Therefore,
unless all nodes are isolated, a solution always exists. To
find the largest subgraph of a given density, we define the
following objective function.

Eρ(S) = −|S|+ λ(ρ− pS)δρ>pS . (1)

Here, S ⊆ V , pS is the density of subgraph induced by S,
and λ is a sufficiently large parameter.

Theorem 1. For any ǫ > 0 , ∃λ such that the subgraph

induced by S that minimizes Eρ(S) is the largest subgraph

in G with density pS > ρ− ǫ.

We skip the proof for brevity. The following can be shown.
If S∗ is the subgraph with density pS∗ that minimizes Eρ

and λ > |V |(|V |− 1)(|V |− 2)/4, then 1) no bigger subgraph
can have a higher density, and 2) either pS∗ > ρ or ρ−pS∗ <
O(|V |−2).

To optimize Eρ for a given graph, we use a local search
heuristic with random restarts (Algorithm 1). We randomly
initialize a population P of initial subsets of vertices. A local
search begins from each of these subsets as follows: if adding
a node improves (reduces) our objective function Eρ, then
add that node to the current subset. Similarly, if removing a
node improves Eρ, then remove it from the subset. Continue
adding and removing until no more nodes can be added or
removed, or number iteration exceeds a pre-specified limit
(I). This search is performed for all individuals in the popu-
lation, resulting in N solutions, aggregated by selecting the
subset with minimum Eρ.
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(b) DBLP
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(c) Live Journal

Figure 1: Comparison of our method LSH-RR with state-of-the-art DTD for finding largest subgraph of given

density.

Algorithm 1 Finding Dense Subgraphs using a Local
Search Heuristic with Random Restarts
1: function LSH-RR(G, ρ, N , I)
2: P [1 . . . N, 1 . . . |V |]← Random{0, 1}
3: j ← 0
4: for n = 1→ N do

5: m← 1
6: S ← toSet(P [n, :])
7: while m < I or no change in S do

8: while ∃ v adding which improves Eρ do

9: S ← S ∪ v
10: end while

11: while ∃ v removing which improves Eρ do

12: S ← S \ v
13: end while

14: m← m+ 1
15: end while

16: P [n, :] = toV ector(S)
17: end for

18: bestP ← Individual with the minimum Eρ

19: return bestP
20: end function

Table 1: Datasets used in our experiments

Dataset # of nodes # edges # of nodes
after reduction

HEPT 15,233 58,891 633
DBLP 425,957 1,049,866 3,066
Live Journal 4,036,538 34,681,189 4,103

3. EXPERIMETS
We conducted our experiments on three publicly available

real-world datasets1 summarized in Table 1.

3.1 Graph Reduction
To speed up computations on large graphs, we first reduce

it into smaller one based on the assumption that all nodes
in a large dense subgraphs have large degrees. If a node has
a small degree, its removal is likely to increase the density of
the subgraph. Therefore, given a large graph G, we remove
its low degree nodes until all nodes in the remaining graph
have degrees greater than a pre-defined δ.

1https://snap.stanford.edu/data/index.html

3.2 Comparison
We run our Local Search Heuristic with Random Restarts

(LSH-RR) on the reduced graph obtained from each dataset.
The objective is to find the largest graph for a given den-
sity ρ. The comparison is against DTD [1] which takes a
prameter α. Varying this α we were able to achieve differ-
ent densities, however, no clear relationship was obtained
between α and ρ. Figure 1 shows the comparison based on
density of the subgraph obtained vs its size. A point on the
top-right (high density, large subgraph) is desirable. We ob-
serve that LSH-RR either outperforms DTD or is very close
to it. However, our method has the explicit parameter ρ
that allows us to choose any desired density. We also con-
ducted experiments on random Erdös-Renyi graphs of size
3000, where we planted a clique of size 30 and the task was
to retrieve the planted clique. As reported in [1], DTD suc-
ceeded when edge probability in the graph was p = 0.008,
but failed for p = 0.1 and p = 0.5. However, LSH-RR finds
the clique for all the three cases.

4. CONCLUSION
We introduced the problem of finding the largest sub-

graph with density guarantees. We provided a theoreti-
cal insight into the proposed objective function, which we
optimized based on an efficient local-search heuristic with
random restarts. We evaluated our algorithm on real and
synthetic large-scale graphs, showing that the subgraphs dis-
covered by our method are larger and denser than subgraphs
extracted by state-of-the-art. Our work leaves several open
problems, such as the formal analysis of the graph reduc-
tion approach, and the design of more efficient randomized
algorithms.
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