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ABSTRACT
We study the problem of determining the proper aggrega-
tion granularity for a stream of time-stamped edges. Such
streams are used to build time-evolving networks, which are
subsequently used to study topics such as network growth.
Currently, aggregation lengths are chosen arbitrarily, based
on intuition or convenience. We describe ADAGE, which de-
tects the appropriate aggregation intervals from streaming
edges and outputs a sequence of structurally mature graphs.
We demonstrate the value of ADAGE in automatically find-
ing the appropriate aggregation intervals on edge streams for
belief propagation to detect malicious files and machines.
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1. INTRODUCTION
We address the problem of determining proper intervals

for aggregating a stream of time-stamped edges into a se-
quence of structurally mature networks. We define a struc-
turally mature network as one that has stabilized with re-
spect to a network statistic, such as the exponent of the
degree distribution. Current literature in time-evolving net-
works1 frequently selects an arbitrary fixed-length aggrega-
tion interval (e.g., one day,). This approach has three short-
comings. (1) If the interval is too short, the graph may lack
su�cient structure for analysis (e.g., consider running belief
propagation on a set of disconnected edges). (2) If the inter-
val is too long, fine-grained changes get lost. (3) If the data
streams at a variable rate, a fixed-length interval may not be
appropriate. To address these issues, we introduce ADAGE,

1We use the terms graph and network interchangeably.
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Figure 1: Dashed lines depict intervals found by
ADAGE, using degree distribution exponent, on
Facebook wall-postings. Each time step is one hour.

the Adaptable Graph Edge Interval Method, which automat-

ically identifies variable-length aggregation intervals, each
giving rise to a structurally mature graph. We report results
on an edge stream from Symantec, for the task of malicious
file/machine detection via belief propagation.

2. RELATED WORK
The literature on partitioning a data stream is vast. For

example, Kiernan et al. [3] identify disjoint summaries of an
event stream. Keogh et al. [2] present a solution for time
series segmentation. The DAPPER algorithm [1] partitions
a timeline of streaming network data into disjoint interval
snapshots by examining edge persistence for change-points.
Unlike ADAGE, DAPPER finds locations where the stream-
ing data suddenly changes, as opposed to structurally ma-
ture snapshots, and requires the entire timeline upfront.

3. PROPOSED METHOD: ADAGE
ADAGE is an online method for aggregating streaming

edges into a sequence of structurally mature networks. Given
a network statistic (e.g., exponent of the degree distribu-
tion), ADAGE aggregates streaming edges into a network
until the value of the statistic converges. Figure 1 depicts
the time intervals detected by ADAGE on Facebook wall-
postings vs. the exponent of the degree distribution of the
composed graphs. In this graph, an edge represents that a
user posted on another user’s wall. Each time step is an
hour. 40 hours worth of data were required to compose a
graph with a stable degree distribution exponent. 10 hours
were needed to generate the next structurally mature graph.

ADAGE takes as input a sequence of edge sets E1, E2, . . .
arriving at times T1, T2, . . ., and a function f(G), which out-
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Figure 2: ADAGE Overview: Edges are aggregated
until convergence is detected on the chosen statistic.

puts the value of a specified statistic on graph G. At each
time Ti, f is applied to the current aggregated graph Gi to
obtain value ri. These values are inspected for convergence.

ADAGE can take any network statistic, such as exponent
of degree distribution, number of nodes in the largest con-
nected component, etc. The choice of statistic depends on
the nature of phenomenon under study. For example, the
exponent of the degree distribution is a good statistic if the
phenomenon is expected to exhibit the Pareto principle.

Figure 2 provides an overview of ADAGE, which begins
at time T1 and aggregates data until the statistic converges.
To determine whether convergence has occurred at time
Ti, ADAGE examines the value ri and the set of values
{ri+1, . . . , rk} seen during the lookahead window [Ti+1, Ti+L].
The length L of the lookahead window is calculated using a
parameter b, where L = b⇥i (L depends on the length of the
interval so far).2 The allowed deviation in values ri, . . . , rk is
controlled by threshold parameter c: the di↵erence between
the largest and smallest values cannot exceed threshold t,
which is equal to c times the smallest value (assuming all val-
ues are positive).34 Once convergence is detected, ADAGE
outputs the graph and restarts the aggregation process.

To avoid computing the statistic on every snapshot, ADAGE
uses a binary search to choose which values to compare. Sup-
pose ADAGE is considering time Ti, and so examines values
ri, . . . , rk. The allowed deviation of the statistic among these
values is represented by the threshold t = c⇥min({ri, . . . , rk})
(where c is the threshold parameter.) Let Tj be the midpoint
between Ti and Tk. ADAGE calculates an estimate t̂ on t,
where t̂ is equal to c⇥min({ri, rj , rk}). If max({ri, rj , rk})�
min({ri, rj , rk})  t̂, then ADAGE calculates all interme-
diate values ri, . . . , rk to check for convergence. Otherwise,
max({ri, rj , rk}) � min({ri, rj , rk}) > t̂ and ADAGE cannot
possibly have converged at time Ti. In this case, ADAGE
recalculates a new estimate on t as follows. If | rj � rk |>
2To avoid detecting convergence after very short intervals,
we set the window length to be at least 10.
3We assume values are all positive or all negative.
4A parameter study suggested setting b, c = 0.1. Automat-
ically selecting these parameters is part of our future work.

Figure 3: Detecting malicious files/machines via be-
lief propagation on Symantec edge streams. ADAGE
intervals have the best performance.

c⇥min({rj , rk}), then convergence is not possible at any time
between Ti and Tj ; thus values ri+1, . . . , rj�1 are not calcu-
lated. This process is repeated by looking at the midpoint
value between rj and rk, and so on. In this way, ADAGE
finds the earliest time when convergence might occur.

4. EVALUATION AND DISCUSSION
Evaluation of ADAGE is challenging, as we lack a ground

truth. Here, we evaluate ADAGE on the task of detecting
malicious files and machines via belief propagation. (Data
provided by Symantec.) The dataset consists of an edge
stream of file i resides on machine j.5 We have a total
of 3M edges connecting 0.6M nodes. Some files or machines
are known to be malicious, and we use belief propagation to
predict which others are likely to be malicious. We choose
the exponent of the degree distribution as the statistic used
by ADAGE, because we assume that mature file⇥machine

graphs have power-law degree distributions. Figure 3 shows
10-fold cross-validation results of various aggregation meth-
ods. ADAGE automatically finds intervals that match or
outperform fixed-length intervals. ADAGE took on average
4.19 seconds to detect each interval, each with ⇡0.5M edges.

By detecting convergence of a statistic of interest, ADAGE
automatically identifies the proper aggregation granularity
on streams of edges. Our future work includes being able to


