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ABSTRACT
Latent Dirichlet allocation (LDA) is a widely-used probabilistic
topic modeling tool for content analysis such as web mining. To
handle web-scale content analysis on just a single PC, we propose
multi-core parallel expectation-maximization (PEM) algorithms to
infer and estimate LDA parameters in shared memory systems.
By avoiding memory access conflicts reducing the locking time
among multiple threads and residual-based dynamic scheduling,
we show that PEM algorithms are more scalable and accurate than
the current state-of-the-art parallel LDA algorithms on a commod-
ity PC. This parallel LDA toolbox is made publicly available as
open source software at mloss.org.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

Keywords
Latent Dirichlet allocation, parallel EM algorithms, multi-core sys-
tems, shared memory systems, scalability

1. INTRODUCTION
Latent Dirichlet allocation (LDA) [4, 3] is a popular probabilis-

tic topic model for content analysis such as web mining [12]. It can
automatically infer the hidden thematic groups of observed words
called topics from a collection of documents represented as an input
sparse document-word matrix. In the big data era, scalable parallel
LDA algorithms have attracted intensive research interests because
billions of tweets, images and videos on the web become increas-
ingly common. The aim of this paper is to develop efficien parallel
LDA algorithms for big data.
There are two widely available parallel architectures: 1) multi-

processor [19] and 2) multi-core [29] systems, where the main dif-
ference lies in the way to use the memory. In the multi-processor
architecture, all processes allocate independent memory space and
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communicate to synchronize LDA parameters at the end of each
learning iteration [21, 27, 19, 15, 25, 1, 38]. The reduction of com-
munication cost still remains an unsolved problem because this cost
is often too big to be masked by computation time in web-scale ap-
plications. The experimental results confir that the communica-
tion cost may exceed the computation cost to become the primitive
cost of large-scale topic modeling [27, 15]. In the multi-core ar-
chitecture, all threads access the shared memory space so that the
race condition is serious. A major scalability issue is the locking
time among multiple threads. An example of shared memory archi-
tecture is GPU-LDA [29], which shares LDA document-topic and
topic-word distribution parameters by multiple threads in multi-
core GPU. To avoid access conflict in parameter matrices, the
input document-word matrix is partitioned into independent data
blocks with non-overlapping rows and columns. A preprocessing
algorithm is used to balance the number of words in data blocks
so that different threads can finis scanning non-conflictin blocks
with almost the same time. However, it is difficul for absolute data
block balancing and faster threads need to wait for the slowest one
causing longer locking time. Yahoo!LDA [25, 1] presents a black-
board architecture that uses thememcached technique, a distributed
shared cache service, to maintain LDA parameter matrices in the
shared memory environment. Parallel processing of two or more
corpus shards would lead to serious access conflicts Yahoo!LDA
addresses this problem by locking accesses to conflictin shards,
but this locking mechanism degenerates its scalability performance
when the number of threads increases.
In this paper, we focus on developing more scalable LDA al-

gorithms in shared memory systems, which can handle web-scale
content analysis on just a commodity PC having the multi-core ar-
chitecture. For example, our parallel solution can learn 1000 topics
from 8million documents on just a PCwith 12 cores using around 3
hours. In contrast, previous parallel LDA algorithms on 1024 CPUs
need around 4.5 hours to do the same task [19]. This result sug-
gests that parallel LDA algorithms in multi-core system is not only
competitive even compared to parallel processing over large clus-
ters (multi-processor systems), but it is very affordable also. Gen-
erally, there are two main steps to develop scalable parallel LDA
algorithms in shared memory systems. The firs step is to choose
a batch/online LDA inference algorithm with the fast convergence
speed on a single machine. The second step is to parallelize this
algorithm in the shared memory system with small locking costs.
As far as the firs step is concerned, batch LDA inference al-

gorithms include expectation maximization (EM) [7], variational
Bayes (VB) [4], collapsed Gibbs sampling (GS) [10], collapsed
variational Bayes (CVB) [26, 2], and belief propagation (BP) [35].
Most parallel inference solutions of LDA choose GS algorithms
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because they are more memory-efficien than other algorithms [21,
27, 19, 15, 25, 1]. For example, GS does not need to maintain
the large posterior matrix in memory. In addition, GS stores LDA
parameters using the integer type by sparse matrices, and often ob-
tains higher topic modeling accuracy than VB [2]. So, GS is gener-
ally agreed to be a more scalable choice in many parallel LDA so-
lutions. However, recent research [2] shows that EM [7], CVB0 [2]
and BP [35, 34] converge much faster and produce higher topic
modeling accuracy than GS. Online LDA inference algorithms [11,
16, 5, 9] become popular with two reasons. First, they combine
the stochastic optimization framework [22] with the corresponding
batch LDA algorithms, which theoretically can converge to the lo-
cal optimal point of the LDA’s objective function. Second, online
algorithms are memory-efficien because they load each mini-batch
of data in memory for online processing, and remove the processed
mini-batch and local parameters from memory after one look. Al-
though online algorithms converge slower than batch counterparts,
they can process big data streams with a high velocity [23].
We choose EM [7] for LDA because of its fast convergence speed

as well as high topic modeling accuracy. To justify this choice, we
derive the batch EM (BEM), incremental EM (IEM) [18] and online
EM (OEM) [6] algorithms for learning LDA, and compare them
with other widely used LDA algorithms such as VB, GS, CVB and
BP. Then, we parallelize EM algorithms in the multi-core systems
called parallel EM (PEM). Inspired by the recent development of
locking-free parallel stochastic gradient descent for matrix factor-
ization [20, 39, 33], we further propose a residual-based schedul-
ing method to reduce the locking time among multiple threads. In
practice, this scheduling method can significantl speed up the con-
vergence of PEM algorithms. Experiments confir that PEM al-
gorithms converge significantl faster and scale up to more data
and topics when compared with the current state-of-the-art paral-
lel LDA algorithms [29, 25, 23] in multi-core systems. Note that
the proposed PEM can be also deployed in multi-processor sys-
tems, similar to previous multi-core solutions that work in multi-
processor systems [25, 33]. To summarize, we have the following
contributions in this paper:

• We develop scalable PEM algorithms in both batch and on-
line versions for LDA in shared memory environment. These
efficien PEM algorithms can converge to the local maximum
of the LDA log-likelihood function.

• We propose a residual-based scheduling method, which can
reduce the locking time among multiple threads, and in the
meanwhile speeds up the convergence of PEM in the multi-
core architecture.

• Experiments on three large-scale data sets confir that the
proposed PEM algorithms converge faster and are more scal-
able than the current state-of-the-art [29, 25, 23].

This paper is organized as follows: Section 2 discusses why
we choose EM for LDA (Appendix shows the derivation of BEM,
IEM, OEM and their convergence analysis). Section 3 describes
scalable PEM algorithms by avoiding memory access conflicts re-
ducing the locking time among multiple threads and residual-based
dynamic scheduling. Section 4 shows extensive experiments on
three large-scale data sets. Section 5 makes conclusions and envi-
sions further work.

2. WHY EM INFERENCE FOR LDA?
LDA allocates a set of thematic topic labels, z = {zk

w,d}, to ex-
plain nonzero elements in the document-word co-occurrence ma-
trix xW×D = {xw,d}, where 1 ≤ w ≤ W denotes the word

Table 1: Definition of Notation.
1 ≤ d ≤ D Document index
1 ≤ w ≤ W Word index in vocabulary
1 ≤ k ≤ K Topic index
1 ≤ m ≤ M × M M × M data blocks
1 ≤ n ≤ N Thread index
NNZ Number of nonzero elements
xW×D = {xw,d} Document-word matrix
zW×D = {zk

w,d} Topic labels for words
θK×D Document-topic distribution
φK×W Topic-word distribution
μK×NNZ Responsibility matrix
α, β Dirichlet hyperparameters

index in the vocabulary, 1 ≤ d ≤ D denotes the document index
in the corpus, and 1 ≤ k ≤ K denotes the topic index. Usually,
the number of topics K is provided by users. The nonzero element
xw,d �= 0 denotes the number of word counts at the index {w, d}.
For each word token xw,d,i = {0, 1}, xw,d =

∑
i xw,d,i, there is a

topic label zk
w,d,i = {0, 1}, ∑K

k=1 zk
w,d,i = 1, 1 ≤ i ≤ xw,d. Each

nonzero element xw,d �= 0 is associated with a topic probability
vector

∑
k μw,d(k) = 1, which denotes the posterior probability

of a topic label zk
w,d = 1 given the observed word {w, d}. The ob-

jective of inference algorithms is to infer posterior probability from
the full joint probability p(x,z, θ, φ|α, β), where z is the topic
labeling configuration θK×D and φK×W are two non-negative
matrices of multinomial parameters for document-topic and topic-
word distributions, satisfying

∑
k θd(k) = 1 and

∑
w φw(k) = 1.

Both multinomial matrices are generated by two Dirichlet distri-
butions with hyperparameters α and β. For simplicity, we consider
the smoothed LDAwith fi ed symmetric hyperparameters [10]. Ta-
ble 1 summarizes the important notations in this paper.
VB [4] infers the following posterior from the full joint proba-

bility,

p(θ, z|x, φ, α, β) =
p(x,z, θ, φ|α, β)

p(x, φ|α, β)
. (1)

This posterior means that if we learn the topic-word distribution
φ from training data, we want to infer the best {θ, z} from un-
seen test data given φ, i.e., for the best generalization performance.
However, computing this posterior is intractable because the de-
nominator contains intractable integration,

∫
θ,z

p(x,z, θ, φ|α, β).
So, VB infers an approximate variational posterior based on the
variational EM algorithm [17]:

• Variational E-step:

μw,d(k) ∝ exp[Ψ(θ̂d(k) + α)] exp[Ψ(φ̂w(k) + β)]

exp[Ψ(
∑

w[φ̂w(k) + β])]
, (2)

θ̂d(k) =
∑
w

xw,dμw,d(k). (3)

• Variational M-step:

φ̂w(k) =
∑

d

xw,dμw,d(k). (4)

In variational E-step, we update μw,d(k) and θ̂d(k) until conver-
gence, which makes the variational posterior approximate the true
posterior p(θ, z|x, φ, α, β) by minimizing the Kullback-Leibler
(KL) divergence between them. In the variational M-step, we up-
date φ̂w(k) to maximize the variational posterior. Here, we use
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Table 2: Time and Space Complexities of LDA Inference Algorithms.
Posterior Time Space (Memory)

VB [4] p(θ, z|x, φ, α, β) 2 × K × NNZ × digamma 2 × K × (D + W )
GS [31] p(z|x, α, β) δ1 × K × ntokens δ2 × K × W + ntokens
CVB [26] p(θ, φ, z|x, α, β) δ3 × 2 × K × NNZ K × (2 × (W + D) + NNZ)

BEM (Section 7.1) p(θ, φ|x, α, β) 2 × K × NNZ 2 × K × (D + W )
Modifie IEM (Section 7.2) p(θ, φ|x, α, β) 2 × K × NNZ K × (D + W )

OEM (Section 7.3) p(θ, φ|x, α, β) 2 × K × NNZ K × (Ds + W + NNZs)

the notation φ̂(k) =
∑

w φ̂w(k) for the denominator in (2). Nor-
malizing {θ̂, φ̂} yields the multinomial parameters {θ, φ}. How-
ever, the variational posterior cannot touch the true posterior for
inaccurate solutions [4]. In addition, the calculation of exponential
digamma function exp[Ψ(·)] is computationally complicated. As
shown in Table 2, the time complexity of VB for one iteration is
O(2 × K × NNZ × digamma), where digamma is the com-
puting time for exponential digamma function, and NNZ is the
number of nonzero elements in document-word sparse matrix. For
each nonzero element, we need K iterations for variational E-step
and K iterations for normalizing μw,d(k). The space complexity
isO(2×K × (D +W )) for two multinomial parameters and tem-
porary storage for variational M-step.
In contrast to VB, the collapsed GS [10] algorithm infers the

posterior by integrating out {θ, φ},

p(z|x, α, β) =
p(x,z|α, β)

p(x|α, β)
∝ p(x, z|α, β). (5)

This posterior means that we want to fin the best topic labeling
configuratio z given the observed words x. Because the multi-
nomial parameters {θ, φ} have been integrated out, the best label-
ing configuratio z is insensitive to the variation of {θ, φ}. Max-
imizing the joint probability p(x, z|α, β) is intractable (i.e., there
are Kntokens configuration that increase exponentially), an ap-
proximate inference called Markov chain Monte Carlo (MCMC)
EM [17] is used as follows:

• MCMC E-step:

μw,d,i(k) ∝ [θ̂
−z

k,old
w,d,i

d (k) + α][φ̂
−z

k,old
w,d,i

w (k) + β]∑
w[φ̂

−z
k,old
w,d,i

w (k) + β]

, (6)

Random Sampling zk,new
w,d,i = 1 from μw,d,i(k). (7)

• MCMC M-step:

θ̂d(k) = θ̂
−z

k,old
w,d,i

d (k) + zk,new
w,d,i , (8)

φ̂w(k) = φ̂
−z

k,old
w,d,i

w (k) + zk,new
w,d,i . (9)

In the MCMC E-step, GS infers the topic posterior per word to-
ken, μw,d,i(k) = p(zk,new

w,d,i = 1|zk,old
w,d,−i,x, α, β), and randomly

samples a new topic label zk,new
w,d,i = 1 from this posterior. The

notation −zk,old
w,d,i means excluding the old topic label from the cor-

responding matrices {θ̂, φ̂}. In the MCMCM-step, GS updates im-
mediately {θ̂, φ̂} by the new topic label of each word token. In this
sense, GS can be viewed as an incremental algorithm that learns pa-
rameters by processing data point sequentially. In Table 2, the time
complexity of GS for one iteration isO(δ1×K×ntokens), where
δ1 � 2. The reason is that we require K iterations in MCMC E-
step and less K iterations for normalizing μw,d,i(k). According

to sparseness of μw,d,i(k), efficien sampling techniques [31, 13,
32] can make δ1 even smaller. Practically, when K is larger than
1000, δ1 ≈ 0.05. Generally, we do not need to store θ̂K×D in
memory because z can recover θ̂K×D . So, the space complexity is
O(δ2 × K × W + ntokens) because φ̂K×W can be compressed
due to sparseness [31, 13]. When K is larger than 1000, δ2 ≈ 0.8.
Note that all parameters in GS are stored in integer type, saving
half memory space than double type used by other algorithms.
Unlike VB and GS, CVB [26] infers the complete posterior given

the observed data x,

p(θ, φ, z|x, α, β) ∝ p(x,z, θ, φ|α, β). (10)

Maximizing this posterior means that we want to obtain the best
combination of multinomial parameters {θ, φ} for the best topic
labeling configuratio z. However, inference of this posterior is in-
tractable so that the Gaussian approximation is used [26]. In this
sense, CVB optimizes an approximate LDA model, which cannot
achieve the best topic modeling accuracy. The variational E-step
and M-step in CVB are similar to those in GS. The main difference
is that the variational E-step requires multiplying an exponential
correction factor containing variance update for each nonzero ele-
ment rather than word token. In Table 2, the time complexity of
CVB is O(δ3 × 2 × K × NNZ), where δ3 > 1 denotes the addi-
tional cost for calculating exponential correction factor. The space
complexity is K × (2 × (W + D) + NNZ) because CVB needs
to store one copy of matrix μK×NNZ , and two copies of matrices
θ̂K×D and φ̂K×W in memory (one for the original and the other
for the variance). Details can be found in [26, 2].
We advocate the standard EM [7] algorithm that infers the pos-

terior by integrating out the topic labeling configuratio z,

p(θ, φ|x, α, β) =
p(x,θ, φ|α, β)

p(x|α, β)
∝ p(x,θ, φ|α, β). (11)

Unlike the posteriors of VB and GS, this posterior means that we
want to fin the best parameters {θ, φ} given observations x, no
matter what topic labeling configuratio z is. To this end, we inte-
grate out the labeling configuratio z in full joint probability, and
use the standard batch EM algorithm [8] to optimize this objec-
tive (11):

• E-step:

μw,d(k) ∝ [θ̂d(k) + α − 1][φ̂w(k) + β − 1]∑
w[φ̂(k) + β − 1]

, (12)

• M-step:

θ̂d(k) =
∑
w

xw,dμw,d(k), (13)

φ̂w(k) =
∑

d

xw,dμw,d(k). (14)
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In the E-step, EM infers the responsibility μw,d(k) conditioned on
parameters {θ̂, φ̂}. In the M-step, EM updates parameters {θ̂, φ̂}
based on the inferred responsibility μw,d(k). Unlike VB, EM can
touch the true posterior distribution p(θ, φ|x, α, β) in the E-step
for maximization. When compared with VB, the time complexity
of EM for one iteration is O(2 × K × NNZ) without calculating
exponential digamma functions. The space complexity of EM is
the same as VB with O(2 × K × (D + W )) because of storing
{θ̂, φ̂} as well as the temporary variables in the M-step.
In the past decade, VB and GS have been two main inference

algorithms in LDA literatures, while EM has been rarely discussed
and used in learning LDA. We show two main reasons to use EM:

1. EM yields a higher topic modeling accuracy measured
by predictive perplexity than both VB and GS. Predictive
perplexity is a standard performance measure for different
LDA inference algorithms [4, 2, 35], which is calculated as
follows: 1) We randomly partition the data set into training
and test sets in terms of documents. 2) We estimate φ̂ on
the training set by 500 iterations. 3) We randomly partition
each document into 80% and 20% subsets on the test set.
Fixing φ̂, we estimate θ̂ on the 80% subset by 500 iterations,
and then calculate the predictive perplexity on the rest 20%
subset,

exp

{
−

∑
w,d x20%

w,d log
[ ∑

k θd(k)φw(k)
]

∑
w,d x20%

w,d

}
, (15)

where {θ, φ} are multinomial parameters by normalizing
{θ̂, φ̂}, and x20%

w,d denotes the word counts in the the 20%
subset. The lower predictive perplexity represents a better
generalization ability. It is clear that Eq. (15) is a function
of multinomial parameters {θ, φ}, and EM infers the best
multinomial parameters p(θ, φ|x, α, β) for the low predic-
tive perplexity. By contrast, VB and GS produce higher pre-
dictive perplexity than EM because they infer different pos-
teriors as discussed before.

2. EM converges significantl faster than both VB and GS.
In Appendix (Section 7), we derive BEM [7], IEM [18] and
OEM [6] algorithms for LDA. Convergence analysis shows
that all these EM algorithms can converge to the local maxi-
mum of LDA’s objective function, because in the E-step the
lower-bound can touch the true posterior. The modifie IEM
has a low space complexity, and OEM is able to process big
data streams. We see that the zero-order approximation of
CVB called CVB0 [2] and asynchronous BP [35, 34] are
equivalent to IEM, which have been confirme empirically
to converge faster than both VB and GS. Also, online BP
(OBP) [37] and stochastic CVB (SCVB) [9] are implemen-
tations of OEM, which have been also confirme to be faster
than some state-of-the-art online LDA algorithms.

3. SCALABLE PEM FOR LDA
Fig. 1 shows PEM for learning LDA with N threads in shared

memory systems. First, we random shuffl and partition the in-
put document-word matrix xW×D into M ×M data blocks where
M > N (line 1). Second, we run N threads in parallel and each
thread performs BEM, IEM and OEM in Figs. 9, 10 and 11 (line 5).
Third, we update the residual rm,t (16) after sweeping each block
and dynamically schedule the free threads to the free data blocks
with the largest residual (lines 6 and 7). Finally, we synchronize
the global parameter vector φ̂(k) after some data blocks (e.g., N )
are swept (line 8).

input : x, K, α, β.
output : φ̂W×K , θ̂K×D.
random shuffl and partition xW×D into blocks1

xm, 1 ≤ m ≤ M × M, M > N ;
initialize θ̂d(k), φ̂w(k), φ̂(k);2

repeat3

for n ← 1 to N thread in parallel do4

free block xm: do BEM/IEM/OEM ;5

free block xm: update residual rm ;6

residual-based dynamic scheduling ;7

synchronize φ̂(k);8

until converged;9

Figure 1: Scalable PEM for LDA.

3.1 Residual-based Dynamic Scheduling
Multiple threads in parallel LDA algorithms have long locking

time, which is a main factor that we should try to reduce [29].
This motivates us to develop the residual-based dynamic schedul-
ing method. The document-word matrix is partitioned into mul-
tiple independent data blocks for parallel computation in differ-
ent threads. PEM in shared-memory systems use all available N
threads to perform E-step and M-step on different data blocks si-
multaneously. The challenge is that different threads may read and
write the same elements in parameter matrices θ̂d(k), φ̂w(k) and
φ̂(k), which leads to a serious access conflic problem. The K-
length parameter vector φ̂(k) will be visited by all threads at the
same time, so that the best method to avoid access conflict is to
make N independent copies of vector φ̂(k) for N threads [19].
After sweeping a certain number of data blocks (e.g., N ), we syn-
chronize the parameter vector by summing the updated parameter
matrix φ̂w(k), i.e., φ̂(k) =

∑
w φ̂w(k). This synchronization cost

is not the main bottleneck in PEM because the sum operation on
the K-length vectors is very simple.
According to [29], we can avoid access conflict in θ̂d(k) and

φ̂w(k) by partitioning the document-word matrix into 1 ≤ m ≤
M ×M blocks. In this case, the number of threads N = M . Fig. 2
shows an example of data blocks when M = 4 in the firs column.
The second and third columns show the parameter matrices φ̂W×K

and θ̂K×D , respectively. We use four colors (red, yellow, blue and
green) to denote four threads. Fig. 2A shows that four threads si-
multaneously process four data blocks in diagonal. In this way,
four threads will visit only the independent rows in φ̂w(k) and in-
dependent columns in θ̂d(k) without conflicting After processing
four diagonal data blocks, four threads will simultaneously move to
another four data blocks as shown in Fig. 2B, which also use only
the independent rows in φ̂w(k) and independent columns in θ̂d(k)
without conflicting This continues in Fig. 2C and Fig. 2D until all
4 × 4 data blocks have been processed.
To avoid access conflicts all threads in Fig. 2A need to wait for

the slowest thread before moving to the next data block in Fig. 2B.
Due to data block imbalance (the number of nonzero elements is
unequal in different data blocks), the locking time is the main bot-
tleneck in PEM. There are currently two solutions to make data
blocks more balanced. First, an approximate integer programming
method is used to fin the better data partition efficien y before
parallel computation [29]. Second, the random shufflin method
works very well empirically [39], which randomly permutes docu-
ments (columns) and vocabulary words (rows) of document-word
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Figure 3: Residual-based dynamic scheduling of two threads
(denoted by red and yellow) to process free data blocks without
the locking time cost.

sparse matrix before processing. However, the locking problem
still exists because NNZ in each data block may not be exactly
the same, and there is also slight difference in computing efficien y
among different threads.
Our approach is the residual-based scheduling to solve the lock-

ing problem in Fig. 3. First, we set M > N , i.e., the number
of data blocks is more than the number of threads. For example
in Fig. 3, we have N = 2 threads and partition data matrix into
M × M = 4 × 4 blocks. As far as N = 2 threads are concerned,
this will create more “free" data blocks without access conflicts On
the left figure the red and yellow threads simultaneously process
non-conflictin blocks 1 and 6. If the yellow thread finis sweeping
block 6 earlier than the red thread, it can directly jump to process
a free block 15 without waiting for the red thread. Then, the red
thread can jump to process a free block 10 when the yellow thread
is processing 15. On the right figure we show the scheduling or-
der of red and yellow threads, where the overlapping data blocks
in the time axis have no access conflicts For example, block 1

φ̂m,∗

φ̂m,t−1

φ̂m,t

Figure 4: Residual reflect the convergence speed.

(red thread) has no access conflict with blocks 6 and 15 (yellow
thread), and block 15 (yellow thread) has no access conflict with
blocks 1, 10 and 8 (red thread). In this asynchronous parameter
update strategy, there are little locking costs (i.e., few threads need
waiting) but scheduling costs.
We propose an efficien residual-based scheduling method that

can speed up convergence of PEM. For each data block m, we de-
fin the residual as follows,

rm,t =
∑
w,k

‖φ̂m,t
w (k) − φ̂m,t−1

w (k)‖, (16)

where φ̂m,t
w (k) is the updated parameter submatrix at sweep t and

φ̂m,t−1
w (k) is the parameter submatrix before updating at sweep

t − 1. The residual implies the convergence speed when sweeping
the current data block m. EM shows that the parameter submatrix
φ̂m,t will converge to a stationary point φ̂m,∗ when t → ∞. So,
if we minimize the largest distance ‖φ̂m,t − φ̂m,∗‖ at higher pri-
ority, we will speed up convergence of PEM. However, we do not
know this distance because the stationary point φ̂m,∗ is unknown.
Alternatively, we turn to minimizing the lower bound (16) on this
distance that can be calculated easily. Using the triangle inequality,
we get the lower bound

rm,t = ‖φ̂m,t − φ̂m,t−1‖
≤ ‖φ̂m,t − φ̂m,∗‖ + ‖φ̂m,t−1 − φ̂m,∗‖. (17)

Fig. 4 shows the definitio of residual (solid line), which is the
lower bound of the distance to be minimized (dashed lines) accord-
ing to the triangle inequality. In this way, the scheduling order
is to sweep the free block with the largest residual first When
t → ∞, the residual rm,t → 0 due to convergence. This property
ensures that the residual of each free block will become smaller
when t → ∞ so that all blocks have the chance to be swept in
residual-based dynamic scheduling.

3.2 Implementation Issues
We fin that using single-precision floating-poin computation

does not suffer from numerical error accumulation. Empirically,
using single precision runs around 10% faster than using double
precision by saving around 50% memory. Modern CPU provides
Streaming SIMDExtension (SSE) instructions that can concurrently
run floating-poin multiplications and additions. To speed up both
E-step and M-step, we apply SSE instructions for vector inner prod-
ucts and additions in Fig. 9 (lines 5-6), Fig. 10 (lines 4-6), and
Fig. 11 (lines 7-11). Using SSE reduces significantl the time cost
of line 4 in Fig. 10.

4. EXPERIMENTS
In our experiments, we call parallel BEM as PBEM, parallel IEM

as PIEM, and parallel OEM as POEM. We compare these PEM
algorithms with the following state-of-the-art parallel LDA algo-
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Table 3: Statistics of data sets.
Data Pubmed Wiki Nytimes
W 6, 902 7, 871 5, 363
Dtrain 8, 190, 000 4, 350, 095 290, 000
Dtest 10, 000 10, 000 10, 000
NNZtr 222, 127, 506 154, 574, 168 42, 921, 633
NNZte 271, 871 360, 140 1, 457, 642

Table 4: Convergence time cost (second) when K = 100.
Algorithms Pubmed Wiki Nytimes
PBEM-noScheduling 1162.04 630.75 176.8
PIEM-noScheduling 1280.12 613.69 271.30
PBEM 996.17 597.17 124.21
PIEM 976.96 535.08 192.68
PBGS 4370.29 2648.85 882.48
PBCVB0 2037.28 1317.25 550.48

rithms in shared memory systems: Yahoo!LDA1 (parallel batch
GS, PGS) [25, 1], GPU-LDA (parallel batch CVB0, PCVB0) [29,
2], parallel online VB2 (POVB) [11], and distributed stochastic
MCMC (parallel online GS, POGS) [23]. According to [2], for
a fair comparison, we set Dirichlet hyperparameters {α = β =
0.01} in PGS, POGS and PCVB0, α − 1 = 0.01, β − 1 = 0.01
in PEM, and α − 0.5 = 0.01, β − 0.5 = 0.01 in POVB. We carry
out experiments on a server with two Intel Xeon X5690 3.47G pro-
cessors and 140G memory. There are 6 cores in each processor for
a total of 12 cores (threads). Likewise to the previous studies [4,
2, 35], we use the predictive perplexity (15) to evaluate the topic
modeling accuracy. The lower perplexity the higher topic model-
ing accuracy. If the difference of predictive perplexity between two
consecutive iterations ≤ 5, the algorithm is considered to be con-
verged [35]. In this way, we can compare the convergence time cost
among all algorithms.
Table 3 shows publicly available training and held-out test sets

in our experiments.3 The infrequent words are removed from the
vocabulary similar to [4] so that the number of nonzero elements
in these data sets becomes smaller than that of the original sets.
Among these data sets, Pubmed contains 8, 200, 000, Wiki con-
tains 4, 360, 095, and Nytimes contains 300, 000 documents. These
data sets are big enough for evaluating parallel LDA algorithms.
For residual-based dynamic scheduling in PEM, we set M = 2 ×
N = 24 for free data blocks similar to [39]. In benchmark algo-
rithms without residual-based dynamic scheduling, we set M =
N = 12 similar to [29].

4.1 PBEM and PIEM
In this subsection, we compare parallel batch LDA algorithms

in multi-core systems (PBEM/PIEM v.s. PGS/PCVB0). Table 4
shows the convergence time cost of all algorithms when K =
100. We see that PBEM or PIEM converges around 1.2 or 1.3,
1.1 or 1.2, 1.4 or 1.4 times faster than PBEM-noScheduling or
PIEM-noScheduling on Pubmed, Wiki and Nytimes, respectively.
On average, residual-based dynamic scheduling can reduce around
10% ∼ 20% running time for convergence excluding the speedup
1https://github.com/shravanmn/Yahoo_LDA
2http://radimrehurek.com/
2014/09/multicore-lda-in-\
\python-from-over-night-to-over-lunch/
3http://archive.ics.uci.edu/ml/datasets/Bag\
%20of\%20Words
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Figure 6: Scalability of PBEM and PIEM (K = 100).

effects brought by implementations in Subsection 3.2. This con-
firm the effectiveness of the residual-based dynamic scheduling to
reduce the overall locking time. In addition, we fin that PIEM ben-
efi more from dynamic scheduling than PBEM. The major reason
is that IEM often passes the influenc of data blocks with largest
residuals more efficientl than BEM. Both PBEM and PIEM con-
verge to almost the same perplexity level, which indicates almost
the same topic modeling accuracy. On Nytimes data set, PIEM con-
verges significantl slower than PBEM even after adding residual-
based dynamic scheduling. Indeed, there is currently no theory that
IEM always converges faster than BEM [18, 14], though some lim-
ited experiments [14] indicate that IEM converges faster than BEM.
In our experiments, three data sets have quite different word distri-
butions. We see that PIEM converges slightly faster than PBEM on
Pubmed and Wiki, but it converges slower on Nytimes. This gives
an example that BEM sometimes converges faster than IEM.
In Fig. 5, we compare the predictive perplexity of PBEM/PIEM

and PGS/PCVB0 when K ∈ {50, 100, 150, 200, 250} on three
data sets. PBEM/PIEM always converges to a much lower predic-
tive perplexity than PGS. On average, there is around 30% ∼ 50%
predictive perplexity improvement. Because PCVB0 is similar to
PIEM, it converges to almost the same predictive perplexity as
PIEM. Clearly, both PBEM and PIEM converge significantl faster
than PGS and PCVB0. Their perplexity curves always locate on
those of PGS/PCVB0’s left. The speedup has been largely at-
tributed to the residual-based dynamic scheduling methods as well
as fast convergence speed of EM. In practice, PBEM and PIEM can
process 820, 000, 000 documents in Pubmed using no more than
16 minutes on a single PC, which is comparable with the previous
multi-processor solution on 1024 CPUs (23 minutes) [19]. There-
fore, parallel LDA algorithms in multi-core systems are not only
competitive but also affordable in big data era.
To test scalability, we perform two types of experiments on both

Pubmed and Wiki (K = 100): Scale Up and Speed Up. In Scale
Up, we establish scalability in terms of the number of documents.
We fi each thread to process 10M data and increase the number
of threads from 1 to 12 (x-axis). Thus, the scale of processed data
increases from 10M to 120M. The Scale Up (y-axis) is the division
between the convergence time of all other algorithms and that of
PCVB0 using 1 thread for 10M data. In Speed Up, we establish
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Figure 5: Comparisons of predictive perplexity when K ∈ {50, 100, 150, 200, 250} on three data sets.

scalability in terms of a speedup in convergence time as we in-
crease the number of threads available. We use the entire Pubmed
and Wiki data sets, and increase the number of threads from 1 to
12 (x-axis). The Speed Up (y-axis) is the division between the con-
vergence time of all other algorithms and that of PCVB0 using 1
thread for the entire data set.
Fig. 6 shows that PIEM performs the best in terms of Scale Up

and Speed Up. The top row shows that the Scale Up curve of PIEM
remains almost a horizontal line when the processed data increase.
This means that PIEM uses a large fraction of runtime to do topic
modeling when the volume of data increases. As a comparison, the
Scale Up curves of PGS, PCVB0 and PBEM increase linearly with
respect to the volume of processed data. The bottom row shows
that the Speed Up curve of PIEM is almost linear with respect to the
number of threads. This means that more threads will lead to faster
speed. As a comparison, the Speed Up curves of PGS, PCVB0 and
PBEM bend obviously when the number of threads increases. But
PBEM’s scalability is still much better than both PGS and PCVB0.
The major reason why PIEM has the best scalability is that the
residual-based dynamic scheduling performs very well in PIEM so
that locking time has been significantl reduced. In this paper, we
advocate PIEM in shared memory systems for large-scale data sets
due to good scalability performance.

4.2 POEM
In this subsection, we compare POEM with two parallel on-

line LDA algorithms: POVB (multi-core OVB with open source
codes)4 and POGS. Similar to previous work [11], we set the learn-
ing parameters as {τ0 = 64, κ = 0.5, Ds = 4096}. First, we com-
pare parallel online LDA algorithms with batch algorithms: PBEM
and PIEM. Fig. 7 (left panel) shows the convergence time costs (x-
axis) and predictive perplexity (y-axis) achieved on three data sets
Wiki (red color), Nytimes (blue color) and Pubmed (green color)
when K = 100. If the algorithm locates in the left-bottom area, it
4http://radimrehurek.com/2014/
09/multicore-lda-in-python\
\-from-over-night-to-over-lunch/
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Figure 7: POEM convergence speed and predictive perplexity.

indicates the desirable topic modeling result (i.e., fast convergence
speed as well as high topic modeling accuracy). We see that the
batch algorithms converge faster than the online ones since they
use the global gradient ascent of all data points while the online
algorithms use only the local gradient ascent of each mini-batch
to update parameters. This is consistent with the previous finding
that the convergence rate of stochastic algorithms is often slower
than that of batch algorithms [24]. POEM (star sign) can converge
at almost the same predictive perplexity of PBEM (circle sign) and
PIEM (plus sign), which confirm that POEM can converge to the
local maximum of the LDA’s log-likelihood function in Section 7.3.
As a comparison, POGS (cross sign) and POVB (triangle sign) con-
verge around 3 ∼ 4 times slower than POEM. The main reason is
that POVB uses computationally complicated digamma functions
in Table 2, while POGS uses much more iterations for learning each
mini-batch due to its Markov Chain Monte Carlo (MCMC) nature.
Also, we see that POVB and POGS converge at the higher level of
predictive perplexity than POEM, supporting our analysis in Sec-
tion 2 that EM yields a higher topic modeling accuracy because
of its inferred posterior p(θ, φ|x, α, β). Although [2] states that
the topic modeling accuracy of different inference algorithms can
be almost the same by tuning the hyperparameters {α, β}, we still
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Figure 8: Scalability of POEM (K = 100).

advocate the standard EM framework because it converges much
faster than both VB and GS.
Although POEM, POVB and POGS converge slower than PBEM

and PIEM, they are more memory-efficien to handle larger scale
topic modeling tasks on a single PC because they do not need to
store the large matrix θ̂K×D . For example, PBEM and PIEM can-
not efficientl process Pubmed data set when K = 1000, while
POEM, POVB and POGS can do it. Fig. 7 (right panel) compares
the convergence time costs and predictive perplexity of POEM,
POVB and POGS when K = 1000. Similar to the results when
K = 100, POEM performs significantl faster and achieves a
lower perplexity than POVB and POGS. In practice, POEM pro-
cesses Pubmed data set (K = 1000) using less than 3 hours, while
PGS using 1024 CPUs requires around 4.5 hours on the same scale
of data set [19].
Fig. 8 compares the Scale Up and Speed Up curves of POEM

and POVB/POGS. In Scale Up, we f x each thread to process 30M
data and increase the number of threads from 1 to 12 (x-axis). The
Scale Up (y-axis) is the division between the convergence time of
all other algorithms and that of POVB using 1 thread for 30M data.
The perfect Scale Up curve is a horizontal line in the bottom area.
Clearly, the Scale Up curve of POEM locates significantl lower
than those of POGS and POVB, indicating a much better Scale Up
performance. In Speed Up, we divide between the convergence
time of all other parallel online LDA algorithms and that of POVB
using 1 thread for the entire data set (y-axis). We increase the num-
ber of threads from 1 to 12 (x-axis) and see if the convergence speed
increases. The perfect Speed Up curve is a linear line with a high
slope without bending. We see that the Speed Up curve of POEM
is significantl higher than those of POVB and POGS. This shows
that POEM can reach a higher speedup when more threads are used.
Both Fig. 6 and Fig. 7 confir that the proposed PEM algorithms
are more scalable than the current state-of-the-art solutions.

5. CONCLUSIONS
Scalable LDA algorithms in shared memory systems are needed

for big data on widely used multi-core systems. Unlike previous
parallel solutions using batch/online VB and GS inference, we ad-
vocate the EM framework to build more scalable parallel LDA al-
gorithms. Using the efficien residual-based dynamic scheduling,

input : x, K, T, α, β.
output : φ̂W×K , θ̂K×D.
initialize θ̂d(k); φ̂w(k); φ̂(k);1

for t ← 1 to T do2

θ̂newd (k) ← 0; φ̂new
w (k) ← 0; φ̂new(k) ← 0;3

for xw,d �= 0 do4

μw,d(k) ← normalize([θ̂d(k) + α −5

1][φ̂w(k) + β − 1]/[φ̂(k) + W (β − 1)]);
θ̂newd (k) ← θ̂newd (k) + xw,dμw,d(k);6

φ̂new
w (k) ← φ̂new

w (k) + xw,dμw,d(k);
φ̂new(k) ← φ̂new(k) + xw,dμw,d(k);

θ̂d(k) ← θ̂newd (k); φ̂w(k) ← φ̂new
w (k);7

φ̂(k) ← φ̂new(k);

Figure 9: BEM for LDA.

we propose scalable PEM algorithms for LDA with faster conver-
gence speed and shorter locking time than the current state-of-the-
art. Experiments show that the residual-based dynamic scheduling
can effectively reduce the locking time and speed up convergence
of PEM, which can be used in other latent variable models where
EM inference works. In our future work, we shall study how to
extend PEM from the multi-core systems to multi-processor sys-
tems [30, 28].
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7. APPENDIX
In this appendix, we derive BEM, IEM and OEM algorithms for

LDA, which infer the posterior p(θ, φ|x, α, β) ∝ p(x,θ, φ|α, β)
from the full joint probability of LDA. This objective is quite dif-
ferent from VB [4], GS [10] and CVB algorithms, which infer the
posterior p(θ, z|x, φ, α, β), p(z|x, α, β), and p(θ, φ, z|x, α, β),
respectively. The time and space complexity comparison of these
algorithms has been shown in Table 2.

7.1 Batch EM (BEM)
We maximize the likelihood function of LDA in terms of multi-

nomial parameter set λ = {θ, φ} as follows,

p(x,θ, φ|α, β) =
∏

w,d,i

[ ∑
k

p(xw,d,i = 1, zk
w,d,i = 1

|θd(k), φw(k))

] ∏
d

p(θd(k)|α)
∏
k

p(φw(k)|β). (18)

Employing the Bayes’ rule and the definitio of multinomial distri-
butions, we get the word likelihood,

p(xw,d,i = 1, zk
w,d,i = 1|θd(k), φw(k)) =

p(xw,d,i = 1|zk
w,d,i = 1, φw(k)) × p(zk

w,d,i = 1|θd(k)),

= xw,d,iφw(k)θd(k), (19)
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which depends only on the word index {w, d} instead of the word
token index i. Then, according to the definitio of Dirichlet distri-
butions, the log-likelihood of (18) is


(λ) ∝
∑
w,d,i

xw,d,i

[
log

∑
k

μw,d(k)
θd(k)φw(k)

μw,d(k)

]

+
∑

d

∑
k

log[θd(k)]α−1 +
∑

k

∑
w

log[φw(k)]β−1, (20)

where μw,d(k) is some topic distribution over the word index {w, d}
satisfying

∑
k μw,d(k) = 1, μw,d(k) ≥ 0. In (19), we observe that∑

w,d,i[xw,d,i = 1] =
∑

w,d xw,d, so that we can cancel the word
token index i in (20). Because the logarithm is concave, by Jensen’s
inequality, we have


(λ) ≥ 
(μ, λ) =
∑
w,d

∑
k

xw,dμw,d(k)

[
log

θd(k)φw(k)

μw,d(k)

]

+
∑

d

∑
k

log[θd(k)]α−1 +
∑

k

∑
w

log[φw(k)]β−1, (21)

which gives the lower bound of log-likelihood (20). The equality
holds true if and only if

μw,d(k) ∝ θd(k)φw(k). (22)

In EM, the K-length posterior probability vector μw,d(k) is the
responsibility that the topic k takes for word index {w, d} [17].
For this choice of μw,d(k), Eq. (21) gives a tight lower bound on
the log-likelihood (20) we are trying to maximize. This is called
the E-step in EM [8].
In the successive M-step, we then maximize (21) with respect

to parameters to obtain a new setting of λ. Since the hyperparam-
eters {α, β} are fi ed, without loss of generality, we derive the
M-step update for the parameter θd(k). There is an additional con-
straint that

∑
k θd(k) = 1 because θd(k) is parameter of a multi-

nomial distribution. To deal with this constraint, we construct the
Lagrangian from (21) by grouping together only the terms that de-
pend on θd(k),


(θ) =
∑

d

∑
k

[ ∑
w

xw,dμw,d(k) + α − 1

]
log θd(k)

+δ(
∑

k

θd(k) − 1), (23)

where δ is the Lagrange multiplier. Taking derivatives, we fin

∂

∂θd(k)


(θ) =

∑
w xw,dμw,d(k) + α − 1

θd(k)
+ δ. (24)

Setting this to zero, we get

θd(k) =

∑
w xw,dμw,d(k) + α − 1

−δ
. (25)

Using the constraint that
∑

k θd(k) = 1, we easily fin that −δ =∑
k[

∑
w xw,dμw,d(k) + α − 1]. We therefore have our M-step

update for the parameter θd(k) as

θd(k) =
θ̂d(k) + α − 1∑

k θ̂d(k) + K(α − 1)
. (26)

where θ̂d(k) =
∑

w xw,dμw,d(k) is the expected sufficien statis-
tics. Similarly, another multinomial parameter can be estimated by

φw(k) =
φ̂w(k) + β − 1

φ̂(k) + W (β − 1)
, (27)

input : x, K, T, α, β.
output : φ̂W×K , θ̂K×D.
initialize θ̂d(k), φ̂w(k), φ̂(k);1

for t ← 1 to T do2

for xw,d �= 0 in random order do3

θ̂d(k) ← (1 − xw,d/
∑

w xw,d)θ̂d(k);4

φ̂w(k) ← (1 − xw,d/
∑

d xw,d)φ̂w(k);
φ̂(k) ← (1 − xw,d/

∑
w,d xw,d)φ̂(k);

μw,d(k) ← normalize([θ̂d(k) + α −5

1][φ̂w(k) + β − 1]/[φ̂(k) + W (β − 1)]);
θ̂d(k) ← θ̂d(k) + xw,dμw,d(k);6

φ̂w(k) ← φ̂w(k) + xw,dμw,d(k);
φ̂(k) ← φ̂(k) + xw,dμw,d(k);

Figure 10: Modifie IEM for LDA.

where φ̂w(k) =
∑

d xw,dμw,d(k) is the expected sufficien statis-
tics and φ̂(k) =

∑
w φ̂w(k). Note that the denominator of (26) is

a constant. Replacing (26) and (27) into (22), we obtain the E-step
in terms of sufficien statistics,

μw,d(k) ∝ [θ̂d(k) + α − 1] × [φ̂w(k) + β − 1]

φ̂(k) + W (β − 1)
, (28)

where the EM iterates the E-step and M-step to refin sufficien
statistics θ̂d(k) and φ̂w(k), which can be normalized to be the
multinomial parameters according to (26) and (27).
Fig. 9 shows BEM for LDA. We initialize three temporary ma-

trices φ̂new
w (k), θ̂new

d (k), φ̂new(k) (line 3) to accumulate respon-
sibilities in E-step for all words (line 6) without storing the large
responsibility matrix μK×NNZ in memory. At the end of each it-
eration t, 1 ≤ t ≤ T , we copy the three temporary matrices back
to φ̂w(k), θ̂d(k), φ̂(k) in M-step (line 7). BEM iterates E-step and
M-step repeatedly. Suppose λt−1 and λt are the parameters from
two successive iterations of EM. It is easy to prove that


(λt) ≥ 
(μt−1, λt) ≥ 
(μt−1, λt−1) = 
(λt−1), (29)

which shows that EM always monotonically improves the LDA’s
log-likelihood (20) for convergence. The EM can be also viewed
as a coordinate ascent on the lower bound 
(μ, λ) (21), in which the
E-step maximizes it with respect to μ, and the M-step maximizes
it with respect to λ.

7.2 Incremental EM (IEM)
In batch EM (BEM), the M-step is performed until the E-step

updates all responsibilities μw,d(k), which slows down the conver-
gence since the updated responsibility of each word in the E-step
does not immediately influenc the parameter estimation in the M-
step. This problem motivates incremental EM (IEM) [18]. When
compared with BEM (28), IEM alternates a single E-step and M-
step for each nonzero element xw,d sequentially. Thus, the E-step
of IEM becomes

μw,d(k) ∝ [θ̂−w,d(k) + α − 1] × [φ̂w,−d(k) + β − 1]

φ̂−(w,d)(k) + W (β − 1)
. (30)
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The expected sufficien statistics are

θ̂−w,d(k) =
∑
−w

xw,dμw,d(k), (31)

φ̂w,−d(k) =
∑
−d

xw,dμw,d(k), (32)

φ̂−(w,d)(k) =
∑

−(w,d)

xw,dμw,d(k), (33)

where −w, −d and −(w, d) denote all word indices except w, all
document indices except d, and all word indices except {w, d}.
After the E-step for each word, the M-step will update the sufficien
statistics immediately by adding the updated posterior μw,d(k) (30)
into (31), (32) and (33).
Comparing the E-step between BEM and IEM, we fin that the

major difference between (28) and (30) is that IEM excludes the
current posterior xw,dμw,d(k) from sufficien statistics in (31), (32)
and (33). As a result, IEM’s space complexity isO(K×(D+W +
NNZ)) by storing the large responsibility matrix μK×NNZ . For
example, if K = 100, the responsibility matrix will occupy around
360GB (using double-precision floating-poin format) memory on
the Pubmed data set [21] having 483, 450, 157 nonzero elements.
This space is currently too large to be afforded by a single com-
modity PC. Note that CVB0 [2] and asynchronous BP [35, 36] are
equivalent to IEM, which are also memory-consuming for big data
on a single PC. So, we propose a modifie IEM in Fig. 10 that do
not need to store the large responsibility matrix. After random ini-
tialization, we reduce the parameter matrices θ̂d(k), φ̂w(k), φ̂(k)
in a certain proportion (line 4). This avoids to subtract the cur-
rent responsibility from parameter matrices in (31), (32) and (33).
Then, the E-step of incremental EM becomes (28) rather than (30).
In this way, we do not need to store the large responsibility matrix
μK×NNZ in memory. After E-step (line 5) for each nonzero ele-
ment, the parameter matrices can be compensated by the updated
K-tuple responsibility μw,d(k) in M-step (line 6). In this way, the
change of parameter matrix will immediately influenc the update
of the responsibility for the next nonzero element (line 5). In an-
ticipation, this incremental update method is more efficien to pass
the influenc of the updated responsibility than batch EM in Fig. 9.
Likewise, it is easy to see that IEM can also converge to the local
stationary point of LDA’s log-likelihood because


(λt) = 
(μt, λt) ≥ 
(μt
w,d, μt−1

−(w,d), λ
t)

≥ 
(μt
w,d, μt−1

−(w,d), λ
t−1) ≥ 
(μt−1, λt−1) = 
(λt−1). (34)

7.3 Online EM (OEM)
The basic idea of online algorithms is to partition a stream of D

documents into small mini-batches with size Ds, and use the on-
line gradient produced by each mini-batch to estimate topic distri-
butions incrementally. OEM [6] combines IEM with the stochastic
approximation, which achieves convergence to the stationary points
of the likelihood function by interpolating between sufficien statis-
tics based on a learning rate ρs satisfying Robbins-Monro condi-
tions [22],

ρs = (τ0 + s)−κ, (35)

where τ0 is a pre-define number of mini-batches, s is the mini-
batch index and κ ∈ (0.5, 1] is provided by users. Similar to (34),
it is easy to observe that


(φ̂s) = 
(μs+1:∞, μs, φ̂s) ≥ 
(μs+1:∞, μs, φ̂s−1)

≥ 
(μs:∞, μs−1, φ̂s−1) = 
(φ̂s−1), (36)

input : xs
w,d, Ds, τ0, κ, K, α, β.

output : φ̂
S

K×W .
for s ← 1 to S do1

Load xs
w,d, d ∈ Ds in memory;2

ρs = (τ0 + s)−κ; initialize μs;3

θ̂s
d(k) ← ∑

w xs
w,dμ

s
w,d(k), d ∈ Ds;

φ̂s
w(k) ← φ̂s

w(k) +
∑

d xs
w,dμ

s
w,d(k), d ∈ Ds;4

φ̂s(k) ← φ̂s(k) +
∑

w,d xs
w,dμ

s
w,d(k), d ∈ Ds;5

repeat6

for xs
w,d �= 0 in random order do7

θ̂s
−w,d(k) ← θ̂s

d(k) − xs
w,dμ

s
w,d(k);8

φ̂s
w,−d(k) ← φ̂w(k) − xs

w,dμ
s
w,d(k);

φ̂s
−(w,d)(k) ← φ̂(k) − xs

w,dμ
s
w,d(k);

μs
w,d(k) ← normalize([θ̂s

d(k) + α −9

1][φ̂s
w(k) + β − 1]/[φ̂s(k) + W (β − 1)]);

θ̂s
d(k) ← θ̂s

d(k) + xs
w,dμ

s
w,d(k);10

φ̂s
w(k) ← φ̂s

w(k) + xs
w,dμ

s
w,d(k);

φ̂s(k) ← φ̂s(k) + xs
w,dμ

s
w,d(k);

until converged;11

φ̂s
w(k) ← (1− ρs)φ̂s−1

w (k) + ρs[
∑

d xs
w,dμ

s
w,d(k)];12

φ̂s(k) ← (1−ρs)φ̂s−1(k)+ρs[
∑

w,d xs
w,dμ

s
w,d(k)];

Free xs
w,d, θ̂

s

K×Ds
, μs

K×NNZs
from memory;13

Figure 11: OEM for LDA.

whereμs+1:∞ denotes responsibilities of unseen mini-batches from
s + 1 to∞. Note that the lower bound (36) will not touch the log-
likelihood (20) until all responsibilities for data streams have been
updated in (21). The inequality (36) confirm that OEM can im-
prove φ̂s to maximize the LDA’s log-likelihood (20). In practice,
OEM reads each mini-batch xs

w,d into memory and runs IEM until
μs converged. Then, the sufficien statistics φ̂s is updated by a lin-
ear combination between previous φ̂s−1 and the updated sufficien
statistics

∑
d xs

w,dμs
w,d(k),

φ̂s = (1 − ρs)φ̂
s−1 + ρs

[ ∑
d

xs
w,dμs

w,d(k)

]
. (37)

Since OEM only stores the current mini-batch xs
w,d, the local pa-

rameters μs, θ̂K×Ds and the global parameter φ̂s in memory, it
is easy to process big data stream with low space complexities
O(K × (Ds + W + NNZs)), where Ds is the number of docu-
ments and NNZs the number of nonzero elements in the sth mini-
batch. Fig. 11 summarizes the OEM algorithm for LDA, where
online BP [37] and stochastic CVB [9] are some implementations
of OEM. Note that OEM can revisit previous processed mini-batch.
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