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ABSTRACT
Large graphs arise in a number of contexts and understand-
ing their structure and extracting information from them
is an important research area. Early algorithms on mining
communities have focused on the global structure, and of-
ten run in time functional to the size of the entire graph.
Nowadays, as we often explore networks with billions of ver-
tices and find communities of size hundreds, it is crucial
to shift our attention from macroscopic structure to micro-
scopic structure when dealing with large networks. A grow-
ing body of work has been adopting local expansion methods
in order to identify the community from a few exemplary
seed members.

In this paper, we propose a novel approach for finding
overlapping communities called LEMON (Local Expansion
via Minimum One Norm). Different from PageRank-like
diffusion methods, LEMON finds the community by seeking
a sparse vector in the span of the local spectra such that
the seeds are in its support. We show that LEMON can
achieve the highest detection accuracy among state-of-the-
art proposals. The running time depends on the size of
the community rather than that of the entire graph. The
algorithm is easy to implement, and is highly parallelizable.

Moreover, given that networks are not all similar in na-
ture, a comprehensive analysis on how the local expansion
approach is suited for uncovering communities in different
networks is still lacking. We thoroughly evaluate our ap-
proach using both synthetic and real-world datasets across
different domains, and analyze the empirical variations when
applying our method to inherently different networks in prac-
tice. In addition, the heuristics on how the quality and
quantity of the seed set would affect the performance are
provided.
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1. INTRODUCTION
Analyzing the structure and extracting information from

complex networks is an important research area. Signifi-
cant research has been carried out in finding the structure
of networks and identifying communities [10].

In early work, researchers assumed that communities were
disjoint and had more internal connections than external
connections. Both assumptions have been discarded since
it is clear that in most networks a vertex belongs to more
than one community. For instance, in social networks, one
might belong to a work community, a community of friends,
and a community of individuals that share the same hobby
such as golf; in co-purchased networks, one item might be-
long to multiple categories. Also since we are dealing with
networks with hundreds of millions of vertices, an individual
in a community of size 1001 will certainly have more links
outside the community than inside. These key insights have
motivated researchers to identify communities from a new
perspective.

Considerable researches on detecting communities have fo-
cused on the global structure. And these globally based de-
tection algorithms usually run in time functional to the size
of the entire graph, a major drawback in computational cost.
Nowadays, we explore networks with billions of vertices to
find communities of size a hundred. Thus, taking the entire
graph into account might not serve as a practical solution
in many situations. It is crucial to shift our attention from

1A statistical study on social networks done by Leskovec et
al. [17] has shown that real-world communities with high
quality are quite small and usually consist of no more than
100 vertices.
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macroscopic structure to microscopic structure when deal-
ing with large networks, and develop new approaches that
enable finding communities in time functional to the size of
the community.

Quite recently, there has been a growing interest in find-
ing communities by locally expanding an exemplary seed set
in the community of interest [6][14][25][27]. This type of al-
gorithm usually starts with a few members that are already
known to be in the target community, and the goal is to
uncover the remaining members in the same community as
the exemplary members. These known members are usu-
ally referred to as seeds in the literature, and the process
of gradually growing the seed set into a larger set until the
target community is revealed is called seed set expansion.
The setting of seed set expansion can be widely applied to
many real world applications. For example, in web search,
with a few known pages that share similar information, we
could generate a larger group of web pages that contain the
relevant contents with respect to a certain search query; in
product networks, seed set expansion enables the automatic
categorization of products that are discovered to be in the
same community as the labeled items.

The random walk technique has been extensively adopted
as a subroutine for locally growing the seed set in the lit-
erature [6][12][14][21][23][25][27]. The dynamics of random
walks are effective in finding a local community since they
make non-uniform expansion decisions based on the struc-
ture revealed during the exploration of the neighborhood
surrounding the seeds [6]. This implies that random walk
based local expansion is able to trace the community mem-
bers in a principled way that resembles the natural process
of forming the local community structure. Very recently,
Abrahao et al. [3] also experimentally verified that random
walk produces communities that are most structurally sim-
ilar to real-world communities amongst various algorithmic
communities.

In this paper we propose a novel approach for finding
overlapping communities called LEMON (Local Expansion
via Minimum One Norm)2 for finding overlapping communi-
ties in large networks. We systematically demonstrate that
LEMON can achieve both high efficiency and effectiveness
that significantly stand out amongst state-of-the-art propos-
als. Specifically, we consider the span of a few dimensions
of vectors after the short random walk and use it as the ap-
proximate invariant subspace, which we refer as local spectra.
What makes LEMON distinct from previous PageRank-like
diffusion methods is by utilizing the subspace rather than a
single probability vector. In contrast to the traditional spec-
tral clustering methods, the local spectral method does not
require the burdensome computation of a large number of
singular vectors. In addition, as traditional spectral meth-
ods usually partition the vertices into disjoint communities,
we make another fundamental change. Concretely, we mine
the communities from the subspace by seeking a sparse ap-
proximate indicator vector in the span of the local spectral
such that the seeds are in its support. In practice, this can
be mathematically achieved by solving an `1-penalized linear
programming problem.

We aim to develop a comprehensive understanding of the
local spectral approach for identifying a community from a
small seed set. Following the central idea of our approach,

2Our demo code is publicly available at: https://github.
com/yixuanli/lemon.

we seek to solve fundamentally important questions such as:
what defines “good” communities and when do they emerge
as we expand the seed set (Section 4.4)? How to find a small
community in time functional to the size of the community
rather than that of the entire graph (Section 4.3)? What
defines “good” seeds and how many seeds could uniquely de-
fine a community (Section 5)? And given that networks are
not all similar in nature, how the local expansion approach
is suited for uncovering communities in different types of
networks (Section 6.4)?

We thoroughly evaluate our approach using both synthetic
and real-world datasets across different domains, and ana-
lyze the empirical variations when applying our method to
inherently different networks in practice. We believe that
the insights we gained from researching on these problems
would provide valuable guidance for future investigation on
this topic.

2. RELATED WORK
A considerable amount of literature has been published

on finding communities in large social and information net-
works. We highlight a few ideas that have recently emerged
in the literature to clarify how our method differs.

Globally based community finding algorithms. Var-
ious community detection algorithms have been developed
in the past decade. And most of the algorithms fall into
the category of global approach. One stream of global al-
gorithms attempt to find communities by optimizing an ob-
jective function. For example, OSLOM [16] is based on the
optimization of a fitness function, which expresses the sta-
tistical significance of clusters with respect to random fluc-
tuations (i.e., the random graph generated by the configura-
tion model [19] during community expansion). However, the
communities identified by mathematical construction may
structurally diverge from real communities as pointed out in
[3]. Another main stream of research adopts the label prop-
agation approach [22], which defines rules that simulate the
spread of labels of vertices in the network. The DEMON
algorithm [9], for example, democratically lets each vertex
vote for the communities it sees surrounding it in its limited
view of the global system using a label propagation algo-
rithm, and then merges the local communities into a global
collection. Other approaches such as Link Community (LC)
[4] partitions the graph by first building a hierarchical link
dendrogram according to the link similarity and then cutting
the dendrogram at some threshold to yield link communities.

Random walk based detection algorithms. As noted
in the preceding section, among the divergent approaches,
random walks tend to reveal communities that bear the clos-
est resemblance to the ground truth communities [3]. In the
following, we briefly review some methods that have adopted
the random walk technique in finding communities. Speak-
ing of methods that focus on the global structure, Pons et al.
[21] proposed a hierarchical agglomerative algorithm, Walk-
Trap, that quantified the similarity between vertices using
random walks and then partitioned the network into non-
overlapping communities. Meilǎ et al. [18] presented a clus-
tering approach by viewing the pairwise similarities as edge
flows in a random walk and studied the eigenvectors and
values of the resulting transition matrix. A later successful
algorithm, Infomap, proposed by Rosvall & Bergstrom [23]
enabled uncovering hierarchical structures in networks by
compressing a description of a random walker as a proxy for
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Domain Dataset Vertices Links Average Maximum Community
membership membership size mean

Product Amazon 334,863 925,872 0.11 49 39
Collaboration DBLP 317,080 1,049,866 0.22 11 251
Social YouTube 1,134,890 2,987,624 0.05 41 79
Social Orkut 3,072,441 117,185,083 9.56 504 83

Table 1: Statistics for the real networks.

real flow on networks. Variant of this technique such as bi-
ased random walk [28] has also been employed in community
finding.

Seed set expansion based approaches. To interpret
the problem of community detection from a local perspec-
tive, our work is in the same spirit as the seed set expansion
algorithms in [6], [7], [11], [13], [14] and [25]. Specifically,
Andersen & Lang [6] adapted the theoretical results from
[24] to expand a set into a community with locally minimal
conductance based on lazy random walks. However, the lazy
random walk endured a much slower mixing speed and usu-
ally took more than 500 hundred steps before converging to
a local structure, which is inefficient compared with several
steps of rapid mixing in a regular random walk. Featuring
on the seeding strategies, Whang et al. [25] established sev-
eral sophisticated methods for choosing the seed set, and
then used similar PageRank scheme as that in [5] to expand
the seeds until a community with the optimal conductance
is found. Nonetheless, the performance gained by adopting
these intricate seeding methods was not significantly better
than that by using random seeds. This implies that a bet-
ter scheme of expanding the seeds is also needed aside from
a good seeding strategy. A recent work by Kloumann &
Kleinberg [14] provided a systematic understanding of vari-
ants of PageRank-based seed set expansions. They showed
many insightful findings regarding the heuristics on seed set.
However, the drawback of lacking a proper stop criterion has
limited its functionality in practice. Even though a recently
proposed heat kernel algorithm [13] advances PageRank by
introducing a sophisticated diffusion method, the detection
accuracy achieved by heat kernel approach is still much lower
than that of LEMON, which is shown in Section 6.2.

3. PRELIMINARIES

3.1 Problem Statement
Given a network G = (V,E) and a set of members S in

the target community C, where |C| � |V | and |S| � |C|, we
are interested in discovering the remaining members in C.
Generally speaking, we focus on addressing the question of
how to accurately find a small community in time
functional to the size of the community from a seed
set?

3.2 Datasets

3.2.1 Synthetic datasets
The LFR benchmark graphs [15] have been widely adopted

for the purpose of evaluating the performance of commu-
nity detection algorithms. LFR datasets are generated with
built-in community structure that resembles the features
found in most real-world networks with power-law degree

distribution [8]. It provides researchers with rich flexibil-
ity to control the network topology through tuning different
parameters, including the graph size n, the average degree
k̄, the maximum degree kmax, the minimum and maximum
community size |C|min and |C|max, the mixing parameter µ,
the overlapping membership om and the number of vertices
with overlapping membership on. Among these parameters,
the mixing parameter µ has the most significant impact on
the network topology, which controls the fraction of links
for each vertex that cross to a community with which the
vertex is not associated. Usually, larger µ would result in
lower detection accuracy.

Xie et al. [26] have performed a thorough performance
comparison of different state-of-the-art overlapping commu-
nity detection algorithms on LFR benchmark datasets. To
make the performance evaluation of our algorithm consis-
tent with that in [26], we adopt the same parameters in our
paper. In total, we generate two sets of networks with mix-
ing parameter µ = 0.1 and µ = 0.3 respectively. We vary
the parameter om from 2 to 8 for each µ and obtain a total
of 14 networks. Table 2 lists the value of the parameters we
have used for generating the LFR datasets.

Parameter Description Value
n graph size 5000
µ mixing parameter {0.1, 0.3}
k̄ average degree 10
kmax maximum degree 50
|C|min minimum community size 20
|C|max maximum community size 100
τ1 node degree distribution exp. 2
τ2 community size distribution exp. 1
om overlapping membership {2, 3, ..., 8}
on overlapping node 2500

Table 2: Parameters for the LFR datasets.

3.2.2 Real datasets
For the purpose of testing on real networks, we include

four datasets with ground truth community membership
from Stanford Network Analysis Project [2]. These datasets
span various domains of network applications, including prod-
uct networks (Amazon), collaboration networks (DBLP),
and online social networks (YouTube and Orkut)3. Each
network can be viewed as an undirected, connected graph.
The statistical information of the datasets is summarized in
Table 1.

3For all the four real datasets, we adopt the top 5000 com-
munities that possess the highest quality according to [27].
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3.3 Evaluation Metric
For the evaluation metric, we adopt F1 score to quantify

the similarity between the algorithmic community C and the
ground truth community C∗. The F1 score for each pair of
(C, C∗) is defined by:

F1(C, C∗) =
2 · Precision(C, C∗) ·Recall(C, C∗)
Precision(C, C∗) +Recall(C, C∗) , (1)

where the precision and recall are defined as:

Precision(C, C∗) =
|C ∩ C∗|
|C| , (2)

Recall(C, C∗) =
|C ∩ C∗|
|C∗| . (3)

Throughout the paper, unless otherwise pointed out, the
experimental results on synthetic data for each instance are
given by the statistical mean and standard deviation based
on 24 test cases4; and the experimental results on real datasets
for each instance are based on 120 test cases. All the ground
truth communities for testing are randomly chosen. The
randomness of batch tests can guarantee the elimination of
potential sampling bias in our tests.

4. LOCAL EXPANSION VIA MINIMIZING
ONE NORM

4.1 Algorithm Overview
Spectral clustering makes use of a small number of sin-

gular vectors proportional to the number of communities in
the network. If a graph has thousands of small communities,
it is impractical to calculate a number of singular vectors
greater than the number of communities. We are experi-
menting with a fundamentally new technique, which does
not require the burdensome computation of a large number
of singular vectors. Before explaining our local spectral ap-
proach for finding overlapping communities, it is necessary
to make clear what we mean by “local spectra”.

In traditional spectral clustering methods, one finds the
first few singular vectors of the Laplacian matrix5 of a graph
G with n vertices. Suppose the first d singular vectors are
obtained, one can form an n × d matrix as a latent space.
Then one associates with each vertex a point in this latent
space whose coordinates are given by the entries of the cor-
responding row in the matrix. Vertices are clustered using
some method such as k-means clustering algorithm. This
method is not likely to work well if the communities are
small and heavily overlapping with each other.

We make two fundamental changes to this method. The
first modification is to overcome the drawback of computing
the singular vectors. Intuitively, the vertices around the seed
members are more likely to be in the target community, thus
a random walk serves as a natural subroutine to reveal these
potential members. We start a random walk from several
known members in the target community and run for a few
steps. The number of random walk steps should be long

4Each local expansion process from a seed set can be viewed
as a test case.
5In the literature, several different definitions of graph
Laplacian exist. Readers can refer to [20] for more details,
which serves as a good introductory paper on spectral clus-
tering.

enough to reach out to the vertices in the target community,
but not too long to spread out to the entire graph. Instead
of considering a single probability vector, we consider the
span of a few dimensions of vectors after the short random
walks and use it as the approximate invariant subspace (local
spectra). The second is to handle the overlapping situation.
Instead of using k-means to partition the points in the latent
space into disjoint clusters, we look for the minimum 0-norm
vector in the span of the invariant subspace obtained above,
such that the seed members are in its support. We want to
find rows in the invariant subspace that point in nearly the
same direction as seed members. We will use 1-norm vector
as a proxy for the minimum 0-norm vector since finding the
0-norm vector is an NP-hard problem.

In the following, we give a formal description of our local
spectral approach LEMON for detecting the target commu-
nities from a small seed set. Given the input of a set of few
vertices S that are already known to be in the target ground
truth community C∗, our algorithm would output the algo-
rithmic community C such that the F1 measure for scoring
the similarity between C and C∗ is maximized.

Step 1. Generate the local spectra:
Let Ā = D−1/2(A+I)D−1/2 be the normalized adjacency

matrix of the graph where D is the diagonal matrix of vertex
degree. Consider a random walk starting from exemplary
vertices in S. Let p0 denote the initial probability vector
where the total probability is evenly distributed among the
seed members. Consider the span of l-dimensional probabil-
ity vectors which consist of probability vectors in l successive
random walks

P0,l = [p0,p1, ...,pl]. (4)

The initial invariant subspace is then obtained by calculating
the orthonormal basis of the span P0,l, which we denote by
V0,l. We then use the following recurrence to iteratively
calculate the l-dimensional orthonormal basis Vk,l after k
steps of random walk

Vk,lRk,l = Vk−1,lĀ, (5)

where Rk,l ∈ Rn×l is chosen such that Vk,l is orthonormal.
The orthonormal basis Vk,l will be used as the local spectra
for clustering.

Step 2. Seek for a sparse vector
With the local spectra Vk,l, we then solve the following

linear programming problem [1].

min eTy = ||y||1
s.t. y = Vk,lx,

y ≥ 0,

y(S) ≥ 1,

where e is a vector of all ones, and both x and y are unknown
vectors. The first constraint indicates that y is in the space
of Vk,l. The element in y indicate the likelihood for the
corresponding vertex belong to the target community, which
is non-negative. The third constraint enforces that seeds are
in the support of sparse vector y.

After sorting the elements in y in non-ascending order and
getting a vector ŷ, the vertices corresponding to the top |C|
elements in ŷ are returned as the detected community with
respect to the seed set S.
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Figure 1: The average F1 score on Amazon network with varying dimensions l and random walk step k,
respectively. The plots depict the statistical regression line with a 95% confidence interval.

Step 3. Reseeding
Augment the initial seed set by adding the vertices corre-

sponding to the top t elements of ŷ. Denote the augmented
seed set as S ′. Then repeat step 1 and step 2 using the aug-
mented seed set S ′. The detection accuracy can be improved
through iterations via increasing t by a constant number s
each time. We define s to be the seed expansion step, which
is used as a tunable parameter for adjusting the convergence
rate. Usually, the larger expansion step would result in lower
performance but a faster running speed with less iterations.
In the experiments, we fix the seed expansion step to be
6 for both synthetic and real datasets. The number of it-
erations for the seed expansion is determined by the stop
criteria (Section 4.4).

4.2 Parameter Selection
The random walk step k and subspace dimension l are the

key parameters in the local spectral clustering algorithm.
We conduct parameter sensitivity study for these two pa-
rameters on the four real datasets.

4.2.1 Subspace dimension
To study the parameter of subspace dimension l, we fix

the random walk step to be 3, and vary the number of di-
mension l from 1 to 15. Figure 1 (left panel) shows that
changing the dimension l does not cause significant perfor-
mance fluctuation. On one hand, choosing a large dimension
l is undesirable because it would increase the computation
cost of generating local spectra. On the other hand, when
dimension degrades to l = 1, the standard deviation of F1
score becomes significant, making the detection accuracy un-
stable. In this paper, we fix l = 3 because the experiment
suggests that setting l = 3 can statistically achieve both
high and stable performance. Note that such observation
holds not only for Amazon network, but for the remaining
real datasets as well.

4.2.2 Random walk step
To investigate how the step of random walk affects the

algorithm performance, we fix the dimension l to be 3, and
vary the random walk step k from 1 to 15. Figure 1 (right
panel) shows that the average F1 score plateaus as k in-
creases, and 3-step random walk can yield the algorithm’s
full potential. The standard deviation, however, signifi-
cantly increases when k exceeds 10. This indicates that
longer random walk is undesirable for stably uncovering the

local community structure. Throughout the paper, we fix
the random walk step k = 3 for the real datasets6.

4.3 Complexity Reduction by Sampling Method
If one wants to uncover a small community within a large

network with billions of vertices, it would be very costly
to take all the vertices into account. We want to discover
the target community accurately while keeping the number
of vertices examined small. Sampling method can effectively
solve the memory consumption issue when one wants to find
a local community within a large graph, since the whole
graph does not have to be loaded into memory.

In practice, the unknown members in the target commu-
nity are more likely to be around the seed members, and
are usually a few steps away from the seeds. This observa-
tion motivates us to reduce the complexity by taking only a
portion of the graph into consideration. Ideally, this partial
graph should contain as many vertices in the target commu-
nity as possible, and maintains a small size of the same scale
as that of the target community.

To sample the graph, we expand the seed set using random
walk. After a few steps of the random walk, vertices with
large probability are more likely to be in the target com-
munity while vertices with small probability being reached
would be treated as redundant ones. If the target commu-
nity exists for the seed set, then according to [6], this target
community would serve as a bottleneck for the probability
to be spread out. It is worthwhile noting that other ex-
pansion methods such as breadth-first-search (BFS) would
entirely ignore the bottleneck defining the community and
rapidly mix with the entire graph before a significant frac-
tion of vertices in the community have been reached. The
subgraph returned by BFS usually contains less vertices in
the target community than the subgraph of the same size
obtained by random walk technique.

In the experiments on real datasets, we conduct a random
walk starting from the seed set until the probability has been
spread out to α · |C|avg vertices, where α is some constant
and |C|avg is the average community size in the graph7. Note
that α · |C|avg should be large enough to be able to cover as
many vertices in the ground truth community as possible.

6For LFR benchmark graphs, we adopt all together
6 combinations for the (step, dimension) tuple:
(2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5) and return the highest
F1 score among using these combinations.
7A fast implementation for updating the probability vector
of the random walks is featured in detail in [6], Section 4.
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Figure 2: Comparison of the average F1 score with ground truth and automatic size determination. The left
corresponds to the LFR datasets when µ = 0.3 and the right corresponds to the real datasets.

This newly obtained subgraph will be used for the remaining
computation.

Table 3 gives the statistics after applying sampling method
to the real networks. For example, in DBLP network, set-
ting α to be around 10 would yield a subgraph containing
on average 98% vertices in the ground truth community. Af-
ter sampling, we only need to deal with a subgraph of size
around 2400 instead of 317,080, bringing a significant reduc-
tion of both temporal and spatial complexity.

Dataset Coverage Sample |C|avg Subgraph
ratio rate size

Amazon 1.00 0.0087 39 2913
DBLP 0.98 0.0076 251 2409
YouTube 0.66 0.0033 79 3745
Orkut 0.64 0.0011 83 3379

Table 3: Statistics of the mean values for the sam-
pling method on real datasets.

4.4 Stop Criteria
If there are ground truth communities available, the above

algorithm is guaranteed to stop within few iterations since
the seed set will no longer augment once its size exceeds
that of the ground truth community. The algorithm would
then return the community found with the highest F1 score
during the iterations as the result. However, in real case,
without knowing the exact size of the communities, most lo-
cally based detection algorithm has difficulty deciding when
is the proper time to terminate expanding such that the
discovered community is a “good” community. It is thus
important to solve the two issues: 1) how to automatically
determine the size of the community given a seed set S, and
2) when to stop growing the seed set during the reseeding
process.

4.4.1 Determine the size of the community
It has already been shown that random walks produce

communities with conductance guarantees and ensure a small
boundary defining a natural community in locally based de-
tection algorithms [6]. The intuition is that adding irrele-
vant vertices to the target community would inevitably cause
the conductance to increase, and finding a low-conductance

community could ensure the closeness between the detected
members and the known seed set. In [25], the authors also
follow the same idea and adopt conductance as the met-
ric for defining a good community found by the algorithm
around a seed set. As we will see, the local conductance
for a small group of vertices in the graph contains valuable
information and enables designing effective stop criteria for
our algorithm.

The definition of the conductance for a set of vertices C is
given by

φ(C) =
|∂(C)|

min(Vol(C),Vol(C̄))
, (6)

where |∂(C)| denotes the cut size, and Vol(C) is the sum of
vertex degree in the set C.

Suppose we have a rough estimation of the lower and up-
per bound for the size of communities in a graph, which we
denote by |C|min and |C|max respectively. We could modify
the original algorithm in the following way.

At step 2, after obtaining the sorted sparse vector ŷ, we
are hoping to truncate the sorted vector at some point yg
such that all the vertices corresponding to the elements no
less than yg are included in the algorithmic community. The
crux lies in that we do not know yet what the best position
is to truncate the vector ŷ. To solve this issue, we denote
Λi as the set of vertices corresponding to the top i elements
in ŷ. We then sweep over the sets from Λ|C|min

to Λ|C|max

and calculate the corresponding conductance for each of the
sets. In practice, the value of the conductance with respect
to varying size would usually change in a non-monotonic
pattern that decreases first and then increases later on. We
then adopt the first relative minimum conductance encoun-
tered on this curve as the estimated size of the community
with respect to the seed set S, which we denote by φmin

S .

4.4.2 Stop the reseeding process
As we keep augmenting the seed set through reseeding at

step 3, a different seed set would result in a different sparse
vector ŷ and thus lead to potentially different algorithmic
communities. Practically, one of these seed sets during the
augmenting process would achieve the highest F1 score. And
it remains to address the issue of when to stop growing the
seed set so that it finds the community that resembles most
of the ground truth community. This issue can be solved
in a similar fashion as that for determining community size.
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Figure 3: The average F1 score on LFR datasets (µ = 0.1) and real datasets with different seeding methods.

Specifically, we keep track of the value of φmin
S for different

seed set during the expansion, and stop to grow the seed set
when φmin

S reaches a local minimum and starts to increase
for the first time.

4.4.3 Auto detect size vs ground truth size
To verify our method, we compare the performance after

applying the stop criteria with that obtained using ground
truth communities. Figure 2 shows the statistical result
of F1 score on both synthetic and real datasets. On both
datasets, the F1 score with automatic size determination is
only lowered by 10% on average compared with the perfor-
mance with available ground truth. This implies that our
method is applicable for finding communities that mostly
resemble the ground truth communities on both synthetic
and real datasets in different domains. It also suggests that
our method can be applied in practice to uncover natural
communities in the situation when no ground truth is avail-
able.

5. SEEDING
Since the initial seed set serves as a key component in

our algorithm for uncovering the target community C, it is
crucial to consider how the quality of seed set affect the
performance. In practice, there is not much control over
how the seeds are selected. However, the alternative seeding
methods we provide here can be strategically applied by the
domain experts based on the availability of candidate seeds
in different scenarios. In this section, we will focus on ad-
dressing two fundamentally important issues regarding the
seed set: 1) What defines “good” seeds? and 2) How many
seeds are needed in order to uniquely define a community?

5.1 Seeding Method
To give a well-rounded evaluation on this, we encompass in

total five different seeding methods here. In this experiment,
we adopt |S| = 3 seeds for each of the seeding method listed
below.

• High degree seeding: pick |S| vertices with degree
ranked in the top one third among the degree of all
vertices in C.

• Low degree seeding: pick |S| vertices with degree
ranked in the bottom one third among the degree of
all vertices in C.

• Triangle seeding: pick |S| vertices in C that form a
triangle as the initial seed set.

• Random seeding: pick |S| vertices in C randomly.

• High inward-edge ratio seeding: the inward-edge
ratio for a vertex v is defined by the fraction of links
connecting to another vertex inside the target commu-
nity C among all the links coming out from v. We pick
|S| vertices with inward-edge ratio ranked in the top
one third among all vertices in C.

Figure 3 (left panel) gives the experimental results on LFR
benchmark datasets with mixing parameter µ = 0.1. It
is interesting to note that the high-degree seeding method
consistently achieves the highest F1 score in both groups of
datasets. When µ = 0.1, triangle seeding leads to the worst
performance with low F1 score and high standard deviation.
This implies that seeding from a compact core structure is
less advantageous than seeding sporadically among vertices.
The intuitive explanation behind this phenomenon is that it
is more difficult for the probabilities to spread out when the
random walk initiates from a cohesive structure.

Another interesting observation is that high inward-edge
ratio seeding method can consistently lead to the best per-
formance among different seeding methods on both synthetic
and real datasets. In [14], the authors have the same obser-
vation as ours but did not give an explicit explanation on
this phenomenon. In fact, when a large fraction of the seeds
links connect to vertices within the same community, ran-
dom walks starting from these seeds would be more likely to
transit probabilities into the vertices within the community
rather than spreading out to vertices outside the commu-
nity. A higher detection accuracy can be thus achieved since
the target community contains much of the probability after
short random walks.

Moreover, it is also striking to note the difference be-
tween the test results on synthetic datasets and that on
real datasets. Even though the high-degree seeding method
can always bring higher performance than that of random
seeding on synthetic datasets, the behavior of these seed-
ing methods on real networks is quite different. In Figure 3
(right panel), we see that low-degree seeds lead to better re-
sult than that of high-degree seeds on DBLP and YouTube
datasets. The degree of seeds does not have a significant
impact on the performance in Amazon and Orkut networks
since the performance of high-degree seeding and low-degree

664



seeding almost tie with each other on these datasets. In [14],
the authors compared the detection accuracy of PageRank
based seed set expansion algorithm with high-degree seeding
and random seeding on real networks, and concluded that
random seeding method always outperforms high-degree seed-
ing in all domains of real networks. However, we remark here
that this observation does not apply to our algorithm as we
find that high-degree seeding works slightly better than ran-
dom seeding on Orkut and YouTube datasets.

5.2 Seed Set Size
It is also interesting to investigate how the size of the seed

set affects the performance of our algorithm.
We first experiment on the LFR benchmark datasets with

varying seed set size. We choose seed set of size propor-
tional to the size of the target community C. Specifically,
we test with five different seeding ratios r: 2%, 4%, 6%, 8%
and 10% respectively, and round r · |C| to an integer if it
is a fraction. Figure 4 shows the F1 scores when µ = 0.1.
The algorithm’s performance can be improved in general
as the seed set size increases. In the case when both mix-
ing parameter and overlapping membership are small, e.g.,
µ = 0.1, om = 2, increasing the seed set size does not seem
to affect the performance significantly, and seed set consist-
ing of a small percentage of vertices are sufficient to discover
the target community with high accuracy. This implies that
when the structure of a small community is well-defined, our
algorithm only needs 2 to 3 seeds to reveal the remaining
members in a community of size roughly 100. For general
test purpose on LFR benchmark graphs, we adopt an 8%
fraction of the vertices in the target community as seeds.
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Figure 4: The average F1 score on LFR datasets
(µ = 0.1) with different seeding ratio.

We then carry out the similar experiment on the real
datasets. The result on real networks is interesting because
increasing the seed set size has little affect on the perfor-
mance. Especially, using only 3 seeds can yield almost the
same performance as using an 8% fraction of the vertices in
the target community as seeds on real datasets.

Our algorithm is thus advantageous to many other seed set
expansion algorithms that usually require a higher fraction
of vertices to be known. For example, in [14], the authors
perform a similar experiment on DBLP network. The per-
formance of their algorithm achieves the maximum recall of
0.3 when seeding ratio is 10%, while LEMON can achieve
an average F1 score of 0.66 with 3 vertices. This makes our
algorithm practical for real networks when it is impossible
to collect a large number of seeds.

5.3 Further Extension
As the results of using different seeding methods suggests,

high-degree seeds can heuristically lead to better result on
synthetic data. Such heuristic implies that a vertex with
higher degree may exert higher impact on shaping the sub-
space we are looking for, and thus affect the performance
by leading to different sparse vectors where we obtain the
“candidates” of the target community from.

In practice, we usually have little control on the seed set.
The chance we get a seed set of high-degree members is
rare. More often than not, the degree of seeds is randomly
distributed. We are therefore inspired to tailor our algorithm
accordingly in order to emphasize the seeds with high degree.
The modification is rather straightforward: when calculating
the initial probability vector p0 to start a random walk from,
instead of evenly distributing the amount of probability to
each seed, we initialize the probability vector according to
the degree of each seed. Formally,

p0(vi) =

{
d(vi)/Vol(S) if vi ∈ S

0 otherwise
(7)

where d(vi) denotes the degree of vertex vi. In other words,
we enforce a bias towards the high-degree vertices at the
beginning of the random walk. Note that each time after the
reseeding process, the initial probability vector also needs to
be recalculated in the same way.

Figure 5 (left panel) depicts the experimental results on
LFR benchmark graphs with and without degree normalized
initialization for the random walk respectively. We can find
that degree-normalization of the initial probability vector
results in better performance.

We then perform the same experiments on real networks,
and find that degree-normalization would on the contrary,
lead to slightly worse statistical results (see the right panel of
Figure 5). The completely different behavior of using degree
normalization on real datasets is rather intriguing. In fact,
this phenomenon accords with our previous observation in
Section 5.1 that a high-degree seed set is less advantageous
than random seeds on real datasets. And this explains why
emphasizing on the high-degree vertices would worsen the
performance on real datasets.

6. COMPARISON WITH THE STATE-OF-
THE-ART ALGORITHMS

6.1 Baseline Algorithms
To give a well-rounded performance comparison with state-

of-the-art algorithms, we compared our results to three local-
ized community detection algorithms and four global com-
munity detection algorithms.

1. Localized algorithms: We encompass three locally
based methods, Heat Kernel (HK) [13], PageRank (PR)
[14] and Seed Set Expansion (SSE) [25].

2. Global algorithms: We also compare our local spec-
tral clustering algorithm with four overlapping com-
munity detection methods that are based on the global
structure: OSLOM8 [16], DEMON9 [9], and LinkCom-
munity10 (LC) [4].

8 http://www.oslom.org/software.htm
9http://www.michelecoscia.com/?page_id=42

10https://github.com/bagrow/linkcomm
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Figure 5: Comparison of the average F1 score with and without normalizing the initial probability vector by
each seed’s degree. The left corresponds to the LFR datasets and the right corresponds to the real datasets.

6.2 Comparison with Localized Algorithms
We refer to the experimental results reported in some

recent publications on localized community detection algo-
rithms [13][14][25]. Figure 6 illustrates the comparison of
F1 scores on Amazon, DBLP, YouTube and Orkut datasets.
We use “LEMON-auto” to denote the results obtained by
applying the stop criteria in Section 4.4. Since the results
on Orkut and YouTube datasets are missing in [25] and [14],
we use empty bars to indicate them.
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Figure 6: Comparison of the average F1 score with
state-of-the-art local detection algorithms on real
networks.

Figure 6 shows that LEMON achieves an F1 score of 0.910
on the Amazon dataset, far outperforming the other algo-
rithms. The average F1 scores increases the performance
by 3 times compared with the heat kernel algorithm [13]
on Amazon, DBLP and Orkut networks. To compare with
[25], we find that the average F1 score of our algorithm dou-
bles their best performance achieved by the “spread hubs”
method on Amazon dataset and triples the performance on
the DBLP network. Also, note that in [14], the authors
did not have an explicit stop criterion. Instead, they as-
sumed using a budget for predicting the size of the target
community. We compare with the F1 score at a budget of
100 for both Amazon and DBLP datasets. From the results
on Amazon networks in [14], we notice that even granted a
budget of 400, which is far beyond the average community
size of 39 in Amazon network, only a recall of 0.45 can be
achieved. And we infer the F1 score would be even lower
than this value since the precision is dragged down by the
large budget set.

It is also worth noting that we only use 3 randomly picked
seeds for all the test cases on each dataset. Our algorithm
requires very fewer seeds than other algorithms such as [14].

The experiment has verified that our algorithm is able to
achieve high accuracy on large networks constituting com-
munities of average size roughly hundred. This implies that
our approach is well-suited for the task of detecting small
communities in large networks.

6.3 Comparison with Global Algorithms
We also compare local spectral clustering with several

state-of-the-art global based algorithms. Table 4 summa-
rizes the running time as well as the average F1 score of each
algorithm on real datasets. Among the baselines, OSLOM
and LC fail to terminate within 10 days on the YouTube
dataset. The OSLOM algorithm can achieve rather good
performance but does not scale well.

In contrast, our algorithm can consistently return the re-
sult within few seconds irrespective of how large the entire
graph is. Besides, our algorithm has small memory con-
sumption, and a machine with 4GB RAM can afford to pro-
cess networks as large as Orkut since the algorithm does not
have to store the whole graph in memory. Moreover, our lo-
cally based algorithm is parallelizable because each seed set
expansion can be computed independently. Such property
can bring a further performance gain on running time with
multi-threaded implementation.

Figure 7 compares the average F1 score with some state-
of-the-art algorithms on LFR benchmark graphs. During
the experimentation, we also incorporate the methods that
can effectively improve the performance on synthetic datasets
that are addressed in Section 5.3. We notice that our algo-
rithm outperforms the baseline algorithms even when we use
the random seeding strategy. When the mixing parameter
µ = 0.3, as is shown in Figure 7, LEMON brings about
30% ∼ 40% relative improvement compared with the best
results among the baselines. And we can expect the perfor-
mance gain to be even more significant if the seeds possess
the qualities discussed in Section 5.1.

Among the four baselines, we notice that LC and DEMON
consistently perform poorly on both groups of the synthetic
datasets. We further look into the communities found by LC
and DEMON respectively, and find that LC tends to par-
tition the graphs into very small pieces while DEMON, on
the contrary, usually finds communities that are much larger
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Amazon DBLP YouTube Orkut
Algorithm Implementation F1 score time F1 score time F1 score time F1 score time
LEMON Python 0.953 <15s 0.665 <15s 0.240 <15s 0.202 <15s
LEMON-auto Python 0.910 <15s 0.525 <15s 0.190 <15s 0.170 <15s
DEMON Python/C++ 0.164 4,562s 0.196 727,675s 0.031 22,395s - -
OSLOM C++ 0.766 885,867s 0.542 23,262s - >10d - -
LC Python/C++ 0.815 4,606s 0.527 49,045s - >10d - -

Table 4: Comparison with global algorithms on real datasets.
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Figure 7: Comparison of the average F1 score on
LFR datasets with baseline algorithms. The left cor-
responds to the datasets with mixing parameter µ =
0.1 and the right corresponds to µ = 0.3.

than the ground truth communities. This implies that both
algorithms extract structures from networks that bear little
resemblance to the natural formation of the communities.
However, we remark here that even LC fails to recognize
the communities well on the synthetic data, it perform bet-
ter on real datasets as we see in Table 4 .

6.4 Empirical Comparison Between Synthetic
and Real Data

Networks are not all similar and we cannot assume one
algorithm works for finding communities in a network will
behave the same on the other networks. Therefore, it is im-
portant to develop the understanding of how different types
of networks affect the behavior of algorithms.

Our algorithm sustains a consistent performance on both
LFR benchmark graphs and real networks though, we still
want to summarize and call the attention to several subtle
differences here.

First, LEMON is less sensitive to the parameter of random
walk step k and subspace dimension l on real networks than
that on LFR benchmark graphs. In practice, fixing (k, l) to
be (3, 3) for real networks can ensure a good performance.

Second, LEMON is less sensitive to the seed set size on
real networks than that on LFR benchmark. In practice,
a seed set size of 3 can guarantee a good performance on
real networks. As for LFR, we adopt the seed set size to be
proportional to the community size.

Third, LEMON is more sensitive to the high-degree seeds
on real networks than that on LFR benchmark. In LFR
graphs, the degree of a vertex is at most 50. Whereas in
some large real networks such as YouTube, the degree of
some vertices exceeds 1000, making the degree distribution
much more screw than that seen in LFR graphs. And we
expect that vertices with unusually high degree in real net-
works would have a stronger power in controlling the trend
for the probabilities to spread out during the random walk,
and thus have a higher risk to enter some other neighbor-

ing communities. Such an effect can be counterbalanced by
putting less initial probabilities on these “super cores”.

The above empirical analysis informs us that finding com-
munities in real networks seems to be less parameterized
than that on synthetic datasets for our algorithm. This in-
dicates that our algorithm is better suited for uncovering
those naturally well-formed communities than the artificially
constructed communities in practice.

7. CONCLUSION
The problem of identifying small community structure in

large networks has been gaining importance. In this paper,
we have presented a method for finding overlapping commu-
nities by seeking a sparse vector in the span of local spectra
where the seeds are in its support. To overcome the draw-
backs of traditional spectral clustering methods, we propose
a novel method to construct the local spectra based on the
singular vector approximations drawn from short random
walks. Our algorithm enables finding a small community in
time functional to the size of the community, and it consis-
tently returns the result within seconds even for a network
with billions of vertices. We demonstrate the effectiveness
and efficiency of our method for discovering communities on
both synthetic and real-world datasets. As the experimental
result shows, our algorithm achieves the highest detection
accuracy amongst the state-of-the-art proposals.

Many other fundamentally important research questions
remain to be addressed. First, the community detection
algorithm based on local spectral clustering could be po-
tentially applied to the membership detection problem, i.e.,
finding all the communities that an arbitrary vertex belongs
to. Second, during the process of seed set expansion, we
adopt the first low-conductance community as the target
community, which usually yields a high resemblance to the
ground truth community. It would also be interesting to
look further into some larger low-conductance communities
and see if a hierarchical structure exists. In this case, some
large social group consisting of several small cliques is likely
to be discovered.
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