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ABSTRACT
Centrality measures allow to measure the relative impor-
tance of a node or an edge in a graph w.r.t. other nodes or
edges. Several measures of centrality have been developed
in the literature to capture different aspects of the informal
concept of importance, and algorithms for these different
measures have been proposed. In this tutorial, we survey
the different definitions of centrality measures and the algo-
rithms to compute them. We start from the most common
measures, such as closeness centrality and betweenness cen-
trality, and move to more complex ones such as spanning-
edge centrality. In our presentation, we begin from exact al-
gorithms and then progress to approximation algorithms, in-
cluding sampling-based ones, and to highly-scalable MapRe-
duce algorithms for huge graphs, both for exact computation
and for keeping the measures up-to-date on dynamic graphs
where edges are inserted or removed over time. Our goal is
to show how advanced algorithmic techniques and scalable
systems can be used to obtain efficient algorithms for an im-
portant graph mining task, and to encourage research in the
area by highlighting open problems and possible directions.
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1. INTRODUCTION
Identifying the “important” nodes or edges in a graph is

a fundamental task in network analysis, with many appli-
cations, from economics and biology to security and soci-
ology. Several measures, known as centrality indices, have
been proposed over the years, formalizing the concept of
importance in different ways [16]. Centrality measures rely
on graph properties to quantify importance. For example,
betweenness centrality, one of the most commonly used cen-
trality indices, counts the fraction of shortest paths going
through a node, while the closeness centrality of a node
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is the average sum of the inverse of the distance to other
nodes. Other centrality measures use eigenvectors, random
walks, degrees, or more complex properties. For instance,
the PageRank index of a node is a centrality measure, and
centrality measures for sets of nodes have also been defined.
With the proliferation of huge networks with millions of

nodes and billions of edges, the importance of having scal-
able algorithms for computing centrality indices has become
more and more evident, and a number of contributions have
been recently proposed, ranging from heuristics that per-
form extremely well in practice to approximation algorithms
offering strong probabilistic guarantees, to scalable algo-
rithms for the MapReduce platform. Moreover, the dynamic
nature of many networks, i.e., the addition and removal of
nodes or edges over time, dictates the need to keep the com-
puted values of centrality up-to-date as the graph changes.
These challenging problems have enjoyed enormous interest
from the research community, with many relevant contribu-
tions proposed recently to tackle them.
Our tutorial presents, in a unified framework, some of the

many measures of centrality, and discusses the algorithms to
compute them, both in an exact and in an approximate way,
both in-memory and in a distributed fashion in MapReduce.
The goal of this unified presentation is to ease the compar-
ison between different measures of centrality, the different
quality guarantees offered by approximation algorithms, and
the different trade-offs and scalability behaviors characteriz-
ing distributed algorithms. We believe this unity of presen-
tation is beneficial both for newcomers and for experienced
researchers in the field, who will be exposes to the material
from a coherent point of view.
The graph analyst can now choose among a huge number

of centrality indices, from the well-established ones origi-
nally developed in sociology, to the ones more recently in-
troduced ones that capture other aspects of importance. At
the same time, the original algorithms that could handle
the relatively small networks for classic social science exper-
iments have been superseded by important algorithmic con-
tributions that exploit modern computational frameworks
or obtain fast, high-quality approximations. It is our be-
lief that the long history of centrality measures and the
ever-increasing interest from computer scientists in analyz-
ing larger and richer graphs create the need for an all-around
organization of both old and new materials, and the desire
to satisfy this need inspired us to develop this tutorial.
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2. OUTLINE
The tutorial is structured in three main technical parts,

plus a concluding part where we discuss future research di-
rections. All three technical parts will contains both theory
and experimental results.

Part I: Definitions and Exact Algorithms.
In this first part, we introduce the different centrality mea-

sures, starting from important axioms that a good centrality
measure should require. We then discuss the relationship be-
tween the different measures, including results highlighting
the high correlation between many of them. After having
laid these foundations, we move to present the algorithms for
the exact computation of centrality measures, both in static
and in dynamic graph. We discuss the state-of-the-art by
presenting both algorithms with the best worst-case time
complexity and heuristics that work extremely well in prac-
tice by exploiting different properties of real world graphs.
Exact computation of centrality measures becomes im-

practical on web-scale networks. Commonly, one of two al-
ternative approaches is taken to speed up the computation:
focus on obtaining an approximation of the measure of inter-
est or use parallel and distributed algorithms. In the second
part of our tutorial we explore the former approach, while
in the third part we deal with the latter.

Part II: Approximation Algorithms.
Most approximation algorithms for centrality measures

use various forms of sampling and more or less sophisti-
cated analysis to derive a sample size sufficient to achieve
the desired level of approximation with the desired level of
confidence. In this part we present a number of these sam-
pling based algorithms, from simple ones using the Hoeffd-
ing inequality to more complex ones using VC-dimension
and Rademacher Averages. For each algorithm, we discuss
its merits and drawbacks, and highlight the challenges for
the algorithm designer. We also discuss the case of main-
taining an approximation up-to-date in a dynamic graphs,
presenting a number of contributions that recently appeared
in the literature.

Part III: Highly-scalable Algorithms.
In the third part of our tutorial, we discuss parallel and

distributed algorithms for the computation of centrality mea-
sures in static and dynamic graphs. Specifically we present
an approach based on GPUs and one based on processing
parallel/distributed data streams, together with experimen-
tal results.

List of topics with references.
The following is a preliminary list of topics we will cover

in each part of the tutorial, with the respective references.

1. Introduction: definitions and exact algorithms

(a) The axioms of centrality [3]
(b) Definitions of centrality [16], including, but not

limited to: betweenness, closeness, degree, eigen-
vector, harmonic, Katz, absorbing random-walk [14],
and spanning-edge centrality [13].

(c) Betweenness centrality: exact algorithm [4] and
heuristically-faster exact algorithms for between-
ness centrality [7, 22].

(d) Exact algorithms for betweenness centrality in a
dynamic graph [12, 15, 17].

(e) Exact algorithms for closeness centrality in a dy-
namic graph [21].

2. Approximation algorithms

(a) Sampling-based algorithm for closeness central-
ity [6].

(b) Betweenness centrality: almost-linear-time approx-
imation algorithm [23], basic sampling-based al-
gorithm [5], refined estimators [8], VC-dimension
bounds for betweenness centrality [18], Rademacher
bounds for betweenness centrality [19].

(c) Approximation algorithms for betweenness cen-
trality in dynamic graphs [1, 2, 9, 10].

3. Highly-scalable algorithms

(a) GPU-based algorithms [20].
(b) Exact parallel streaming algorithm for between-

ness centrality in a dynamic graph [11].

4. Challenges and directions for future research

3. INTENDED AUDIENCE
The tutorial is aimed at researchers interested in the the-

ory and the applications of algorithms for graph mining and
social network analysis.
We do not require any specific existing knowledge. The

tutorial is designed for an audience of computer scientists
who have a general idea of the problems and challenges in
graph analysis. We will present the material in such a way
that any advanced undergraduate student would be able to
productively follow our tutorial and we will actively engage
with the audience and adapt our pace and style to ensure
that every attendee can benefit from our tutorial. The tuto-
rial starts from the basic definitions and progressively moves
to more advanced algorithms, including sampling-based ap-
proximation algorithms and MapReduce algorithms, so that
it will be of interest both to researchers new to the field and
to a more experienced audience.

4. SUPPORT MATERIALS
We developed a mini-website for the tutorial at http:

//matteo.rionda.to/centrtutorial/. It contains the ab-
stract of the tutorial, a detailed outline with short a descrip-
tion of each item of the outline, a full list of references with
links to electronic editions, a list of software packages imple-
menting the algorithms, and the slides used in the tutorial
presentation.

5. INSTRUCTORS
This tutorial is developed by Francesco Bonchi, Gian-

marco De Francisci Morales, and Matteo Riondato. All
three instructors will attend the conference.
Francesco Bonchi is Research Leader at the ISI Founda-
tion, Turin, Italy, where he leads the "Algorithmic Data An-
alytics" group. He is also Scientific Director for Data Mining
at Eurecat (Technological Center of Catalunya), Barcelona.
Before he was Director of Research at Yahoo Labs in Barcelona,
Spain, leading the Web Mining Research group.
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His recent research interests include mining query-logs,
social networks, and social media, as well as the privacy
issues related to mining these kinds of sensible data.
He will be PC Chair of the 16th IEEE International Con-

ference on Data Mining (ICDM 2016) to be held in Barcelona
in December 2016. He is member of the ECML PKDD Steer-
ing Committee, Associate Editor of the newly created IEEE
Transactions on Big Data (TBD), of the IEEE Transactions
on Knowledge and Data Engineering (TKDE), the ACM
Transactions on Intelligent Systems and Technology (TIST),
Knowledge and Information Systems (KAIS), and member
of the Editorial Board of Data Mining and Knowledge Dis-
covery (DMKD). He is co-editor of the book "Privacy-Aware
Knowledge Discovery: Novel Applications and New Tech-
niques" published by Chapman & Hall/CRC Press.
He presented a tutorial at ACM KDD’14.

Gianmarco De Francisci Morales is a Scientist at QCRI.
Previously he worked as a Visiting Scientist at Aalto Uni-
versity in Helsinki, as a Research Scientist at Yahoo Labs
in Barcelona, and as a Research Associate at ISTI-CNR in
Pisa. He received his Ph.D. in Computer Science and En-
gineering from the IMT Institute for Advanced Studies of
Lucca in 2012. His research focuses on scalable data min-
ing, with an emphasis on Web mining and data-intensive
scalable computing systems. He is an active member of the
open source community of the Apache Software Foundation,
working on the Hadoop ecosystem, and a committer for the
Apache Pig project. He is one of the lead developers of
Apache SAMOA, an open-source platform for mining big
data streams. He commonly serves on the PC of several ma-
jor conferences in the area of data mining, including WSDM,
KDD, CIKM, and WWW. He co-organizes the workshop se-
ries on Social News on the Web (SNOW), co-located with
the WWW conference. He presented a tutorial on stream
mining at IEEE BigData’14.
Matteo Riondato is a Research Scientist in the Labs group
at Two Sigma Investments. Previously he was a postdoc at
Stanford and at Brown. His dissertation on sampling-based
randomized algorithms for data and graph mining received
the Best Student Poster Award at SIAM SDM’14. His re-
search focuses on exploiting advanced theory in practical al-
gorithms for time series analysis, pattern mining, and social
network analysis. He presented tutorials at ACM KDD’15,
ECML PKDD’15, and ACM CIKM’15.
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