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ABSTRACT
Knowledge on the Web relies heavily on multi-relational
representations, such as RDF and Schema.org. Automat-
ically extracting knowledge from documents and linking ex-
isting databases are common approaches to construct multi-
relational data. Complementary to such approaches, there
is still a strong demand for manually encoding human expert
knowledge. For example, human annotation is necessary for
constructing a common-sense knowledge base, which stores
facts implicitly shared in a community, because such knowl-
edge rarely appears in documents. As human annotation
is both tedious and costly, an important research challenge
is how to best use limited human resources, whiles maxi-
mizing the quality of the resulting dataset. In this paper,
we formalize the problem of dataset construction as active
learning problems and present the Active Multi-relational
Data Construction (AMDC) method. AMDC repeatedly
interleaves multi-relational learning and expert input acqui-
sition, allowing us to acquire helpful labels for data con-
struction. Experiments on real datasets demonstrate that
our solution increases the number of positive triples by a
factor of 2.28 to 17.0, and that the predictive performance
of the multi-relational model in AMDC achieves the highest
or comparable to the best performance throughout the data
construction process.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter
learning ; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods—Semantic networks
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Figure 1: Overview of the AMDC method. Given
an initial model, (i) the model asks the oracle to
provide labels on a set of selected triples that will
be beneficial to improve the model and the dataset,
(ii) the oracle returns the labels to the model, and
(iii) the model updates its dataset and retrains the
model parameters on the updated dataset.
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1. INTRODUCTION
Multi-relational data are commonly used to represent mul-

tiple types of relations between entities. In the Semantic
Web, the Resource Description Framework (RDF) repre-
sents relations between Web or physical entities as directed
labeled multi-graphs using a subject-predicate-object notion
called a triple. Knowledge bases [22, 4, 12] represent in-
formation in a variety of domains, providing semantic and
lexical relations between words, or relations between well-
known entities such as people and places. Common sense
knowledge databases are used to support AI tasks such as
natural language processing, Web search, and question an-
swering. Databases in bioinformatics [2, 1] store interac-
tions between proteins, and the involvement of a protein
into mechanisms such as the cell cycle. Such databases aim
to integrate the diverse body of experimental evidence on
protein-protein interactions into a single dataset enabling
the scientific community to extract information providing
deeper insights into the protein interaction networks.

Multi-relational learning [24, 6] is essential to increase the
usefulness of multi-relational datasets. Learning a predictive
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model for a database allows knowledge inference not explic-
itly contained in it. For example, applying multi-relational
learning to bioinformatics databases can reduce the need to
perform experiments, predicting the results instead.

In this paper, we consider a fundamental problem in multi-
relational learning: How can we construct a dataset and a
predictive model efficiently in a cold-start setting? Some
datasets can be automatically constructed or extracted from
documents [3, 12, 10]. On the other hand, many multi-
relational datasets depend crucially on human expert input,
given that not all knowledge may be captured in documents.
For example, the fact that “a banana is yellow” may not ex-
plicitly appear in documents. Similarly, undiscovered inter-
actions between proteins cannot appear in scientific papers.
However, employing human expertise to explicitly annotate
such implicit knowledge is a time-consuming and costly pro-
cess. In this light, there is strong demand in developing
efficient human annotation methods to construct a multi-
relational dataset.

We present the Active Multi-relational Data Construction
(AMDC) method, a method to construct a multi-relational
dataset and a predictive model efficiently. The main contri-
bution is to make full use of human expertise by harnessing
multi-relational learning as guidance, as shown in Fig. 1.
We exploit a model of a multi-relational dataset to predict
which triples need to be labeled by human experts (the or-
acle). AMDC repeats the following procedure. It trains the
model using the current dataset and calculates a query score
of each unlabeled triple based on the model. Feedback from
a human expert about a triple with a low query score is
helpful to enhance the model and the dataset. Then, the
unlabeled triples with the lowest query scores are provided
to the oracle for labeling. Finally, given the labels on the
triples, it retrains the model with the updated dataset.

We apply an active learning algorithm to a multi-
relational data model trained on the ROC-AUC (the Area
Under the ROC Curve) loss function. The ROC-AUC loss
function is commonly used to learn from an imbalanced
dataset, in which the number of positive triples is much
smaller than that of negative triples. As a multi-relational
dataset is often imbalanced, many multi-relational learning
techniques resort to it. Despite an attempt to apply active
learning to another model trained on the ROC-AUC loss
function [11], it is essentially difficult to apply active learning
to a model trained on the ROC-AUC loss function. Active
learning requires a decision boundary to discriminate posi-
tive triples from negative ones to compute query scores, but
the ROC-AUC loss function does not provide the decision
boundary. We resolve the issue by combining the ROC-AUC
loss function with the classification error loss function, which
provides a decision boundary. This enables us to perform
active learning on an imbalanced dataset efficiently. Fur-
thermore, we devise two modifications to improve the per-
formance of an existing multi-relational learning algorithm.
First, we extend the existing ROC-AUC loss function [21, 6]
to make use of positive, negative, and unlabeled triples. The
existing ROC-AUC loss function compares only scores of
positive and non-positive triples, and it does not distinguish
negative labels from unlabeled labels. We combine the ex-
isting ROC-AUC loss function with another ROC-AUC loss
function that compares scores of negative and non-negative
triples to explicitly handle negative triples. Second, we add
two constraints to the RESCAL model [24] to increase the

stability of learning. The two constraints decrease the model
complexity, which helps to avoid overfitting.

We conduct two experiments with different scenarios to
demonstrate the effectiveness of AMDC. The first scenario,
called a dataset construction problem, aims to collect as
many high-confidence positive triples as possible. The sec-
ond scenario, called a predictive model construction prob-
lem, aims to learn a multi-relational model that has a high
predictive ability on unlabeled triples. For each experimen-
tal setting, we use three real datasets to evaluate AMDC.
Our experiments demonstrate the advantages of AMDC as
a whole and the benefits of the separate components intro-
duced in our work.

2. PRELIMINARIES
We first give our definition of multi-relational data and

assumptions on the data. Then, we introduce the oracle
that answers labeling queries. Finally, we define two prob-
lem settings that differ on the objectives of the dataset con-
struction.

2.1 Multi-relational Data
We focus on directed binary relations between two entities,

which is essentially the same as the RDF representation. Let
E be a set of entities and R be a set of relations. A unit
of the dataset is represented by (i, j, k) (i, j ∈ E , k ∈ R).
We call (i, j, k) a triple. A triple (i, j, k) is positive if a
directed relation k holds between entities i and j, and is
negative if the relation does not hold. Let ∆ be the set of
all the possible triples, i.e., ∆ := {(i, j, k) | i, j ∈ E , k ∈ R}.
Then, a multi-relational dataset over ∆ is defined as below,
in Def 1.

Definition 1 (Multi-relational dataset). A
multi-relational dataset over ∆ is defined as (∆p,∆n), in
which ∆p and ∆n are sets of positive and negative triples,
respectively, such that ∆p ∪∆n ⊆ ∆ and ∆p ∩∆n = ∅.

The number of positive triples in a multi-relational dataset
is assumed to be much smaller than the total number of
triples, i.e., |∆p| � |∆|. This holds true in many multi-
relational datasets; some datasets (e.g., the UMLS dataset
we use in the experiment) have less than 1% positive triples.

2.2 Oracle
As an interactive environment, we have B (> 0) times

access to the oracle, which provides the label of a triple.
Letting positive and negative labels be 1 and 0, respectively,
the oracle is defined as a function O : E × E × R → {0, 1}.
We call B a budget. We assume that the oracle is always
correct with its labeling.

2.3 Problem Definitions
Finally, we define two problem settings with different ob-

jectives. The dataset construction problem (Problem 1) aims
to collect as many correct positive triples as possible. As the
set of positive triples is assumed to be a small fraction of the
entire dataset, collecting as many positive triples as possible
is essential to construct a useful dataset.

Problem 1. Given a set of entities E , a set of relations R,
a budget B (> 0), and the oracle O, the dataset construction
problem is to construct a multi-relational dataset (∆p,∆n)
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within the budget such that the number of positive triples
is maximized.

The predictive model construction problem (Problem 2)
aims to construct a model with high predictive performance.
In order to construct a predictive model, not only positive
triples, but also negative triples are informative. Therefore,
the predictive model construction problem will lead to a dif-
ferent consequence from the dataset construction problem.
We consider the model that outputs a predictive score st ∈ R
given a triple t ∈ ∆ such that a triple with a high score st is
likely to be positive, and a triple with a low score st is likely
to be negative. The predictive performance is measured by
the Area Under the ROC Curve (ROC-AUC), which will be
described in Section 4.2.

Problem 2. Given a set of entities E , a set of relations R,
a budget B (> 0), and the oracle O, the predictive model
construction problem is to construct a predictive model m :
E × E ×R → R within the budget such that its ROC-AUC
score on unlabeled triples is maximized.

3. ACTIVE MULTI-RELATIONAL DATA
CONSTRUCTION

We present the Active Multi-relational Data Construc-
tion (AMDC) method to address Problems 1 and 2. Each
problem is addressed with a slightly different instantiation
of the generic AMDC method. An instantiation of AMDC
implements a predictive model and a query score. The pre-
dictive model is a function m : E × E ×R → R that assigns
a predictive score st given a triple t. We use the same pre-
dictive model for both problem settings. The query score
qt (t ∈ ∆) is used to select which triples should be given
to the oracle for labeling. It is computed for each triple
based on the predictive scores. We design two different query
scores for the two problem settings, as discussed later.

AMDC first initializes its predictive model and then re-
peats the following three steps to create a multi-relational
dataset and a predictive model. First, given the predictive
model, it calculates query scores of unlabeled triples. Sec-
ond, triples with the lowest query scores are provided to
the oracle for labeling. Finally, it updates its dataset and
retrains the predictive model.

In the following, we present the details of the predic-
tive model and the query scores and the whole procedure
of AMDC.

3.1 Predictive Model
We introduce a predictive model of multi-relational data

based on the RESCAL model [24]. Our model assumes that
each entity i ∈ E is modeled as a latent feature vector ai ∈
RD, and each relation k ∈ R is modeled as a linear operator
in the latent feature space Rk ∈ RD×D, where D (> 0) is
the dimension of the latent feature space. We impose two
constraints on these parameters. First, we fix the length of
the latent feature vector to 1. Thus, we assume that for each
i ∈ E ,

‖ai‖2 = 1, (1)

holds. Second, we introduce a new constraint, restricting
the set of relation matrices to the set of rotation matrices.
Thus, we assume that for each k ∈ R,

R>k Rk = ID, |Rk| = 1, (2)

Rkaj 

ai 

aj 

aiTRkaj 

Rk 

Figure 2: Geometrical illustration of our model.
Positiveness of a triple t = (i, j, k) is measured by the
similarity between unit-length latent feature vectors
ai and Rkaj.

hold, where ID ∈ RD×D is the D-dimensional identity ma-
trix and | · | represents the determinant of a matrix. This re-
duces the degree of freedom of a relation matrix from O(D2)
to O(D). The second constraint ensures a relation matrix to
be a closed operation on the `2 unit ball; for any aj such that
‖aj‖2 = 1, ‖Rkaj‖2 = 1 holds. Given the latent representa-
tion, we further assume that a triple t = (i, j, k) is positive
if ai = Rkaj holds, and the triple is negative if ai = −Rkaj

holds. Hence, a relation that the relation k does not hold is
modeled as a relation matrix −Rk.

To measure the positiveness and negativeness of each
triple, we define the predictive score st of each triple t =
(i, j, k) as

st = a>i Rkaj . (3)

If the score is close to 1, the triple tends to be positive, and
if the score is close to −1, the triple tends to be negative.

Letting A = [a1 . . . a|E|]
> ∈ R|E|×D be a set of latent

feature vectors and R = [Rk]k∈R ∈ RD×D×|R| be a set of
relation matrices, we call the set of model parameters (A,R),
a model.

3.1.1 Optimization Problem for Learning
We describe our optimization problem to learn the model

explained in Section 3.1. The model is learned by solving
the following optimization problem:

min
A,R

1

|∆p||∆\∆p|
∑

tp∈∆p

∑
t̄p∈∆\∆p

[
γ − stp + st̄p

]
+

+
Cn

|∆n||∆\∆n|
∑

tn∈∆n

∑
t̄n∈∆\∆n

[γ − st̄n + stn ]+

+Ce

 1

|∆p|
∑

tp∈∆p

[
γ′ − stp

]
+

+
1

|∆n|
∑

tn∈∆n

[
γ′ + stn

]
+

 ,

(4)

where Cn, Ce, γ, γ
′ (> 0) are hyperparameters, and [·]+ :

R→ R is the hinge loss function such that

[x]+ :=

{
x (x ≥ 0),

0 (x < 0),

holds. Note that all the scores in the optimization prob-
lem (4) are functions of A and R as in Eq. (3).
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The optimization problem comes from the following two
assumptions on the scores. First, as relative relations be-
tween two scores, we assume that

stp > st̄p (∀tp ∈ ∆p, ∀t̄p ∈ ∆\∆p), (5)

stn < st̄n (∀tn ∈ ∆n, ∀t̄n ∈ ∆\∆n), (6)

hold. This induces the ROC-AUC loss functions, i.e., the
first and second terms in the objective function (4). In-
equality (5) is a popular assumption when there are a small
number of positive instances and a large number of unla-
beled instances [26, 21, 6]. We newly introduce the relation
between negative and non-negative triples as in Ineq. (6) in
order to explicitly leverage negative triples. These two as-
sumptions enable us to make full use of negative triples as
well as positive triples. To the best of our knowledge, exist-
ing work does not take Ineq. (6) into account, and therefore,
cannot effectively harness positive, negative, and unlabeled
triples at the same time.

Second, as the sign of a score, we assume that

stp > 0 (∀tp ∈ ∆p), (7)

stn < 0 (∀tn ∈ ∆n), (8)

hold. This induces the classification error loss function, i.e.,
the third term in the objective function (4). The second
assumption enables us to discriminate positive triples from
negative triples by threshold 0, while the first assumption
does not provide such a decision boundary. As described
later, a decision boundary is indispensable to define a query
score called an uncertainty score. As far as we know, this
is the first attempt to combine the ROC-AUC loss function
and the classification error function to calibrate predictive
scores to have threshold 0.

3.1.2 Learning Algorithm
We solve the optimization problem (4) by a stochastic

gradient descent (SGD) algorithm in the same way as other
related methods [26, 21, 6]. Rewriting the objective func-
tion (4) as

1
|∆p||∆\∆p|

∑
tp,t̄p

([
γ − stp + st̄p

]
+

+ Ce

[
γ′ − stp

]
+

)
+ 1
|∆n||∆\∆n|

∑
tn,t̄n

(
Cn [γ − st̄n + stn ]+ + Ce [γ′ + stn ]+

)
,

(9)

a SGD algorithm for Eq. (9) is derived as in Algorithm 1,
where the Heaviside step function H : R→ R is defined as

H(x) :=

{
0 (x < 0),

1 (x ≥ 0),

and for a matrix R ∈ RD×D, SVD(R) outputs the singular
value decomposition of R, i.e., U,Σ, V such that R = UΣV ∗.
In the SGD algorithm, we set the maximum number of up-
dates T (> 0). We also set the learning rate at the t-th

iteration as α0 · t−1/2, where α0 (> 0) is a hyperparameter.

3.1.3 Hyperparameter Tuning
Our multi-relational learning algorithm involves several

hyperparameters that have to be determined manually in
order to achieve high performance. In particular in AMDC,
the dataset is updated at each iteration, and therefore, the
best set of hyperparameters at the beginning is not nec-
essarily the best at the ending. We resort to validation to

address this issue as shown in Algorithm 2. We prepare mul-
tiple sets of hyperparameters and a validation dataset. All
the models are trained on the current training dataset, and
ROC-AUC scores of all the models are calculated on the val-
idation dataset using ValScore, which outputs ROC-AUC
scores on the validation dataset. We choose the model with
the best validation score to calculate the query score, which
we call a default model.

3.2 Query Scores
We calculate a query score qt for randomly sampled Q (>

0) unlabeled triple t ∈ ∆\(∆p ∪ ∆n) and choose q (< Q)
triples with the lowest scores for querying. We introduce
two different query scores for the two problem settings.

1. Positiveness score
Given the predictive scores {st}t∈∆, the positiveness
score of a triple t ∈ ∆ is defined as

qt := −st.

Choosing triples with the lowest query scores corre-
sponds to choosing triples that the model believes to
be positive.

2. Uncertainty score
Given the predictive scores {st}t∈∆, the uncertainty
score of a triple t ∈ ∆ is defined as

qt := |st| .

This query score regards a triple whose predictive score
close to 0 as uncertain. Such an interpretation is pos-
sible because we set a decision boundary between pos-
itive and negative triples on 0 as Eqs. (7) and (8).
Querying the most uncertain samples is a standard
heuristic to obtain a highly predictive model using less
training data [28].

3.3 Active Learning Algorithm
We describe the entire procedure of the AMDC method in

Algorithm 3. As inputs, AMDC is given a budget B (> 0),
a budget for the validation set Nval (> 0), a small dataset

(∆
(0)
p ,∆

(0)
n ), and multiple models with different hyperpa-

rameters.
The initialization consists of three parts. First, the val-

idation set is created by randomly querying labels of Nval

triples. Second, the models are trained on the initial dataset

(∆
(0)
p ,∆

(0)
n ). Third, the validation scores of the models are

calculated on the validation set, and the model with the best
validation score is selected as the default model.

Then, the following steps are repeated until the budget B
is exhausted. First, Q unlabeled triples are randomly sam-
pled, the query scores are then calculated using the default
model, and q triples with the lowest query scores are se-
lected from the Q unlabeled triples. Second, the selected q
unlabeled triples are provided to the oracle for labeling, and
the dataset is updated using the labels given by the oracle.
Third, all the models are retrained on the updated dataset,
and the default model is re-selected using the validation step.

4. EXPERIMENTS
We conduct two experiments to show the effectiveness of

AMDC in Problems 1 and 2. We investigate the effective-
ness of our querying strategies, the constraints on the model
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Table 1: Statistics of the datasets. |E| corresponds
to the number of entities, |R| to that of relations,
and |∆p| and |∆n| to the numbers of positive and
negative triples in the original dataset.

|E| |R| |∆p| |∆n|
Kinships 104 26 10, 790 270, 426
UMLS 135 49 6, 752 886, 273
Nations 125 57 2, 565 8, 626

(Eqs. (1) and (2)), and the ROC-AUC loss function on nega-
tive and non-negative triples, which are part of the technical
contributions implemented in AMDC. We first describe the
datasets used in the experiments, the performance measures,
evaluated methods, and the experimental setup. Then, we
show experimental results on both problem settings.

4.1 Datasets
We use three real multi-relational datasets, which are also

used by Bordes et al. [5] and Jenatton et al. [13]. Key statis-
tics of the datasets are summarized in Table 1.

4.1.1 Kinships
The Kinships dataset describes kinship relations in Aus-

tralian tribes that are famous for their complex kinship sys-
tems. The entities correspond to tribe members, and the
relations correspond to kinship terms such as a brother,
a son, and a wife (the Australian tribes often have more
complex systems). A triple (i, j, k) is positive if member i
calls member j by k. The dataset is fully-observed. This
dataset was originally created by Denham [9], according
to Kemp et al. [16]. We used the dataset distributed by
Nickel et al. [24].

4.1.2 UMLS
The UMLS dataset is a biomedical semantic network con-

structed from the Unified Medical Language System, which
was developed by McCray [20]. The entities correspond to
high-level concepts, and the relations correspond to seman-
tic relations. For example, a triple can be (Injury or Poi-
soning, Fully Formed Anatomical Structure, disrupts) and
(Cell, Tissue, a part of) [20]. The dataset is fully-observed.
We used the dataset distributed by Bordes et al. [6].

4.1.3 Nations
The Nations dataset contains both attributes of countries

and relations between countries, which was originally cu-
rated by Rummel [27]. The entities correspond to countries,
and the relations are, for example, the economical aid rela-
tion and the official visit relation. This dataset is partially-
observed; there are positive, negative, and unlabeled triples
in the original dataset. We only allow queries on the pos-
itive and negative triples in our experiments. We used the
dataset distributed by Bordes et al. [6].

4.2 Performance Measures
The ROC-AUC is used to evaluate the performance of

a predictive model. Given a test dataset (∆
(t)
p ,∆

(t)
n ), the

ROC-AUC is calculated as

1∣∣∣∆(t)
p

∣∣∣ ∣∣∣∆(t)
n

∣∣∣
∑

tp∈∆
(t)
p ,tn∈∆

(t)
n

I[stp > stn ],

where I[condition] = 1 holds if the condition is true, and
I[condition] = 0 holds otherwise. In addition, the ratio of
the positive triples the algorithm has collected so far to all
the triples is used to evaluate the ability of the algorithm
to collect positive triples. We call the latter performance
measure a completion rate.

4.3 Methods Evaluated
Besides the fully-fledged AMDC, we evaluate three meth-

ods obtained by turning off, in each case, one feature of
the full AMDC. AMDC rand turns off our method of se-
lecting the triples to be posed to the oracle, using a ran-
dom querying strategy instead. AMDC pos only turns off
the ROC-AUC loss function on negative and non-negative
triples. AMDC no const ignores the additional constraints
integrated into the model (Eqs. (1) and (2)). AMDC rand
can be derived by setting Q = q; we simply query labels
on randomly sampled unlabeled triples. AMDC pos only
corresponds to AMDC with Cn = 0. AMDC no const can
be derived by skipping lines 13, 17, and 18 in Algorithm 1.
However, without any constraints on the model parameters,
the learning algorithm tends to be unstable. Therefore, we
instead use regularized updates in Algorithm 1 by using reg-
ularization hyperparameters λA and λR for A and R, respec-
tively. For example, the update rule in line 6 in Algorithm 1,

aip ← aip − α
[
−(I1 + I2Ce)R̄kp ājp

]
,

is modified into

aip ← aip − α
[
−(I1 + I2Ce)R̄kp ājp + λAāip

]
.

We fix λA = λR = 0.01 in our experiments.

4.4 Protocol and Configuration
We design a protocol of an experiment as follows. Given

the original dataset (∆p,∆n), we randomly divide the

dataset into a test set (∆
(t)
p ,∆

(t)
n ) consisting of Ntest triples,

a validation set (∆
(v)
p ,∆

(v)
n ) consisting ofNval triples, the ini-

tial dataset (∆
(0)
p ,∆

(0)
n ) consisting of q triples, and the pool

dataset (∆
(p)
p ,∆

(p)
n ) without overlaps between each other.

Then, we run Algorithm 3 using the validation set, the ini-
tial dataset, and the pool dataset. Each algorithm is allowed
to query the oracle, requesting labels for triples in the pool
dataset. At each iteration of Algorithm 3, we calculate the
performance measures introduced in Section 4.2, using the
test set in case of the ROC-AUC score. We repeat this pro-
cess 10 times and report the mean and the standard devia-
tion of the scores at each iteration. For each dataset, we use
the same experimental settings among the four tested meth-
ods, to evaluate the contribution of each individual feature
turned on and off.

For the Kinships and UMLS datasets, we set Ntest =
Nval = 1, 000, B = 15, 000, Q = 100, 000, and q = 1, 000,
and for the Nations dataset, we set Ntest = Nval = 100,
B = 1, 500, Q = 2, 000, and q = 100. This is because the
number of labeled triples in the Nations dataset is much
smaller than those in the Kinships and UMLS datasets.
Other settings are the same across different datasets. The
hyperparameter setting of the original AMDC method is
C = [5.0, 10.0, 30.0], Cn = [1.0, 5.0, 30.0], γ = 0.3, γ′ = 0.9,
D = [5, 10], α0 = 0.1, and T = 50, 000. We use all the com-
binations of these subsets of hyperparameters; therefore the
number of models L is 18. We override the hyperparameter
setting when we use the other partial methods.
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4.5 Experimental Results
We provide experimental results on the two problem set-

tings in this section. We then discuss the properties of
AMDC based on the experimental results.

4.5.1 Dataset Construction Problem
We provide experimental results as to the dataset con-

struction problem (Problem 1). We run the four methods us-
ing the positiveness score to collect as many positive triples
as possible. Figure 3 shows experimental results.

These charts emphasize four main conclusions. First, our
querying strategy with the positiveness score enables us to
collect many more positive triples than a random sampling
strategy does. This strongly demonstrates the effectiveness
of the positiveness score for the dataset construction prob-
lem. In particular, AMDC collected 6.18 times, 17.0 times,
and 2.28 times more positive triples than AMDC rand in
the Kinships, UMLS, and Nations datasets, respectively.

Second, our querying strategy achieved the highest im-
provement on the UMLS dataset, the most imbalanced
dataset. This shows that the AMDC method can success-
fully learn a model even from an imbalanced dataset.

Third, AMDC pos only had worse performance in the
Kinships and UMLS datasets, but comparable performance
with the other methods in the Nations dataset. This result
can be explained by the property of the ROC-AUC loss func-
tion of negative triples. The contribution of the ROC-AUC
loss function depends on the ratio between the number of
unlabeled triples and positive triples. If the number of un-
labeled triples is quite larger than that of positive triples,
the ROC-AUC loss function has much influence on unla-
beled triples. However, if the number of unlabeled triples
decreases to be comparable to that of positive triples, it has
less influence on unlabeled triples, and therefore, the effec-
tiveness of the ROC-AUC loss function decreases. This can
explain the fact that the increasing rate of the completion
rate of AMDC pos only is comparable to that of other meth-
ods in the Kinships and UMLS datasets when the number
of queries increases.

Fourth, the positiveness score is not beneficial to improve
the predictive performance. AMDC achieved almost the
same ROC-AUC scores as AMDC rand on the UMLS and
Nations datasets and achieved even worse ROC-AUC scores
on the Kinships dataset. This supports our motivation to
set two different problem settings.

4.5.2 Predictive Model Construction Problem
We then provide experimental results for the predictive

model construction problem (Problem 2). We run the four
methods using the uncertainty score to collect informative
triples in order to improve the predictive performance. Fig-
ure 4 shows experimental results.

We present four conclusions drawn from these results.
First, at every iteration, AMDC’s ROC-AUC score is ei-
ther the highest, or comparable to the highest, while the
partial AMDCs are not always comparable to the highest
one. In specific, AMDC performs the best on the Kinships
and UMLS datasets, and is comparable to AMDC rand on
the Nations dataset. This demonstrates the benefits of the
full AMDC method.

Second, AMDC no const resulted in the poorest score,
and the standard deviations were the largest. This validates
that the constraints we introduced helped to increase the

stability of learning. By reducing the model complexity, we
can successfully avoid overfitting.

Third, AMDC tends to outperform AMDC rand in the
middle of the active learning procedure. This illustrates the
following active learning consequence. At the beginning,
the predictive model shows insufficient active learning abil-
ity due to lack of labels. As the number of labels grows, the
model is able to choose informative triples, and active learn-
ing becomes more effective. Towards the later iterations, the
querying strategy benefits little when diminishing returns is
observed in learning predictive models especially.

Fourth, the uncertainty score did not help improve the
completion rate in the same way as the first experiment.
This result, combined with the fourth finding in the pre-
vious section, shows that the dataset construction problem
and the predictive model construction problem are essen-
tially different problem areas. The predictive model con-
struction problem needs both positive and negative labels,
while the dataset construction problem aims to collect as
many positive labels as possible.

5. RELATED WORK
The AMDC method is related to multi-relational data

construction, multi-relational learning, and active learning
in machine learning. We review existing studies and state
the relationships with the AMDC method.

5.1 Multi-relational Data Construction
There are two main research directions in constructing

a multi-relational dataset: manual construction and auto-
matic construction by extracting data from documents.

ConceptNet [19], Cyc [18], and Wordnet [22] are con-
structed mainly by hand annotation. Von Ahn et al. [30] pro-
pose a game-with-a-purpose (GWAP) approach to use hu-
man resources efficiently. Unlike the AMDC method, these
approaches do not make use of machine learning algorithms
to facilitate manual dataset construction.

In bioinformatics, automatic extraction from scientific
papers has been extensively studied. For example,
Blaschke et al. [3] propose an automatic extraction method
of protein-protein interactions from scientific abstracts. In
the Semantic Web, knowledge bases are typically con-
structed from Web documents such as Wikipedia. DBpe-
dia [17] and YAGO2 [12] have been built partly by extracting
from Wikipedia. Dong et al. [10] combine automatic extrac-
tion methods and a machine learning method to construct a
reliable knowledge base. The main difference between their
method and ours is the objective of using machine learning.
Dong et al. [10] utilize machine learning to improve the data
reliability, while we apply machine learning to efficiently ex-
tract human knowledge that does not appear in documents.

5.1.1 Multi-relational Data Learning
Latent representation methods for multi-relational data

learning have been broadly investigated because of their high
predictive performance [7, 24, 25, 23, 5, 6, 31]. These ap-
proaches model entities as latent feature vectors and rela-
tions as operators on the vectors. In the RESCAL mod-
els [24, 25, 23], relations are modeled as asymmetric matri-
ces that can be interpreted as operators on a latent feature
vector of a tail of a triple. The models are learned by mini-
mizing the squared loss function [24, 25] or the logistic loss
function [23]. In the embedding models [7, 5, 6, 31], relations
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Figure 3: ROC-AUC scores and completion rates in the dataset construction problem (Problem 1). Upper-
left, upper-middle, and upper-right figures correspond to the ROC-AUC scores on the Kinships, UMLS, and
Nations datasets. Lower-left, lower-middle, and lower-right figures correspond to the completion rates on the
Kinships, UMLS, and Nations datasets.

are modeled as matrices [7] or vectors [5, 6, 31]. The models
are learned by minimizing the ROC-AUC loss function on
positive and non-positive triples. We employ the RESCAL
model in AMDC rather than the embedding models based
on the initial experimental results.

The model complexity of the RESCAL models is high as
compared to that of the embedding models. The RESCAL
models assign O(D2) parameters to one relation while the
embedding models [6, 31] assign O(D) to one relation.

Our multi-relational data model has three crucial differ-
ences from the aforementioned existing models. First, by
introducing additional constraints to the RESCAL model,
we successfully develop a RESCAL-variant model with low
model complexity. By fixing the length of latent feature vec-
tors to 1 and restricting the set of relation matrices to the
set of rotation matrices, we achieve the same model com-
plexity with the embedding model [6]. Second, in order to
make full use of negative triples, we combine the existing
ROC-AUC loss function on positive and non-positive triples
with another ROC-AUC loss function on negative and non-
negative triples. Third, we further add the classification
error loss function to the loss function in order to learn a
decision boundary. The decision boundary plays a crucial
role in active learning.

5.2 Active Learning
Active learning is a supervised learning scheme in which a

learner is allowed to choose instances to be labeled. General
techniques are summarized in the survey by Settles [28].

To the best of our knowledge, our approach is the first
attempt to apply active learning to a multi-relational data
model trained using the ROC-AUC loss function. Several

research groups propose active learning algorithms for ma-
trix factorization models [14, 15, 8, 29]. However, none of
them employs the ROC-AUC loss function for learning, be-
cause these studies do not focus on imbalanced data. In
order to achieve high predictive performance on an imbal-
anced multi-relational dataset, we develop an active learning
algorithm for a model trained with the ROC-AUC loss func-
tion. Donmez et al. [11] propose an active learning algorithm
on the learning-to-rank problem, in which a ranking model
is learned using the ROC-AUC loss function. There are
two main differences between Donmez et al.’s work and our
work. The first difference is the model to be learned. Don-
mez et al. [11] employ RankSVM, while we develop a new
multi-relational data model. The second difference is the
method to estimate a decision boundary. Donmez et al. [11]
assume that the decision boundary is between two scores
whose difference is maximized. Our estimation method is
believed to be more effective because it calibrates the pre-
dictive scores to satisfy the decision boundary 0 by incorpo-
rating the classification error loss function.

6. CONCLUSION
Constructing a multi-relational dataset can often benefit

from human expert input, which can take the form of anno-
tating triples whose positive/negative status is initially miss-
ing. While very valuable, human expert input is a limited
resource, given that manually annotating a large amount
of triples is a tedious and costly process. This research
has focused on efficiently using human expert resources to
construct a multi-relational dataset. We investigated two
scenarios; a dataset construction problem and a predictive
model construction problem.
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Figure 4: ROC-AUC scores and completion rates in the predictive model construction problem (Problem 2).
Upper-left, upper-middle, and upper-right figures correspond to the ROC-AUC scores on the Kinships,
UMLS, and Nations datasets. Lower-left, lower-middle, and lower-right figures correspond to the completion
rates on the Kinships, UMLS, and Nations datasets.

We have introduced the AMDC method, our solution to
this problem. AMDC performs active learning. It learns
a model of a multi-relational dataset, and actively poses
queries to an oracle, requesting labels to selected unla-
beled triples. Our main technical contributions are three-
fold. First, we developed active learning algorithms using
the ROC-AUC loss function. Active learning cannot directly
be applied to a model learned on the ROC-AUC loss func-
tion, because such a model does not have a decision bound-
ary, which is necessary to select uncertain triples for query-
ing. We resolved this issue by using a classification error
loss function, which enabled the model to learn the deci-
sion boundary. Second, we presented a new ROC-AUC loss
function utilizing negative triples to learn efficiently from
abundant negative triples. Existing learning methods em-
ploy the ROC-AUC loss function only on positive and non-
positive triples, which do not distinguish negative triples
from unlabeled ones. We combined a ROC-AUC loss func-
tion on negative and non-negative triples to make full use
of negative triples. Third, we added two constraints to the
RESCAL model to reduce the model complexity. We fixed
the length of latent feature vectors and restricted the set of
model parameters associated with relations.

We conducted experiments to validate the effectiveness
of AMDC. We evaluated the impact of each of the three
technical contributions, comparing the full AMDC method
with three other variants where each of these features were
turned off. This allowed to identify strengths and limita-
tions of each individual contribution. We found that the
full AMDC has consistently good performance at every iter-
ation, showing that the technical contributions implemented
in AMDC work well in conjunction with each other.

An interesting direction for future work involves using
crowdsourcing for annotation purposes. Crowdsourcing pro-
vides easy access to abundant human resources at low cost.
However, it has been pointed out that labels obtained with
crowdsourcing are sometimes of low quality. We believe that
the quality issue can be resolved by combining quality con-
trol techniques [32].

Another research direction is to incorporate automatic ex-
traction methods. By using a large dataset extracted from
documents as the initial dataset, AMDC will be able to se-
lect more appropriate triples that contribute to efficient data
construction. The key challenge is to estimate the reliabil-
ity of each triple. As the reliability of an automatically
extracted dataset is not always guaranteed, it is necessary
to estimate it with help of human annotation.
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Algorithm 1 Learn((∆p,∆n), H)

Input: multi-relational dataset (∆p,∆n) and hyperparam-
eters H = {D, γ, γ′, Ce, Cn, T, α0}.
Output: model (A,R).
Initialize: randomly initialize A,R to satisfy Eqs. (1) and
(2), and set Ā = A, R̄ = R, t = 1, α = α0.

1: repeat
2: Sample v ∼ Bernoulli(0.5)
3: if v = 1 then
4: Sample tp = (ip, jp, kp) from ∆p and t̄p = (̄ip, j̄p, k̄p)

from ∆\∆p.
5: Compute indicators as

I1 ← H
(
γ − a>ipRkpajp + a>īpRk̄p

aj̄p

)
,

I2 ← H
(
γ′ − a>ipRkpajp

)
.

6: Update model parameters as

aip ← aip − α
[
−(I1 + I2Ce)R̄kp ājp

]
,

ajp ← ajp − α
[
−(I1 + I2Ce)R̄>kp

āip

]
,

Rkp ← Rkp − α
[
−(I1 + I2Ce)āip ā>jp

]
,

aīp ← aīp − α
[
I1R̄k̄p

āj̄p

]
,

aj̄p ← aj̄p − α
[
I1R̄

>
k̄p

āīp

]
,

Rk̄p
← Rk̄p

− α
[
I1āīp ā>j̄p

]
.

7: else if v = 0 then
8: Sample tn = (in, jn, kn) from ∆n and t̄n =

(̄in, j̄n, k̄n) from ∆\∆n.
9: Compute indicators as

I3 ← H
(
γ − a>īnRk̄n

aj̄n + a>inRknajn

)
,

I4 ← H
(
γ′ + a>inRknajn

)
.

10: Update model parameters as

ain ← ain − α
[
(I3Cn + I4Ce)R̄kn ājn

]
,

ajn ← ajn − α
[
(I3Cn + I4Ce)R̄>kn

āin

]
,

Rkn ← Rkn − α
[
(I3Cn + I4Ce)āin ā>jn

]
,

aīn ← aīn − α
[
−I3CnR̄k̄n

āj̄n

]
,

aj̄n ← aj̄n − α
[
−I3CnR̄

>
k̄n

āīn

]
,

Rk̄n
← Rk̄n

− α
[
−I3Cnāīn ā>j̄n

]
.

11: end if
12: for i ∈ E such that ai 6= āi do
13: ai ← ai/‖ai‖2.
14: āi ← ai.
15: end for
16: for k ∈ R such that Rk 6= R̄k do
17: Uk,Σk, Vk ← SVD(Rk).
18: Rk ← UkV

∗
k .

19: R̄k ← Rk.
20: end for
21: α← α0/

√
t+ 1.

22: t← t+ 1.
23: until t ≥ T holds.
24: return (A,R)

Algorithm 2 LearnDefault((∆p,∆n), (∆
(v)
p ,∆

(v)
n ),H)

Input: training dataset (∆p,∆n), validation dataset

(∆
(v)
p ,∆

(v)
n ), and a set of models H = {H(l) | l ∈

{1, . . . , L}}.
Output: default model (A,R).

1: for l = 1, . . . , L do
2: (A(l), R(l))← Learn(∆p,∆n, H

(l)).

3: v(l) ← ValScore(A(l), R(l),∆
(v)
p ,∆

(v)
n ).

4: end for
5: l? ← arg maxl=1,...,L v

(l).

6: return (A(l?), R(l?)).

Algorithm 3 Active Multi-relational Data Construction

Input: budget B > 0, budget for validation Nval > 0, initial

dataset (∆
(0)
p ,∆

(0)
n ), a set of hyperparameters H = {H(l) |

l ∈ {1, . . . , L}}, the number of queries q, the number of
unlabeled triples to calculate a query score Q, and a query
score function.
Output: dataset (∆p,∆n) and model (A?, R?).
Initialization:

1: (∆p,∆n)← (∆
(0)
p ,∆

(0)
n ).

2: Create a validation dataset of size Nval, (∆
(v)
p ,∆

(v)
n ).

3: (A?, R?)← LearnDefault((∆p,∆n), (∆
(v)
p ,∆

(v)
n ),H).

4: t← 0.

Main algorithm:

1: while tq ≤ B do
2: Randomly sample Q unlabeled triples to construct

∆u.
3: for each triple t ∈ ∆u do
4: Compute the query score qt using the query score

function.
5: end for
6: Choose q triples with the lowest query scores to con-

struct ∆?
q .

7: for each triple t ∈ ∆?
q do

8: l← O(t).
9: if l = 1 then

10: ∆p ← ∆p ∪ {t}.
11: else
12: ∆n ← ∆n ∪ {t}.
13: end if
14: end for
15: (A?, R?)← LearnDefault((∆p,∆n), (∆

(v)
p ,∆

(v)
n ),H).

16: t← t+ 1.
17: end while
18: return (∆p,∆n) and (A?, R?).
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