
SCULPT: A Schema Language for Tabular Data on the Web

Wim Martens
Universität Bayreuth

Frank Neven
Hasselt University and

transnational University of
Limburg

Stijn Vansummeren
Université Libre de Bruxelles

ABSTRACT
Inspired by the recent working effort towards a recommenda-
tion by the World Wide Web Consortium (W3C) for tabular
data and metadata on the Web, we present in this paper a
concept for a schema language for tabular web data called
Sculpt. The language consists of rules constraining and
defining the structure of regions in the table. These regions
are defined through the novel formalism of region selection
expressions. We present a formal model for Sculpt and
obtain a linear time combined complexity evaluation algo-
rithm. In addition, we consider weak and strong streaming
evaluation for Sculpt and present a Sculpt fragment for
each of these streaming variants. Finally, we discuss several
extensions of Sculpt including alternative semantics, types,
complex content, and explore region selection expressions as
a basis for a transformation language.

Categories and Subject Descriptors
H.2.3 [Information Systems]: Languages—Data descrip-
tion languages

Keywords
Tabular data, comma separated values, metadata

1. INTRODUCTION
Despite the availability of numerous standardized formats

for semi-structured and semantic web data such as XML,
RDF, and JSON, a very large percentage of data and open
data published on the web, remains tabular in nature.1 Tab-
ular data is most commonly published in the form of comma
separated values (CSV) files because such files are open and
therefore processable by numerous tools, and tailored for all
sizes of files ranging from a number of KBs to several TBs.
Despite these advantages, working with CSV files is often

1Jeni Tennison, one of the two co-chairs of the W3C CSV
on the Web working group claims that “over 90% of the data
published on data.gov.uk is tabular data” [30].

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741142.

cumbersome because they are typically not accompanied by
a schema that describes the file’s structure (i.e., “the second
column is of integer datatype”, “columns are delimited by
tabs”, . . .) and captures its intended meaning. Such a de-
scription is nevertheless vital for any user trying to interpret
the file and execute queries or make changes to it. In other
data models, the presence of a schema is also important for
query optimization (required for scalable query execution if
the file is large), as well as other static analysis tasks. Fi-
nally, we strongly believe that schemas are a prerequisite
for unlocking huge amounts of tabular data to the Semantic
Web. Indeed, unless we have a satisfactory way of describing
the structure of tabular data we cannot specify how its con-
tent should be interpreted as RDF. Drawing parallels with
relational databases, observe that R2RML mappings [7] (the
W3C standard for mapping relational databases to RDF)
inherently need to refer to the schema (structure) of the re-
lational database in order to specify how database tuples
can be represented as RDF.

In recognition of this problem, the CSV on the Web Work-
ing Group of the World Wide Web Consortium [34] argues
for the introduction of a schema language for tabular data
to ensure higher interoperability when working with datasets
using the CSV or similar formats. In particular, their char-
ter states [34]:

Whether converted to other formats or not, there
is a need to describe the content of the CSV file:
its structure, datatypes used in a specific column,
language used for text fields, access rights, prove-
nance, etc. This means that metadata should be
available for the dataset, relying on standard vo-
cabulary terms, and giving the necessary infor-
mation for applications. The metadata can also
be used for the conversion of the CSV content
to other formats like RDF or JSON, it can en-
able automated loading of the data as objects, or
it can provide additional information that search
engines may use to gain a better understanding
of the content of the data.

In the present paper, we introduce Sculpt as a concept for
such a schema language for tabular data.2

The critical reader may wonder whether designing such a
schema language isn’t trivial. After all, doesn’t it suffice to
2The name Sculpt for the language is in honour of
Michelangelo, who allegedly said “Every block of stone has
a statue inside it and it is the task of the sculptor to dis-
cover it.” Readers who like acronyms can read Sculpt as
SChema for Un-Locking and Processing Tabular data.

702

be able to specify, for each column, the column’s name and
the type of data allowed in its cells—similar to how relational
database schemas are defined using the SQL data definition
language? The answer is no. The reason is that there is a lot
of variation in the tabular data available on the web and that
examples abound of tabular data whose structure cannot be
described by simple rules of the form“column x has datatype
y”. Figures 3, 5, and 7, for example, show some tabular data
sets drawn from the Use Cases and Requirements document
drafted by the W3C CSV on the Web working group [29].
Notice how, in contrast to “standard” CSV files, Figure 3
has a header consisting of multiple lines. This causes the
data in the first column to be non-uniform. Further notice
how the provenance data in the Figure 5 is spread among
multiple columns. Finally, notice how the shape of the rows
in Figure 7 depends on the label in the first column: TITLE

rows have different structure than AUTHOR rows, which have
a different structure than ATOM rows, and so on.

Sculpt schemas use the following idea to describe the
structure of these tables. At their core, Sculpt schemas
consist of rules of the form ϕ → ρ. Here, ϕ selects a region
in the input table (i.e., a subset of the table’s cells) and ρ
constrains the allowed structure and content of this region.
A table is valid with respect to a Sculpt schema if, for each
rule in the schema, the region selected by ϕ satisfies the
content constraints specified by ρ. It is important to note
that Sculpt’s expressive power goes well beyond that of
classical relational database schemas since Sculpt’s region
selectors are not limited to selecting columns. In particular,
the language that we propose for selecting regions is capable
of navigating through a table’s cells bears much resemblance
to the way XPath [3] navigates through the nodes of an
XML tree. For tokenizing the content of single cells, we
draw inspiration from XML Schema simple types [8, section
2.2]. Both features combined will allow us to express the use
cases of the W3C CSV on the Web Working Group.

We note that the W3C is also working on a schema lan-
guage for tabular data [24]. At the moment, however, that
schema language focuses on orthogonal issues like describing,
for instance, datatypes and parsing cells. Also, it only pro-
vides facilities for the selection of columns, and is hence not
able to express the schema of the more advanced use cases.
Sculpt, in contrast, draws inspiration from well-established
theoretical tools from logic and formal languages, which
adds to the robustness of our approach. Due to the above
mentioned orthogonality we expect that it is not difficult to
integrate ideas from this paper in the W3C proposal.

In summary, we make the following contributions.
1. We illustrate the power of Sculpt, and its suitability

as a schema language for tabular data on the web, by
expressing several use cases drafted by the W3C CSV on
the Web working group [29]. (Section 2)

2. We provide a formal model for the core of Sculpt. A
key contribution in this respect is the introduction of the
region selection language. (Section 3)

3. We show that, despite its rather attractive expressive-
ness, tables can be efficiently validated w.r.t. Sculpt
schemas. In particular, when the table is small enough
to be materialized in main memory, we show that val-
idation can be done in linear time combined complex-
ity (Section 4.1). For scenarios where materialization
in main memory is not possible, we consider the sce-
nario of streaming (i.e., incremental) validation, for which

formally introduce two versions: weak streamability and
strong streamability. (Their differences are described in
detail in Section 4.2.) We show in particular that the frag-
ment of core-Sculpt where region selectors can only look
“forward” and never “backward” in the CSV file is weakly
streamable. If we further restrict region selectors to be
both forward-looking and guarded (a notion formalized
in Section 4.2) validation becomes strongly streamable.
All of the W3C Working group use cases considered here
can be expressed using forward and guarded region se-
lectors, hence illustrating the practical usefulness of this
fragment.

4. While our focus in this paper is on introducing Sculpt
as a means for specifying the structure of CSV files and
related formats, we strongly believe that region selector
expressions are a fundamental component in developing
other features mentioned in the charter of the W3C CSV
on the Web Working Group, such as a CSV transfor-
mation language (for converting tabular data into other
formats such as RDF or JSON), the specification of the
language used for text fields; access rights; provenance;
etc. While a full specification of these features is out
of this paper’s scope, we illustrate by means of exam-
ple how Sculpt could be extended to incorporate them.
(Section 5)

Note. Due to space restrictions, proofs of formal statements
are only sketched. A full version containing all proofs is
available on ArXiv [21].

Related Work. The present paper fits in the line of re-
search, historically often published in the WWW conference,
that aims to formalize and study the properties of various
W3C working group drafts and standards (including XML
Schema [4,5], SPARQL [2,18,23], and RDF [25,26]) with the
aim of providing feedback and input to the working group’s
activities.

Given the numerous benefits of schemas for data process-
ing, there is a large body of work on the development, ex-
pressiveness, and properties of schema languages for virtu-
ally all data models, including the relational data model,
XML [4, 5, 11, 19, 20], and, RDF [25, 26]. Sculpt differs
from the schema languages considered for XML and RDF
in that it is specifically designed for tabular data, not tree-
structured or graph-structured data. Nevertheless, the rule-
based nature of Sculpt draws inspiration from our prior
work on rule-based and pattern-based schema languages for
XML [11,19,20].

As already mentioned, while traditional relational data-
base schemas (formulated in e.g., the SQL data definition
language) are specifically designed for tabular data, they
are strictly less expressive than Sculpt schemas in the sense
that relational schemas limit region selection expressions to
those that select columns only. A similar remark holds for
other recent proposals of CSV schema languages, including
the CSV Schema language proposed by the UK National
Archives [1], and Tabular Data Package [16]. The remark
also applies to the part of Google’s Dataset Publishing Lan-
guage (DSPL) [12] describing the content of CSV files. In
contrast, DSPL also has features to relate data from multi-
ple CSV files, which Sculpt does not yet have.

The problem of streaming schema validation has been in-
vestigated in the XML context for DTDs and XML schemas
[14, 20, 27, 28]. In this work, the focus is on finding algo-
rithms that can validate an XML document in a single pass

703

using constant memory or, if this is not possible, a memory
that is bounded by the depth of the document. Our notion
of streaming, in contrast, is one where we can use a memory
that is not constant but at most logarithmic in the size of the
table (for strong streaming), or at most linear in the num-
ber of columns and logarithmic in the number of rows (for
weak streaming). This allows us to restrict memory when
going from one row to the next and is essential to be able to
navigate downwards in Sculpt region selection expressions.

While streaming validation is undoubtedly an important
topic for all of the CSV schema languages mentioned above
[1,12,16] (the National Archives Schema Language mentions
it as an explicit design goal), no formal streaming validation
algorithm has been proposed for them, to the best of our
knowledge.

We briefly mention some major lines of research on tables
on the web. One line of work considers HTML tables. Here,
the focus is on finding (related) HTML tables (at a search
engine scale) [6], extracting meaning of the tables based on
its content (see, e.g. [33]), and extracting RDF from HTML
tables [22]. Other work targets conversions from spread-
sheets to RDF (e.g. [13]).

2. SCULPT BY EXAMPLE
In this section, we introduce Sculpt through a number of

examples. The formal semantics of the examples is defined
in Section 3. The syntax we use here is tuned for making
the examples accessible to readers and is, of course, flexible.

Sculpt schemas operate on tabular documents, which are
text files describing tabular data. Sculpt schemas consist
of two parts (cf. Fig. 2). The first part, parsing information,
defines the row and column delimiters and further describes
how words should be tokenized. This allows to parse the text
file and build a table-like structure consisting of rows and
columns. In this section we allow some rows to have fewer
columns than others but we require them to be aligned to
the left. That is, non-empty rows always have a first column.
The second part of the schema consists of rules that interpret
the table defined by the first part as a rectangular grid and
that enforce structure. In particular, rules are of the form
ϕ→ ρ, where ϕ selects a region consisting of cells in the grid
while ρ is a regular expression constraining the content of the
selected region. We utilize a so-called row-based semantics:
every row in the region selected by ϕ should be of a form
allowed by ρ. We refer to ϕ as the selector expression and
to ρ as the content expression.

Next, we illustrate the features of the language by means
of examples. All examples are inspired by the use cases and
requirements drafted by the CSV on the Web W3C working
group [29].

Example 2.1. Fig. 1 contains a slightly altered fragment
(we use a comma as a column separator) of a CSV file
mentioned in Use Case 3, “Creation of consolidated global
land surface temperature climate databank” [29]. Its Sculpt
schema, displayed as Fig. 2, starts by describing parsing in-
formation indicating that the column delimiter is a comma
while the row delimiter is a newline. Lines starting with a
%-sign are comments. Tokens are defined based on regular
expressions (regex for short).3 For instance, anything that

3For ease of exposition, we adopt the concise regex syntax
popularized by scripting languages such as Perl, Python, and
Ruby [10] in all of our examples.

, ARUA, BOMBO, ENTEBBE AIR

1935.04, -99.00, -99.00, 27.83

1935.12, -99.00, -99.00, 25.72

1935.21, -99.00, -99.00, 26.44

1935.29, -99.00, -99.00, 25.72

1935.37, -99.00, -99.00, 24.61

1935.46, -99.00, -99.00, 24.33

1935.54, -99.00, -99.00, 24.89

Figure 1: Example tabular data inspired by Use
Case 3 in [29].

% Parsing information

%% Delimiters

Col Delim = ,

Row Delim = \n

%% Tokens

%% left: token name, right: regex

Timestamp = [0-9]{4}"."[0-9]{2}

Temperature = (-)?[0-9]{2}"."[0-9]{2}

ARUA = ARUA

BOMBO = BOMBO

ENTEBBE AIR = ENTEBBE AIR

% Rules

row(1) -> Empty, ARUA, BOMBO, ENTEBBE AIR

col(1) -> Empty | Timestamp

col(ARUA) -> Temperature

col(BOMBO) -> Temperature

col(ENTEBBE AIR) -> Temperature

Figure 2: Schema for tabular data of the type in
Fig. 1.

matches the regex [0-9]{4}"."[0-9]{2} follows the format
four digits, dot, two digits, and is interpreted by the token
Timestamp in the rules of the schema (similar for Tempera-

ture). Notice that we keep the regexes short (and sometimes
imprecise) for readability, but they can of course be made
arbitrarily precise if desired.

All the XML Schema primitive types such as xs:integer,
xs:string, xs:date, etc. are pre-defined as tokens in a Sculpt
schema. There is also a special pre-defined token Empty to
denote that a certain cell is empty.

Notice that the schema in Fig. 2 has three token defini-
tions in which the regex defines only one character sequence
(namely: ARUA, BOMBO, ENTEBBE AIR). In the sequel, we will
omit such rules for reasons of parsimony. For the same
reason, we omit the explicit definition of column and row
delimiters when they are a comma and newline character,
respectively.

The rule
row(1) -> Empty, ARUA, BOMBO, ENTEBBE AIR

selects all cells in the first row and requires that the first is
empty, the second contains ARUA, the third BOMBO, and the
fourth ENTEBBE AIR. Next, col(1) selects the region con-
sisting of all cells in the first column. As Sculpt assumes a
row-based semantics per default,4 the rule

col(1) -> Empty | Timestamp

requires that every row in the selected region (notice that
each such row consists of a single cell) is either empty (Empty)
or contains data that matches the Timestamp token. The ex-
pression col(ARUA) selects all cells in the column below the

4We discuss an extension in Section 5.

704

QS601EW

Economic activity

27/03/2011

, , Count , Count

, , Person , Person

, , Activity, Activity

GeoID , GeoArea, All , Part-time

E92000001, England, 38881374, 27183134

W92000004, Wales , 2245166 , 1476735

Figure 3: Fragment of a CSV-like-file, inspired by
Use Case 2 in [29].

%% Tokens

%% left: token name, right: regex

name = QS[0-9]*EW

ctype = Economic Activity

geo_id = E[0-9]*

% Rules

row(1) -> name

row(2) -> ctype

row(3) -> Date

row(4) -> Empty

row(5) -> Empty, Empty, Count*

row(6) -> Empty, Empty, Person*

row(7) -> Empty, Empty, Activity*

row(8) -> GeoID, GeoArea, String*

col(GeoID) -> geo_id

col(GeoArea) -> String

down+(right+(GeoArea)) -> Number*

Figure 4: Schema for files of the type in Fig. 3.

cell containing ARUA. The rule
col(ARUA) -> Temperature

therefore requires that every row in this region matches the
Temperature token. The two remaining rules are analogous.
The fragment in Fig. 1 satisfies the schema of Fig. 2. �

Before moving on to some more advanced examples, we
discuss in more detail the semantics of selector and content
expressions. Each cell in a table is identified by its coordi-
nate, which is a pair (k, `) where k indicates the row number
(k ≥ 1) and ` the column number (` ≥ 1). We use the con-
vention that the top left coordinate in tabular data bears
the coordinate (1, 1) — for first row, first column. In each
rule ϕ → ρ, the selector expression ϕ returns a set of co-
ordinates (a region) and ρ is a regular expression defining
the allowed structure of each row in the region selected by
ϕ. It is important to note that in each such row only the
cells which are selected by ϕ are considered. Another way
to interpret the row-based semantics is that of a ‘group by’
on the selected region per row.

The last rule we discussed in Example 2.1 uses a sym-
bolic coordinate ARUA in its selector expression. Its seman-
tics is as follows: a token τ returns the set of all coordinates
(k, `) whose cell content matches τ . The operator row ap-
plied to a coordinate (k, `) returns the set of coordinates
{(k, `′) | `′ > `}. This corresponds to the row consisting
of all elements to the right of (k, `). Note that coordinate
(k, `) itself is not included. Applying row to a set S of coor-
dinates amounts to taking the union of all row((k, `)) where
(k, `) ∈ S. Similarly, the operator col applied to S returns

the union of the regions {(k′, `) | k′ > k} for each (k, `) in
S, corresponding to columns below elements in S. The se-
lector expressions row(1) and col(1) that select the “first
row” and “first column”, respectively, use syntactic sugar to
improve readability (see Remark 3.4).

The next example illustrates the use of slightly more com-
plex expressions for navigation and content.

Example 2.2. Fig. 3 displays a (slightly altered) frag-
ment of a CSV-like-file inspired by Use Case 2 (“Publication
of National Statistics”) in [29]. This fragment originates
from the Office for National Statistics (UK) and refers to
the dataset “QS601EW Economic activity” derived from the
2011 Census. The file starts with three lines of metadata, re-
ferring to the name of the file and the census date, continues
with a blank line, before listing the actual data separated
by commas. Notice that this file is, strictly speaking, not
a comma-separated-value file because not all rows have an
equal number of columns.5 Indeed, the first four rows have
only (at most) one column and the later rows have four
columns. Fig. 4 depicts the Sculpt schema describing the
structure of such tables.

The schema starts by describing parsing information, anal-
ogous to Example 2.1. The first four rules are very basic and
are similar to those of Example 2.1. We first describe the
fifth rule of the schema:

row(5) -> Empty, Empty, Count*

selects all cells in the fifth row, requiring the first two to be
Empty and the remaining non-empty cells to contain Count.
We note that the original data fragment from [29] contains
16 such columns.

The rule col(GeoID) -> geo_id selects all cells below
cells containing the word GeoID. The content expression says
that this column contains values that match the geo_id to-
ken. The last rule is the most interesting one:

down+(right+(GeoArea)) -> Number*.
This rule selects all cells appearing strictly downward and to
the right of GeoArea and requires them to be of type Number.
More precisely, GeoArea is a symbolic coordinate selecting all
cells containing the word GeoArea. The navigational opera-
tors right and down select cells one step to the right and one
step down, respectively, from a given coordinate. The opera-
tor + indicates an arbitrary strictly positive number of appli-
cations of the navigational operator to which it is applied.
In particular, as on the table given in Fig. 3, GeoArea is
the singleton cell with coordinate (8, 2), right(GeoArea) re-
turns {(8, 3)}, while right+(GeoArea) is the region {(8, `) |
` > 2}. Likewise, down(right+(GeoArea)) is the region
{(9, `) | ` > 2} and, finally, down+(right+(GeoArea)) is the
region downward and to the right of the GeoArea coordinate,
that is, {(k, `) | k > 8 and ` > 2}. �

Example 2.2 uses more refined navigation than just se-
lecting a row or a column. Sculpt has four navigational
axes: up, down, left, right which navigate one cell up-
ward, downward, leftward, or rightward. These axes can
be applied to a set S of coordinates and add a vector v to
it. More formally, an axis A, when applied to a set S of
coordinates, returns A(S) := {c+ vA | c ∈ S}. Here,
• vA = (−1, 0) when A = up,
• vA = (1, 0) when A = down.

5Actually CSV does not have a standard, but the infor-
mative memo RFC4180 (http://tools.ietf.org/html/rfc4180)
states rectangularity in paragraph 2.4.

705

subject predicate object provenance

:e4 type PER

:e4 mention "Bart" D00124 283-286

:e4 mention "JoJo" D00124 145-149 0.9

:e4 per:siblings :e7 D00124 283-286 173-179 274-281

:e4 per:age "10" D00124 180-181 173-179 182-191 0.9

:e4 per:parent :e9 D00124 180-181 381-380 399-406 D00101 220-225 230-233 201-210

Figure 5: Fragment of a CSV-like file, inspired by Use Case 13 in [29].

% Tokens

%% left: token name, right: regex

rdf-id = [a-zA-Z0-9]*:[a-zA-Z0-9]*

rdf-lit = "[a-zA-Z0-9]*"

prov-book = D[0-9]{5}

prov-pos = [0-9]{3}-[0-9]{3}

prov-node = [0-9].[0.9]

word = [a-z]*

entity-type = PER | ORG | GPE

% Rules

row(1) -> subject, predicate, object, provenance

col(subject) -> rdf-id

col(predicate) -> word | rdf-id

col(object) -> rdf-lit | rdf-id | entity-type

down+(right*(provenance))

-> (prov-book, prov-pos*, prov-node?)*

Figure 6: Schema for files of the type in Fig. 5.

• vA = (0, 1) when A = right, and
• vA = (0,−1) when A = left.

Furthermore, there is also an axis cell that does not navi-
gate away from the current cells, i.e., cell(S) = S. When
applying an axis to a set of coordinates, we always return
only the coordinates that are valid coordinates in the table.
For example, left({1,1}) returns the empty set because
(1, 0) is not a cell in the table.

While the just discussed features of Sculpt are sufficient
to describe the structure of almost all CSV-like data on the
Web Working group use cases [29], we extend in Section 3
Sculpt to include XPath-like navigation. These features
will be useful for annotations and transformations, see Sec-
tion 5. We now showcase Sculpt by illustrating it on the
most challenging of the W3C use cases.

Example 2.3. Fig. 5 contains a fragment of a CSV-like
file, inspired by Use Case 13 in [29] (“Representing Entities
and Facts Extracted From Text”). Fig. 6 depicts the Sculpt
schema. Compared to the previous examples, the most in-
teresting rule is

down+(right*(provenance))

-> (prov-book, prov-pos*, prov-node?)*

which, since provenance only occurs in column 4, states
that every row that starts with a coordinate of the form
(k, 4) with k > 1 should match (prov-book, prov-pos*,

prov-node?)*. Notice that the empty row starting at (2, 4)
also matches this expression. Here, right* denotes an arbi-
trary number (including zero) of applications of the naviga-
tional operator right. �

3. FORMAL MODEL
In this section, we present a formal model for the logical

core of Sculpt. We refer to this core as core-Sculpt and

discuss extensions in Section 5. We first define the data
model.

Tables. For a number n ∈ N, we denote the set {1, . . . , n}
by [n]. By ⊥ we denote a special distinguished null value.
For any set V, we denote the set V ∪ {⊥} by V⊥. The W3C
formalizes tabular documents through tables, which can be
defined as follows.

Definition 3.1 (Core Tabular Data Model, [31]).
Let V be a set. A table over V is an n×m matrix T (for some
n,m ∈ N) in which each cell carries a value from V⊥. We
say that T has n rows and m columns. A (table) coordinate
is an element of [n]×[m]. A cell is determined by coordinate
(k, `) ∈ [n] × [m] and its content is the value Tk,` ∈ V⊥ at
the intersection of row k and column `. We denote the set
[n]× [m] of all coordinates of T by coords(T).

Tabular documents. Notice that tables are always rectan-
gular6 whereas, in Section 2, this was not the case for some
of the use cases. We model this by padding shorter rows by
⊥. More precisely, we see the correspondence between tabu-
lar documents, i.e., text files that describe tabular data (like
CSV files), and tables as follows. Let Σ be a finite set of
symbols and let D be a finite set of delimiters, disjoint from
Σ. We assume that D contains two designated elements
which we call row delimiter and column delimiter, which,
as the name indicates, separate cells vertically or horizon-
tally. (We discuss other delimiters in Section 5.) Therefore,
a sequence of symbols in (D ∪ Σ) can be seen as a table
over Σ∗: every row delimiter induces a new row in the table,
every column delimiter a new column, and the sequences
of Σ-symbols between delimiters define a cell’s content. In
the case that some rows have fewer columns than others,
missing columns are expanded to the right and filled with
⊥. Notice that, hence, we take a ⊥-cell to be distinct from
a cell that has empty content (i.e., a cell that contains the
empty Σ-string). Conversely, a table over Σ∗ can also be
seen as a string over (D ∪ Σ) by concatenating all its cell
values in top-down left-to-right order and inserting cell de-
limiters and row delimiters in the correct places; we do not
insert column delimiters next to ⊥-cells. As such, when we
convert a tabular document into a table and back; we obtain
the original tabular document.

We consider both representations in the remainder of the
paper. In particular we view the table representation as a
structure that allows efficient navigation in all directions and
the string representation as structure for streaming valida-
tion.

Core-Sculpt schemas. Abstractly speaking, a core-Sculpt
schema S is a tuple (D,∆,Θ, R) where D is the finite set of

6Tables are required to be rectangular by Section 2.1 of
[31]; as by paragraph 2.4 of the memo RFC4180 on CSV
(http://tools.ietf.org/html/rfc4180).

706

delimiters; ∆ is a finite set of tokens; Θ is a mapping that
associates a regular expression over Σ to each token τ ∈ ∆;
and R is a tabular schema, a set of rules that constrain the
admissible table content (further defined below).

Checking whether a tabular document σ in (D ∪Σ)∗ sat-
isfies S proceeds conceptually in three phases. In the first
phase, the delimiters are used to parse σ into a table T raw

over Σ∗, as described above. In the second phase, the token
definitions Θ are used to transform T raw into a tokenized
table T , which is a table where each cell contains a set of
tokens (i.e., each cell contains a subset of ∆, namely those
tokens that match the cell). Formally, T is the table of the
same dimension as T raw such that

Tk,` = {τ ∈ ∆ | T raw
k,` ∈ L(Θ(τ))}.

Here L(·) denotes the language of a regular expression. Fi-
nally, the rules in R check validity of the tokenized table T
(and not of the raw table T raw), as explained next.

Tabular schema. The tabular schema R describes the
structure of the tokenized table. Intuitively, a tabular schema
is a set of rules s → c in which s selects a region in the ta-
ble and c describes what the content of the selected region
should be. More formally, a region z of a table T is a sub-
set of coords(T). A region selection language S is a set of
expressions such that every s ∈ S defines a region in every
table T . More precisely, s[T] is always a (possibly empty)
region of T . A content language C is a set of expressions
such that every c ∈ C maps each region z of T to true or
false. We denote by T, z |= c that c maps z to true in T and
say that z satisfies c in T .

Definition 3.2 (Tabular Schema). A (tabular) sche-
ma (over S and C) is a finite set R of rules s→ c for which
s ∈ S and c ∈ C. A table T satisfies R, denoted T |= R,
when for every rule s→ c ∈ R we have that T, s[T] |= c.

The above definition is very general as it allows arbitrary
languages for selecting regions and defining content. We now
propose concrete languages for these purposes.

Region selection expressions. Our region selection lan-
guage is divided into two sorts of expressions: coordinate
expressions (ranged over by ϕ,ψ) and navigational expres-
sions (ranged over by α, β), defined by the following syntax:

ϕ,ψ := a | root | true | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | 〈α〉 | α(ϕ)

α, β := ε | up | down | left | right | [ϕ] | (α · β) | (α|β) | (α∗)

Here, a ranges over tokens in ∆ and root is a constant
referring to coordinate (1, 1). When evaluated over a ta-
ble T over 2∆, a coordinate expression ϕ defines a region
JϕKT ⊆ coords(T), whereas a navigational expression α de-

fines a function JαK : 2coords(T) → 2coords(T), as follows.

JaKT := {(i, j) ∈ coords(T) | a ∈ Ti,j}
JrootKT := {(1, 1)}
JtrueKT := coords(T)

J(ϕ ∨ ψ)KT := JϕKT ∪ JψKT
J(ϕ ∧ ψ)KT := JϕKT ∩ JψKT

J(¬ϕ)KT := coords(T) \ JϕKT
J〈α〉KT := {c ∈ coords(T) | Jα({c})KT 6= ∅}

Jα(ϕ)KT := Jα(JϕKT)KT

Furthermore, for every n×m table T and every set of coor-
dinates C ⊆ coords(T),

Jε(C)KT := C

Jup(C)KT := {(i− 1, j) | (i, j) ∈ C, i > 1}
Jdown(C)KT := {(i+ 1, j) | (i, j) ∈ C, i < n}

Jleft(C)KT := {(i, j − 1) | (i, j) ∈ C, j > 1}
Jright(C)KT := {(i, j + 1) | (i, j) ∈ C, j < m}

J[ϕ](C)KT := C ∩ JϕKT
J(α · β)(C)KT := Jβ(Jα(C)KT)KT
J(α|β)(C)KT := Jα(C)KT ∪ Jβ(C)KT

J(α∗)(C)KT :=
⋃
i≥0

Jαi(C)KT

Here, αi(C) abbreviates the i-fold composition α · · ·α(C).
We also use this abbreviation in the remainder. Notice that
every coordinate (k, `) of T can be expressed as downk−1 ·
right`−1(root). For navigational expressions α, we abbrevi-
ate α · α∗ by α+ and α|ε by α?. One can read α(ϕ) as
“apply the regular expression α to ϕ”. The definition of the
semantics of α · β conforms with this view.

Example 3.3. Region selection expressions navigate in
tables, similar to how XPath expressions navigate on trees.
For example, assuming dummy to be a token for -99.00 in
Figure 1, the expression

right+[¬〈down∗[dummy]〉](root)
selects top cells of columns (other than the first) that do not
contain a dummy value anywhere. Starting from the root, it
first navigates to the right and, from those cells, selects the
cells c for which down∗[dummy](c) is empty. In the excerpt
of Figure 1, this expression hence selects the cell containing
ENTEBBE AIR. Equivalently, one could also write

(right+(root) ∧ ¬(up∗(dummy)))
for the above expression. This expression selects cells right
from the root that are not above a dummy-cell.

We present a second example. Assuming the token literal
for cells with quotation marks (regex \"[a-zA-Z0-9]\") in
Figure 5, the expression

down+ · [literal] · right+(object)
selects all provenance information for rows in which the
object is between quotes, like "Bart", "JoJo", and "10".
Notice in particular that the semantics of the operator “[]”
in navigational expressions is the same as filter-expressions
in XPath. �

Readers familiar with propositional dynamic logic (PDL
for short) [9] will recognize that the above language is noth-
ing more than propositional dynamic logic, tweaked to nav-
igate in tables. As such, the language is also very close to
some fragments of Graph XPath [17].

There are some differences between the syntax of core-
Sculpt and the region selection expressions used in the ex-
amples of Section 2:

Remark 3.4. (i) As already observed, absolute coordi-
nates in Section 2 are syntactic sugar for navigations that
start at the root. For example, the coordinate (2, 2) would
be unfolded to down · right(root) in core-Sculpt.

(ii) The keywords row and col in Section 2 are syntactic
sugar for right+ and down+ in core-Sculpt, respectively. So,
col((2,2)), which denotes the column below the cell (2, 2)
in Section 2, is syntactic sugar for down+(down · right(root)).

707

(iii) The only exception to rule (ii) above are row and
column expressions of the form row(k) and col(`). These
abbreviate right∗(k, 1) and down∗(1, `), respectively. (Where
(k, 1) and (1, `) need to be further unfolded themselves.)

As an example, the selection expression row(1) of Figure
6 can be written as right∗(root) or, equivalently, right∗ and
the expression col(subject) as down+(subject).

(iv) It is also easy to add syntactic sugar in the form
rectangle((k1, `1), (k2, `2)) for selecting an area with (k1, `1)
and (k2, `2) as upper left and lower right corner. �

Content expressions. A content expression is simply a
regular expression ρ over the set of tokens ∆. To define
when a region in a tokenized table T is valid with respect
to content expression ρ, let us first introduce the following
order on coordinates. We say that coordinate (k, `) precedes
coordinate (k′, `′) if we visit (k, `) earlier than (k′, `′) in a
left-to-right top-down traversal of the cells of T , i.e., it pre-
cedes it in lexicographic order. Formally, (k, `) < (k′, `′) if
k < k′ or if k = k′ but ` < `′.

Now, let T be a tokenized table, let z be a region of T ,
and let ρ be a content expression. Then (T, z) satisfies the
content expression ρ under the region-based semantics, de-
noted T, z |=region ρ if there exist tokens a1, . . . , an ∈ ∆ such
that a1 · · · an ∈ L(ρ) and ai ∈ Tci , where c1, . . . , cn is the
enumeration in table order of all coordinates in z.

To define the row-based semantics we used in Section 2,
we require the following notions. Let z be a region of T . We
say that subregion z′ ⊆ z is a row of z if there exists some k
such that z′ = {(k, `) | (k, `) ∈ z}. Now, (T, z) satisfies the
content expression ρ under the row-based semantics, denoted
T, z |= ρ, if for every row z′ of z, we have T, z′ |=region ρ.

Remark 3.5. Recall that, for ease of exposition, we al-
lowed tables to be non-rectangular in Section 2 whereas in
our formal model, tables are always rectangular. In partic-
ular, shorter rows are padded with ⊥ to obtain rectangular-
ity. This implies that, some content expressions of Section 2
need to be adapted in our formal model. For example, the
rule row(1) -> name of Figure 4 needs to be adapted to
row(1)→ name,⊥,⊥,⊥ to take the padding into account. �

4. EFFICIENT VALIDATION
In this section we consider the validation (or evaluation)

problem for tabular schemas. This problem asks, given a
tokenized table or tabular document T and a tabular schema
R, whether T satisfies R. We consider the problem in a
main-memory and streaming variant. Intuitively, T is given
as a table in the former and as a tabular document in the
latter setting.

4.1 Validation in Linear Time
When T is given as a tokenized table, we can essentially

assume that we can navigate from a cell (i, j) to any of
its four neighbours up({(i, j)}), down({(i, j)}), left({(i, j)}),
and right({(i, j)}) in constant time. Under these assump-
tions we show that T can be validated against a tabular
schema in linear time combined complexity.7 The proof
strongly relies on the known linear time combined complex-
ity of propositional dynamic logic.

7Combined complexity is a standard complexity measure
introduced by Vardi; see [32].

Theorem 4.1. The evaluation problem for a tabular doc-
ument T and a tabular schema R is in linear time combined
complexity, that is, time O(|T ||R|).

4.2 Streaming Validation
Even though Theorem 4.1 implies that Sculpt schemas

can be efficiently validated, this only holds when the tabular
document can be fully loaded in memory and multiple passes
can be made through the document. However, when the in-
put data is large it is sometimes desirable to have a stream-
ing validation algorithm that makes only a single pass over
the input tabular document and uses only limited memory.
In this section we identify several fragments of core-Sculpt
that admits such streaming validation algorithms.

Streaming model. Let us begin by defining when an algo-
rithm validates in a streaming fashion. In this respect, we
draw inspiration from the SAX Streaming API for XML: we
can view a tokenized table T as a sequence of events gener-
ated by visiting the cells of T in table order. Here, whenever
we visit a new cell, an event 〈cell Γ〉 is emitted, with Γ the
set of tokens in the visited cell. Whenever we move to a new
row, an event of type 〈new row〉 is emitted.

Note that the tokenized event stream can easily be gener-
ated “on the fly” when parsing a tabular document: we start
reading the tabular document, one character at a time, until
we reach a delimiter. All non-delimiter characters are used
as input to, e.g., a finite state automaton that allows us to
check which tokens match the current cell’s content. When
we reach a delimiter, a 〈cell Γ〉 event is emitted with the
corresponding set of matching tokens. If the delimiter is a
row delimiter, then also a 〈new row〉 is emitted. We repeat
this until the end of the file.

Example 4.2. Consider the tabular document from Fig-
ure 1 together with the corresponding Sculpt schema S in
Figure 2. The tokenized table of this document according
to S yields the event stream

〈cell ∅〉〈cell {ARUA}〉〈cell {BOMBO}〉〈cell {ENTEBBE AIR}〉
〈new row〉〈cell {Timestamp}〉〈cell {Temperature}〉

〈cell {Temperature}〉〈cell {Temperature}〉〈new row〉 . . .

Definition 4.3 (Streamability). A tabular schema
R is said to be weakly streamable, if there exists a Turing
Machine M that
- can only read its input tape once, from left to right;
- for every tokenized table T , when started with the event

stream of T on its input tape, accepts iff T |= R; and
- has an auxiliary work tape that can be used during pro-

cessing, but it cannot use more than O(m log(n)) of space
on this work tape, where n is the total number of cells in
T , and m the number of columns.

We say that R is strongly streamable if the Turing Machine
M only requires O(log(n)) space on its work tape.

Here, strong streamability corresponds to the commonly
studied notions of streaming evaluation. We consider weak
streamability to be very relevant as well because, based on
the W3C use cases, tabular data often seems to be similar in
spirit to relational tables and, in these cases, is very narrow
and deep. In particular, m = O(logn) in these cases.

Weak streamability. To enable streaming validation, we
restrict our attention to so-called forward coordinate and
navigational expressions which are expressions where 〈α〉 is

708

not allowed, and we never look up or left. That is, a coordi-
nate or navigational expression is forward if it is generated
by the following syntax.

ϕ,ψ := a | root | true | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | α(ϕ)

α, β := ε | down | right | [ϕ] | (α · β) | (α+ β) | (α∗)

We do not consider the operator 〈α〉 in the forward fragment
because it can be seen as a backward operator: 〈right · [a]〉
is equivalent to left(a).

A core-Sculpt schema is forward if it mentions only for-
ward coordinate expressions.

Theorem 4.4. Forward core-Sculpt is weakly stream-
able.

Proof sketch. Consider a rule ϕ→ ρ with ϕ a forward
coordinate expression and ρ a content expression. We can
show that coordinate expressions ϕ can be evaluated in a
streaming fashion by constructing a special kind of finite
state automaton (called coordinate automaton) that allows
us to decide, at each position in the event stream, if the cur-
rently visited cell is in JϕKT . Whenever we find that this is
the case, we apply the current cell contents to ρ (which we
also evaluate by means of a finite state automaton). Now
observe that T |= ϕ→ ρ iff (1) under the row based seman-
tics, whenever we see 〈new row〉, the automaton for ρ is in a
final state and (2) under the region-based semantics, when
we reach the end of the event stream, the automaton for ρ
is in a final state. We then obtain weak streamability by
showing that coordinate automata for ϕ can be simulated in
space O(m log(n)), whereas it is known that the finite state
automaton for ρ can be simulated in constant space.

Strong streamability. Forward core-Sculpt is unfortu-
nately not strongly streamable: no schema with a rule that
contains subexpressions of the form col(a) (which are preva-
lent in Section 2) can be strongly streamable. This can be
seen using a simple argument from communication complex-
ity. Indeed, assume that the first row has k cells, some of
which have the token a and some of which do not. If we want
to evaluate col(a) in a streaming fashion, we need to iden-
tify the cells in the second row that are in the same columns
as the a-tokens in the first row. But, this is precisely the
equality of two k-bit strings problem, which requires Ω(k)
bits in deterministic communication complexity (Example
1.21 in [15]). These Ω(k) bits are what we need to store
when going from the first to the second row. Since k can
be Θ(n), this amount of space is more than we allow for
strongly streamable tabular schemas, and hence no schema
containing col(a) is strongly streamable.

The underlying reason why col(a) is not strongly stream-
able is because, in general, the token a can occur arbitrarily
often. However, in all such cases in Section 2 and in the
W3C use cases, the occurrences of a are very restricted. We
could therefore obtain strong streamability for such expres-
sions by adding constructs in the language that restrict how
certain tokens can appear:

unique(a) unique-per-row(a)

The former asserts that token a should occur only once in the
whole table and the latter that a occurs at most once in each
row. More formally, the former predicate holds in a table
T if JaKT contains at most one element and the latter holds
in table T if JaKT contains at most one element of the form

(r, c) for each row number r. Notice that a strong streaming
algorithm can easily check whether these predicates hold.

We use the above predicates to define two notions of guard-
edness for region selection expressions. Guarded formulas
will be strongly streamable. We say that token a is row-
guarded if unique-per-row(a) appears in the schema. If
unique(a) appears in the schema it is, in addition, also
guarded. The two notions of guardedness capture the follow-
ing intuition: if ϕ is row-guarded, then down(ϕ) is strongly
streamable and if it is guarded, then down∗(ϕ) is strongly
streamable. The main idea is that, in both cases, the number
of cells we need to remember when going from one row to the
next does not depend on the width of the table. We now de-
fine (row)-guardedness inductively on the forward language:
• root and true are guarded and row-guarded;
• right∗(ϕ) is guarded and row-guarded for every ϕ that

does not contain a navigational subexpression;
• if ϕ, ψ, α(ϕ), β(ϕ) are guarded (resp., row-guarded),

then
– ϕ ∧ ψ, ϕ ∨ ψ, ε(ϕ), down(ϕ), right(ϕ),
– (α · down)(ϕ), (α · right)(ϕ), and (α+ β)(ϕ)

are guarded (resp., row-guarded);
• if ϕ and α(ψ) are guarded then down∗(ϕ) and (α ·

down∗)(ψ) are guarded; and
• if ϕ and α(ψ) are row-guarded then right∗(ϕ) and (α ·

right∗)(ψ) are guarded.

Definition 4.5. A forward core-Sculpt schema is called
guarded, if all region selection expressions that use the down-
operator are row-guarded and all region selection expressions
that use down∗ are guarded.

Notice that guardedness of a Sculpt schema can be tested in
linear time. Furthermore notice that every Sculpt schema
in this paper becomes strongly streamable if we add the
predicates unique(a) for tokens a that we use in expressions
using col, down, or down∗.

Theorem 4.6. Guarded forward core-Sculpt is strongly
streamable.

5. SCULPT EXTENSIONS
Next, we describe a number of extensions to Sculpt.

These include alternative grouping semantics, types, com-
plex content cells, and a concept for a transformation lan-
guage.

5.1 Region semantics
The examples in Section 2 all use a row-based semantics of

Sculpt where the content expression is matched over every
row in the selected region. That is, the cells in the selected
region are ‘grouped by’ the row they occur in. There are of
course other ways to group cells, by column, for instance,
or by not grouping them at all. The latter case is already
defined in Section 3 as region-based semantics. In Sculpt,
we indicate rules using this semantics with a double arrow
=> rather than a single arrow. Notice the difference between
the rules col(2) -> Null | Number and col(2) => (Null

| Number)*. Both require each cell in the second column
to be empty or a number but express this differently. (The
former way is closer to how one defines the schema of a table
in SQL, which is why we chose it as a default.) Example 5.1
below describes a more realistic application of =>-rules. This

709

example corresponds to use case 12 in [29], is called “Chem-
ical Structures” and aims to interpret Protein Data Bank
(PDB) files as tabular data. This particular use case is in-
teresting because it illustrates that the view of W3C on tab-
ular data is not restricted to traditional comma-separated
values files. We note that Theorems 4.1, 4.4, and 4.6 still
hold if Sculpt schemas contain both rules under row-based
and region-based semantics.

Example 5.1. Figure 7 displays a slightly shortened ver-
sion of the PDB file mentioned in use case 12 in [29]. The
corresponding Sculpt schema could contain the following
rules:

row(1) -> HEADER, Type, Date, ID

col(1) => HEADER, TITLE*, dots, EXPDATA, AUTHOR*,

dots, REMARK*, dots, SEQRES*, dots, ATOM*

The last rule employs the region semantics and specifies the
order in which tokens in the first column should appear. �

5.2 Token types
The PDB fragment in Figure 7 contains cells that have

the same content but seem to have a different meaning. It
can be convenient to differentiate between cells by using to-
ken types. In the following fragment, REMARK-Header is the
topmost cell containing REMARK in Figure 7, REMARK-Comment
is the one immediately below, and REMARK-Rest is the rest:

%% Token types

%% left: name of the token type

%% right: region selection expression for token type

REMARK-Header <= down*[dots]/down[REMARK]

REMARK-Comment <= down*[dots]/down[REMARK]/down

REMARK-Rest <=

down*[dots]/down[REMARK]/down/(down[REMARK])*

Note that we abbreviated rules of the form α(root) by α.
We denoted the concatenation operator of navigational ex-
pressions by “/”. We can now use token types to write rules
such as

row(REMARK-Header) -> ...

row(REMARK-Comment) -> ...

row(REMARK-Rest) -> ...

Token types do not add additional expressiveness to the
language since one can simply replace REMARK-Header by
down*[dots]/down[REMARK](root) in the rule. But the abil-
ity to use different names for fields with the same content
may be useful for writing more readable schemas. In this
case, the names suggest that the block of remarks is divided
into a header, some comment, and the rest.

5.3 Transformations and Annotations
While it is beyond the scope of this document to develop a

transformation language for tables, we argue that region se-
lection expressions can be easily employed as basic building
blocks for a transformation language aimed at transform-
ing tables into a variety of formats like, for instance, RDF,
JSON, or XML (one of the scopes expressed in [34]). Region
selection expressions are then used to identify relevant parts
of a table.
Basic Transformations. Consider Figure 1 (of Exam-
ple 2.1) again, where we see that several columns have the
value −99.00. Since winter does not get this extreme in
Uganda, this value is simply a dummy which should not be
considered when computing, e.g., the average temperature

in Uganda in 1935. Instead, for the fragment of Figure 1,
it would be desirable to only select the columns that do not
contain −99.00. To do this, we can simply define a new to-
ken and a new token type for the region of the table we are
interested in.

Useless-Temp = -99.00

%% Token type

Useful <= col(1) or

(Temperature and not Useless-Temp) or

(row(1) and not up*(Useless-Temp))

The region defined by Useful contains

, ENTEBBE AIR

1935.04, 27.83

1935.12, 25.72

1935.21, 26.44

[...]

which could then be exported. Using simple for-loops we can
iterate over rows, columns, or cells, and compute aggregates.
For example,

Useful-values <= (Temperature and not Useless-Temp)

For each column c in Useful-values {

print Average(c)

}

would output 25.65, the average of the values below ENTEBBE

AIR in Figure 1. The region defined by Useful-values is a
set of table cells, with coordinates. These coordinates can be
used to handle information column-wise in the for-loop: It
simply iterates over all column coordinates that are present
in the region. Iteration over rows or single cells would work
analogously.
Namespaces, Annotations and RDF. Assume that we
want to say that certain cells in Figure 3 are geographical
regions. To this end, the Sculpt schema could contain a
definition of a default namespace:

namespace default =http://foo.org/nationalstats.csv

namespace x = [...]

Region selection expressions can then be used to specify
which cells should be treated as objects in which namespace.
For example, the code fragment

For each cell c in col(GeoArea) {

c.namespace = default

}

could express that each cell below GeoArea is an entity in
namespace http://foo.org/nationalstats.csv. So, the
cell containing England represents the entity

http://foo.org/nationalstats.csv:England,

similar for the cell containing Wales, etc. (Here we assume
that .namespace is a predefined operation on cells.)

We can also annotate cells with meta-information (as is
currently being considered in Section 2.2 of [31]). The code
fragment

For each cell c in col(GeoArea) {

annotate c with "rdf:type dbpedia-owl:Place"

annotate c with "owl:sameAs fbase:" + c.content

}

(assuming appropriate namespace definitions for rdf, owl,
etc.) could express that each cell below GeoArea should be
annotated with rdf:type dbpedia-owl:Place and, in addi-
tion, the England cell with owl:sameAs fbase:England, the

710

HEADER EXTRACELLULAR MATRIX 22-JAN-98 1A3I

TITLE X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE

TITLE 2 PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY)

...

EXPDTA X-RAY DIFFRACTION

AUTHOR R.Z.KRAMER,L.VITAGLIANO,J.BELLA,R.BERISIO,L.MAZZARELLA,

AUTHOR 2 B.BRODSKY,A.ZAGARI,H.M.BERMAN

...

REMARK 350 BIOMOLECULE: 1

REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B, C

REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.00000

REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000

...

SEQRES 1 A 9 PRO PRO GLY PRO PRO GLY PRO PRO GLY

SEQRES 1 B 6 PRO PRO GLY PRO PRO GLY

SEQRES 1 C 6 PRO PRO GLY PRO PRO GLY

...

ATOM 1 N PRO A 1 8.316 21.206 21.530 1.00 17.44 N

ATOM 2 CA PRO A 1 7.608 20.729 20.336 1.00 17.44 C

ATOM 3 C PRO A 1 8.487 20.707 19.092 1.00 17.44 C

ATOM 4 O PRO A 1 9.466 21.457 19.005 1.00 17.44 O

ATOM 5 CB PRO A 1 6.460 21.723 20.211 1.00 22.26 C

Figure 7: Fragment of a PDB file.

Wales cell with owl:sameAs fbase:Wales, etc. We assume
that annotate, with, and .content are reserved words or
operators in the language.

These ingredients also seem useful for exporting to RDF.
We could write, e.g.,

print "@prefix : <http://foo.org/nationalstats.csv>"

For each cell c in col(GeoArea) {

print ":"+c.content+"owl:sameAs fbase:"+c.content

}

to produce an RDF file that says that :England in the de-
fault namespace is the same as fbase:England. Looking at
Figure 5, one can also imagine constructs like

RDF <= col(subject) or col(predicate) or col(object)

For each row r in RDF {

print r.cells[1] +" "+ r.cells[2] +" "+ r.cells[3]

}

to facilitate the construction of RDF triples taking content
from several cells.

5.4 Complex content
The CSV on the Web WG is considering allowing complex

content (such as lists) in cells (Section 3.8 in [24]). Sculpt
can be easily extended to reason about complex content.
Our formal definition of tabular documents already consid-
ers (Section 3) a finite set of delimiters, which goes beyond
the two delimiters (row- and column-) that we used until
now.

In a spirit similar to region-based semantics, one can also
imagine a subcell-based semantics, for example, a rule of the
form

col(1) .> (String)*

could express that each cell in the first column contains a list
of Strings. Notice the use of .> instead of -> to denote that
we specify the content of each individual cell in the region,

instead of each row. The statement List Delim = ; in the
beginning of the schema could say that the semicolon is the
delimiter for lists within a cell.

6. CONCLUSIONS
We presented the schema language Sculpt for tabular

data on the Web and showcased its flexibility and usability
through a wide range of examples and use cases. While re-
gion selection expressions are at the very center of Sculpt,
we think they can be more broadly applied. Region selection
expressions can be used, for instance, as a cornerstone for
annotation- and transformation languages for tabular data
and thus for a principled approach for integrating such data
into the Semantic Web. The whole approach of Sculpt is
strongly rooted in theoretical foundations and, at the same
time, in well established technology such as XPath. For
these reasons, we expect the language to be very robust
and, at the same time, highly accessible for users. The ac-
cessibility for users may greatly benefit from a XPath-like
syntax for full-fledged region selection expressions, such as
right+::*[not(down*::dummy)] for the first expression in
Example 3.3. We leave the precise definition for such a syn-
tax as future work. Two further prominent directions for
future work are the following: (1) expand the usefulness of
Sculpt by further exploring the extensions in Section 5;
and, (2) study static analysis problems related to Sculpt
and region selector expressions leveraging on the diverse box
of tools from formal language theory and logic.

Acknowledgments
We are very grateful to Marcelo Arenas for bringing [31] to
our attention.

7. REFERENCES
[1] R. W. Adam Retter, David Underdown. CSV schema

1.0: A language for defining and validating CSV data.

711

http://digital-preservation.github.io/

csv-schema/csv-schema-1.0.html.

[2] M. Arenas, S. Conca, and J. Pérez. Counting beyond a
yottabyte, or how SPARQL 1.1 property paths will
prevent adoption of the standard. In International
World Wide Web Conference (WWW), pages
629–638, 2012.

[3] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernández, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) 2.0, 2007. W3C
Recommendation, January 2007.

[4] G. J. Bex, W. Gelade, F. Neven, and
S. Vansummeren. Learning deterministic regular
expressions for the inference of schemas from XML
data. In International World Wide Web Conference
(WWW), pages 825–834, 2008.

[5] G. J. Bex, W. Martens, F. Neven, and T. Schwentick.
Expressiveness of XSDs: from practice to theory, there
and back again. In International World Wide Web
Conference (WWW), pages 712–721, 2005.

[6] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu,
and Y. Zhang. Webtables: exploring the power of
tables on the web. PVLDB, 1(1):538–549, 2008.

[7] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB
to RDF mapping language. W3C Recommendation,
September 2012.

[8] D. Fallside and P. Walmsley. XML Schema Part 0:
Primer (second edition). W3C Recommendation,
October 2004.

[9] M. J. Fischer and R. E. Ladner. Propositional
dynamic logic of regular programs. J. Comput. Syst.
Sci., 18(2):194–211, 1979.

[10] J. E. F. Friedl. Mastering Regular Expressions.
O’Reilly Media, 3rd edition edition, 2006.

[11] W. Gelade and F. Neven. Succinctness of
pattern-based schema languages for XML. J. Comput.
Syst. Sci., 77(3):505–519, 2011.

[12] Google. DSPL: Dataset publishing language.
https://developers.google.com/public-data/.
Last accessed 04/11/2014.

[13] L. Han, T. Finin, C. S. Parr, J. Sachs, and A. Joshi.
RDF123: from spreadsheets to RDF. In The Semantic
Web - ISWC 2008, volume 5318 of LNCS, pages
451–466. Springer, 2008.

[14] V. Kumar, P. Madhusudan, and M. Viswanathan.
Visibly pushdown automata for streaming XML. In
International World Wide Web Conference (WWW),
pages 1053–1062, 2007.

[15] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[16] O. K. F. Labs. Tabular data package.
http://dataprotocols.org/tabular-data-package/.
Version 1.0-beta-2. Last accessed 04/11/2014.

[17] L. Libkin, W. Martens, and D. Vrgoc. Querying graph
databases with XPath. In International Conference on
Database Theory (ICDT), pages 129–140, 2013.

[18] K. Losemann and W. Martens. The complexity of
evaluating path expressions in SPARQL. In
International Symposium on Principles of Database
Systems (PODS), pages 101–112, 2012.

[19] W. Martens, F. Neven, M. Niewerth, and

T. Schwentick. Developing and analyzing XSDs
through BonXai. PVLDB, 5(12):1994–1997, 2012.

[20] W. Martens, F. Neven, T. Schwentick, and G. Bex.
Expressiveness and complexity of XML Schema. ACM
Transactions on Database Systems, 31(3):770–813,
2006.

[21] W. Martens, F. Neven, and S. Vansummeren.
SCULPT: A schema language for tabular data on the
web. http://arxiv.org/abs/1411.2351.

[22] V. Mulwad, T. Finin, and A. Joshi. Semantic message
passing for generating linked data from tables. In The
Semantic Web (ISWC 2013), volume 8218 of LNCS,
pages 363–378. Springer, 2013.

[23] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Transactions on
Database Systems, 34(3), 2009.

[24] R. Pollock and J. Tennison. Metadata vocabulary for
tabular data. Technical report, World Wide Web
Consortium (W3C), July 2014.
www.w3.org/TR/2014/WD-tabular-metadata-
20140710/.

[25] E. Prud’hommeaux, J. E. L. Gayo, and H. Solbrig.
Shape expressions: An RDF validation and
transformation language. In International Conference
on Semantic Systems, 2014.

[26] A. G. Ryman, A. L. Hors, and S. Speicher. OSLC
resource shape: A language for defining constraints on
linked data. In WWW Workshop on Linked Data on
the Web, 2013.

[27] L. Segoufin and C. Sirangelo. Constant-memory
validation of streaming XML documents against
DTDs. In International Conference on Database
Theory (ICDT), pages 299–313, 2007.

[28] L. Segoufin and V. Vianu. Validating streaming XML
documents. In International Symposium on Principles
of Database Systems (PODS), pages 53–64, 2002.

[29] J. Tandy, D. Ceolin, and E. Stephan. CSV on the
Web: Use cases and requirements. Technical report,
World Wide Web Consortium (W3C), October 2014.
http://w3c.github.io/csvw/

use-cases-and-requirements/.

[30] J. Tennison. 2014: The year of CSV.
http://theodi.org/blog/2014-the-year-of-csv.
last accessed 04/11/2014.

[31] J. Tennison and G. Kellogg. Model for tabular data
and metadata on the web. Technical report, World
Wide Web Consortium (W3C), July 2014. www.w3.
org/TR/2014/WD-tabular-data-model-20140710/.

[32] M. Y. Vardi. The complexity of relational query
languages (extended abstract). In ACM Symposium on
Theory of Computing (STOC), pages 137–146, 1982.

[33] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca,
W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
semantics of tables on the web. PVLDB, 4(9):528–538,
2011.

[34] W3C. CSV on the web working group charter.
http://www.w3.org/2013/05/lcsv-charter.html.

712

