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ABSTRACT
The proliferation of the web presents an unsolved problem
of automatically analyzing billions of pages of natural lan-
guage. We introduce a scalable algorithm that clusters hun-
dreds of millions of web pages into hundreds of thousands
of clusters. It does this on a single mid-range machine using
efficient algorithms and compressed document representa-
tions. It is applied to two web-scale crawls covering tens
of terabytes. ClueWeb09 and ClueWeb12 contain 500 and
733 million web pages and were clustered into 500,000 to
700,000 clusters. To the best of our knowledge, such fine
grained clustering has not been previously demonstrated.
Previous approaches clustered a sample that limits the max-
imum number of discoverable clusters. The proposed EM-
tree algorithm uses the entire collection in clustering and
produces several orders of magnitude more clusters than
the existing algorithms. Fine grained clustering is neces-
sary for meaningful clustering in massive collections where
the number of distinct topics grows linearly with collection
size. These fine-grained clusters show an improved cluster
quality when assessed with two novel evaluations using ad
hoc search relevance judgments and spam classifications for
external validation. These evaluations solve the problem of
assessing the quality of clusters where categorical labeling is
unavailable and unfeasible.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Clustering ; I.5.3 [Computing
Methodologies]: Pattern Recognition—Clustering, Algo-
rithms, Similarity measures; D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming, Parallel Pro-
gramming, Distributed Programming
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1. INTRODUCTION
Clustering is a fundamental process for applications such

as Content Analysis, Information Integration, Information
Retrieval, Web Mining and Knowledge Discovery. The pro-
liferation of the internet has driven the need for unsuper-
vised document clustering for analyzing natural language
without having to label all possible topics such as in su-
pervised learning approaches. Other web data exists with
the potential of generating millions of clusters from billions
of examples. For example, sensor data, images, video, au-
dio, customer data, smart grid data, and, data produced by
everyday physical objects such as in the web of things. Clus-
tering algorithms are essential for these emerging web appli-
cations, and it is challenging due to heavy computational
requirements. It may be possible to achieve web-scale clus-
tering using a high performance distributed architecture, but
the cost is prohibitive for many applications. Additionally,
high-performance computing platforms are limited to orga-
nizations with large budgets and highly skilled employees.
Additionally, achieving fine-grained clustering poses difficul-
ties even with high-performance architectures. We found no
examples of clustering near a billion natural language doc-
uments.

Information Retrieval utilizes document clustering for pre-
clustering collections on to multiple machines for distributed
search. Collection distribution uses clustering for organiza-
tion into thematic groups. These clusters are ranked by
collection selection to determine which clusters to search.
Collection selection selects a few relevant thematically re-
lated clusters for each query and therefore improves search
performance. Only the top k documents that are returned
by the initial search are considered for further analysis when
ranking search results. By contrast, global pre-clustering of
documents captures the thematic association of documents
on the basis of shared content. Documents that may not con-
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tain the search terms, but are thematically related to doc-
uments that are initially retrieved by keywords search, can
be found in re-ranking and query expansion. Finding hidden
thematic relationships based on the initial keyword search
provides added motivation to pre-clustering document col-
lections.

We are not aware of any solutions to the problem of clus-
tering a billion web pages on standard hardware, other than
by sampling to produce a relatively small number of clus-
ters. It is not possible to cluster a collection into numerous
small clusters with only a small sample. Clustering algo-
rithms require redundancy in the data, and a small number
of documents in the sample means reduced redundancy; this
does not allow for discovery of small clusters. The size of
the final clusters produced by sampling is relatively large be-
cause of distribution of the entire collection over the learned
clusters. For instance, Kulkarni and Callan [23] have clus-
tered a 0.1% sample of ClueWeb09 into 1,000 clusters and
then mapped all 500 million documents onto these clusters,
yielding an average cluster size of 500,000 documents. These
large clusters work for collection distribution and selection,
but we later demonstrate the advantage of finer grain clus-
ters. Furthermore, coarse clusters are not useful for topical
clustering of documents, where topic cluster size is expected
to be several of orders of magnitude smaller. Fine grained
clustering is not achievable through aggressive subsampling
in web-scale collections.

This paper introduces the parallel streaming EM-tree al-
gorithm for clustering web-scale collections on low-cost stan-
dard hardware. The quality of clustering solutions and pro-
cessing efficiency depend on the representation of objects.
Therefore, we present a useful data model using random
projections [18] for representation of the document collec-
tion as binary signatures. We apply the parallel streaming
EM-tree clustering algorithm that is specialized for binary
signatures to segment the collection into fine grained clus-
ters. The proposed method is evaluated with the web scale
collections, ClueWeb091 and ClueWeb122, containing 500
and 733 million English language documents respectively.

Document clusters are often evaluated by comparison to
a ground truth set of categories for documents. No topical
labels are available for ClueWeb, and it is nigh impossible
to generate the labels for a large scale web crawl for millions
of categories. We present two novel methods for external
cluster validation: (1) ad hoc relevance; and (2) spam clas-
sification. We used relevance judgements from the TREC
Web Track in 2010, 2011, 2012 and 2013 [7, 8, 9, 31] and
spam classifications created by Cormack et. al. [11] for the
evaluation of document clustering.

Extensive analysis reveals that the clusterings with 500,000
to 700,000 clusters were found to improve the quality using
this evaluation. We emphasize that there are no earlier re-
ports in the open literature of document clustering of this
magnitude, and there are no standard benchmark resources
or comparative evaluation results.

This paper makes two novel contributions: (1) we intro-
duce the novel parallel streaming signature EM-tree algo-
rithm that can cluster documents at scales not previously
reported; and (2) we solve the problem of cluster validation

1http://ktree.sf.net/emtree/clueweb09
2http://ktree.sf.net/emtree/clueweb12

in web-scale collections where creating a ground truth set of
categories is a near impossible task for human assessors.

Section 2 discusses related research on web scale cluster-
ing. The generation of a document representation is dis-
cussed in Section 3. Section 5 discusses the complexity of
the proposed method and section 4 introduces the EM-tree
algorithm. The evaluation of cluster validity is presented
in Section 6. The discussion of potential applications and
conclusions are contained in Sections 7 and 8.

2. RELATED RESEARCH
Few clustering algorithms can scale to web collections on

modest hardware platforms. They rely on supercomputing
resources or imposed constraints such as: (1) using a small
sample for clustering and then mapping the entire collec-
tion to these clusters; (2) by reducing the number of target
clusters.

MapReduce has been used to implement clustering algo-
rithms by Jin [21] and Kumar [24]. The experiments created
a small number of clusters using small data sets several giga-
bytes in size. Esteves and Rong [16] investigated using the
open source Mahout library implemented using MapReduce
for the clustering of Wikipedia. The k-means algorithm took
two days to cluster the 3.5 million Wikipedia articles into
20 clusters using ten compute nodes. In comparison, we in-
crease both the number of documents and clusters by two
to three orders of magnitude. We analyze the complexity of
k-means and EM-tree in Section 5.

Broder et. al. [5] describe an approach to scaling up k-
means by the use of inverted indexes. It reverses the process
of assigning points to clusters and assign clusters to points.
The authors also highlight the need for fine-grained clus-
tering of high dimensional data such as web pages, users,
and, advertisements. They indicate that k-means may take
thousands of hours to converge when using parallel and
distributed programming techniques such as MapReduce.
While the authors show improvements to k-means, they only
experiment with clustering millions of examples into thou-
sands of clusters. We far exceed this scale.

Bahmani et. al. [2] present a scalable parallel approach
to the D2 seeding approach from k-means++ [1] called k-
means||. The experiments run k-means to complete con-
vergence after initialization. It is often impractical to run
the optimization to complete convergence. Typically, more
than 95% of the optimization happens in the first few iter-
ations, and further iterations offer very little improvement.
We observed this with EM-tree in prior work [12]. The EM-
tree can be seeded with k-means||. However, for fine-grained
clustering of ClueWeb using signatures we found no advan-
tage to more computationally expensive initializations. It
may be due to the smoothing properties of random projec-
tions, but analysis of this is beyond the scope of this paper.
However, when such an approach does help, our approach
is complementary to k-means||. We can leverage the advan-
tages of both approaches by the use of the scalable initial-
ization procedure and the scalable optimization of EM-tree.
As with other approaches, the experiments were run on data
sets orders of magnitude smaller and much lower dimension-
ality.

Zhang et. al. [36] present the BIRCH algorithm that
incrementally constructs a tree as data is streamed from
disk. It is similar to the K-tree algorithm except that not
all data points are kept in the tree [13]. The BIRCH algo-
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rithm performs updates along the insertion path like K-tree.
When using signatures it has been reported to cause scal-
ability problems because the signature bits are continually
unpacked and repacked [12]. Furthermore, the EM-tree has
immutable tree state at each iteration leading to scalable
parallel implementations. We were unable to find any refer-
ence to BIRCH clustering near 1 billion documents.

We have only found a few other examples of clustering
near a billion examples. These reports were on lower di-
mensional data sets of images, image patches, low dimen-
sional generic point sets and weather patterns. Liu et. al.
[27] used 2000 CPUs, MapReduce and commodity hardware
to cluster 1.5 billion images into 1 million clusters for near
duplicate detection. Similarly to our approach, they used
random projections and a tree structure. Wang et. al. [34]
also describe an approach to clustering images for duplicate
detection using a 2000 core cluster for clustering 2 billion im-
ages. Bisgin and Dalfes [4] used 16,000 CPUs and a top500
supercomputer to cluster weather data into 1000 clusters.
Wu et. al. [35] report on the speedup obtained when us-
ing GPUs instead of multicore CPUs, to cluster billions of
low dimensional point sets of upto 8 dimensions. These ap-
proaches rely on high-performance computing resources that
put it out of reach for most application developers. Addi-
tionally, we found no examples of clustering web-scale doc-
ument collections into fine-grained clusters.

The ClueWeb collections are some of the largest document
collections used for research. These web crawls have been
used at TREC to evaluate ad hoc retrieval and other Web
search tasks. While it is clear that retrieval systems can
scale to these collections, there has been little investigation
of clustering such large document collections.

3. DOCUMENT REPRESENTATION WITH
SIGNATURES

The first task in clustering documents is the definition
of a representation. We use a binary signature represen-
tation called TopSig3 [18]. It offers a scalable approach to
the construction of document signatures by applying ran-
dom indexing [30], or random projections [3] and numeric
quantization. Signatures derived in this manner have been
shown to be competitive with state of the art retrieval mod-
els at early precision, and also to clustering approaches. The
binary signature vectors faithfully preserve the mutual sim-
ilarity relationships between documents in the original rep-
resentation. The Johnson Lindenstrauss lemma [22] states
that if points in a high dimensional space are projected into
a randomly chosen subspace then the distances between the
points are approximately preserved. The lower dimension-
ality required is asymptotically logarithmic with respect to
the original high dimensional space.

This signature generation is similar to that of SimHash
[6]. However, we use a different term weighting scheme, use
signatures more than an order of magnitude larger, and,
much sparser random codes. SimHash has predominantly
been applied to nearest duplicate detection where relatively
short signatures are used to find the few nearest neighbors
of a document. We refer the reader to [18] for the specific
details of the signature generation process.

We removed stop words, and stemmed words using the
Porter algorithm. We use 4096-bit signatures because that

3http://topsig.googlecode.com

choice was previously shown to be sufficient to produce the
same quality clustering as the original real-valued represen-
tation of documents [18]. We derived the signatures used to
represent the ClueWeb collections on a single 16 core ma-
chine. Our approach uses a fixed amount of memory while
indexing and can process a collection without keeping the
entire index in memory. Each document is indexed inde-
pendently of all other documents leading to massive paral-
lelization.

It is important to understand that the focus of this paper
is efficient, scalable document clustering, not to compare
different approaches of the generation of document signa-
tures. There have been numerous approaches reported that
fall under the general category of similarity preserving hash-
ing [33].

The use of signatures is advantageous for increased com-
putational efficiency of document to document similarity. It
has been shown to provide a one to two orders of magni-
tude increase in processing speed for document clustering
over traditional sparse vector representations with sacrific-
ing quality [18]. In prior research [18], we used an algo-
rithm similar to k-means designed especially for signatures.
We specifically designed the proposed EM-tree algorithm
for signatures. All documents and cluster representatives
are binary signatures. Therefore, traditional vector space
clustering approaches can not be applied to these signatures
without expanding them into a larger representation such as
integer or floating point vectors.

4. CLUSTERING WITH EM-TREE
The EM-tree algorithm can cluster vast collections into

numerous fine-grained clusters. K-means is one of the earli-
est and most popular clustering algorithms due to its quick
convergence and linear time complexity. However, it is not
suitable for web scale collections that have a vast diversity of
content resulting in an enormous number of topics as elabo-
rated in the previous section. EM-tree solves this previously
unaddressed issue.

4.1 M-Way Nearest Neighbor Search Tree
A m-way nearest neighbor search tree is a recursive data

structure that indexes a set of n binary signatures in d di-
mensions where, X = {x1, . . . , xn}, X ⊂ {+1,−1}d and
|X| = n. Each node contains a list of records that are
(key, value) pairs. The keys are binary signatures that are
cluster representatives of the associated subtree. Each it-
eration of the optimization updates the keys. The record
values are the nodes associated with the keys that are one
level deeper. The data structure also generalizes to all vec-
tor space representations in Rd. However, in the case of the
EM-tree, we have specialized the data structure for binary
signatures. It is not a traditional vector space clustering
algorithm.

Applying the k-means clustering algorithm recursively is
known as Tree-Structured Vector Quantization (TSVQ) [17],
repeated k-means, or for clusters of size two, bisecting k-
means. It generates a m-way tree in Rd.

4.2 The EM-tree Algorithm
The EM-tree algorithm iteratively optimizes a randomly

initialized m-way tree until convergence. In contrast, the
repeated k-means algorithm initially creates k clusters using
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k-means [17]. It recursively clusters each partition in a layer
wise fashion until reaching a desired tree depth or node size.

The EM-tree builds a cluster tree in a different manner
[12]. The collection is initially partitioned by selecting a
random set of data points as cluster prototypes. Unlike re-
peated k-means, clustering is not applied at this point. In-
stead, the data points are recursively distributed to random
partitions until a desirable tree depth is reached. At this
point, the initial tree is complete. Now cluster means are
updated in a bottom-up fashion. The entire process of tree
insertion and tree update forms an iteration of the optimiza-
tion and has been proven to converge [12]. The entire tree
is recomputed with each insert update cycle. It is different
from repeated k-means in which the optimization process
is run to completion at each node before proceeding deeper
into the tree. The EM-tree algorithm includes an additional
pruning step in for removing empty branches of the tree.
The EM-tree is not a standard vector space clustering algo-
rithm in this context. It works directly with binary vectors
where all documents and cluster prototypes are binary vec-
tors.

The EM-tree algorithm can optimize any m-way tree such
as a tree produced by a low-cost algorithm with poor cluster
quality. The algorithm can be applied to any subtree in a
m-way tree. In a setting where a changing data set is being
clustered, branches of the tree affected by insertions and
deletions can be restructured to the data independently of
the rest of the tree.

By a process of insertion (Expectation), update (Maxi-
mization), and pruning, the m-way tree model adapts to the
underlying data as the clusters converge as seen in Figure 1.

The procedure seed initializes the EM-tree algorithm where
m is the tree order, X is the set of data points to cluster
and depth is the tree depth. It produces a height-balanced
tree where all leaves are at the same depth. The insert
procedure inserts a set of vectors into a m-way tree. Points
are inserted by following the nearest neighbor search path,
where at each node in the tree, the branch with the nearest
key is followed.

The update procedure updates the means in the tree
according to the current assignment of data points in the
leaves. Since we work with binary vectors, the bits in each
signature assigned to a given leaf node are unpacked and
accumulated into an integer vector. This vector is then used
in two different ways. It is quantized to a binary vector to
form a new cluster mean for a given leaf node, and it is
also propagated up the tree so that new cluster centroids
higher in the tree can be computed. The updating of cluster
centroids is performed for all levels of the tree.

The prune procedure removes any branches with no as-
sociated data points. It is completed bottom up where leaf
nodes are removed first. The empty branches are removed
once update and insert have completed. It allows the tree
structure to adapt to the data.

The optimization error of EM-tree is robust with respect
to different initializations when producing fine-grained clus-
ters of ClueWeb. A tree with random initialization and sub-
sequent optimization was found to minimize the objective
function on par with more computationally expensive ap-
proaches. A 10% sample is used to seed the tree because
it is large enough to produce meaningful centroid represen-
tations for a large number of clusters. This initial seed-
ing only consumes a small percentage of the compute time.

emtree(m, depth,X)

1 root = seed(m, depth,X)
2 converged = false
3 while not converged
4 root′ = root
5 insert(root′, X)
6 prune(root′)
7 update(root′)
8 if root == root′

9 converged = true
10 else
11 root = root′

12 return root

Figure 1: EM-tree

Additionally, approximation guarantees can be achieved by
initializing with the D2 approach as in k-means++ [1] but
analysis of this is beyond the scope of this paper.

In summary, the emtree procedure initializes and itera-
tively optimizes an EM-tree of order m that is depth levels
deep.

4.3 Streaming EM-tree
One of the key constraints in scaling clustering algorithms

to large data sets is the availability of computer memory.
One way to approach this problem is to adopt a streaming
paradigm in which the data points are streamed sequentially,
and only a small portion of them are ever kept in memory
at one time. The approach used in the streaming EM-tree
is only to keep internal nodes in memory. The data points
are collected in accumulators associated with each leaf node.
The data points inserted are, therefore, added into the ac-
cumulators but are then discarded.

At each iteration of the optimization, all signatures are
read from disk and inserted into the tree as seen in Figure
2. Bits are unpacked from the signature and added into
the accumulators. A count is kept of the number of points
added into the accumulator. When all inserts have been
performed, the values of the accumulators in the leaf nodes
are propagated up the tree and new centroids are calculated
in the update step. The centroids, which are now vectors of
integers, are quantized to produce new bit signatures. The
prune step is then performed.

Large datasets can be clustered on a single machine with
limited memory. The algorithm is compute bound on typical
hardware architectures the data is streamed from disk.

4.4 Parallelizing EM-tree
The EM-tree algorithm is particularly amenable to large

scale parallel and distributed implementations due to the
nature of the optimization process. The key property that
ensures scalability is that the entire tree is immutable at each
iteration, and the data points can be concurrently inserted
according to the nearest neighbor search path.

The EM-tree algorithm has been parallelized using threads
via the use of loop parallelization and producer-consumer
pipelines. The accumulators in the leaf nodes are locked
when updated, although the chance of multiple threads at-
tempting to update the same accumulator at the same time
is small due to the typically very large number of leaf nodes.
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Figure 2: Streaming EM-tree Iteration

This property ensures that EM-tree scales almost linearly
with regards to the number of threads. For thread imple-
mentation, we use Intel’s Threading Building Blocks (TBB).

A parallel threaded implementation can be executed on a
single machine in which case the entire tree structure with
accumulators is shared between threads. The bottleneck
for the streaming EM-tree is the insertion step, primarily
because of nearest neighbor calculations and bit unpacking
of accumulators. The update and prune steps require much
less computation.

Figure 3 contains the results of an experiment to test how
EM-tree scales with the number of threads used. We tested
EM-tree on a machine with 16 CPU cores. The speedup is
measured relative to the execution in a single thread on the
same hardware. The CPUs support two hyper-threads per
core, and we have stepped through the number of threads
in the program from 1 up to 34. The top curve in Figure 3
shows the speedup that could be obtained if speedup exactly
followed the number of threads. It is not achievable in prac-
tice when using hyper-threads. The bottom curve shows
the actual execution speedup as the number of threads is
increased. The middle curve depicts the number of cores
used – when there are fewer threads than cores the threads
are mapped to idle cores. After that point, all CPU cores
are utilized, and threads are mapped to busy cores using
their second hyper thread. In summary, on a machine with
16 cores we were able to achieve a 16 fold speedup through
conventional multi-threading. In this experiment, we used a
10 million document sample from the ClueWeb09 collection.
It is large enough to eliminate any caching effects and small
enough that the single threaded experiment does not take
weeks to run.

4.5 Software
EM-tree and Streaming EM-tree have been implemented

by the authors as part of the open source LMW-tree C++
software package4. The software has been built on Linux,
Mac OS and Windows. The clusters and tree structure have

4http://github.com/cmdevries/LMW-tree
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Figure 3: Scaling EM-tree to 16 CPU cores

been made available online5. It is important to have these
openly available since any alternative solution can be com-
pared.

5. COMPLEXITY ANALYSIS
The time complexity of the k-means algorithm is linear

with respect to all its inputs, O(nki) [5]. Where n is the
number of non-zero entries in the document-term matrix,
k is the number of clusters, and, i is the number of itera-
tions. The number of iterations, i, is limited to some small
fixed amount of iterations as k-means converges quickly in
practice. Fine grained clustering pushes k much closer to n.
As k → n, the complexity of k-means approaches O(n2i).
It makes k-means impractical for fine-grained clustering of
web-scale collections containing billions of examples. Al-
gorithms using height balanced trees such as EM-tree, K-
tree [13] and BIRCH [36] alleviate this problem by reducing
the time complexity associated with the number of clus-
ters to O(log(k)). The complexity of EM-tree approaches
O(n log(n)i) as k → n for fine-grained clustering.

Three nontrivial computer architecture considerations con-
tribute to the efficiency of our approach. We process 64 di-
mensions of the binary signatures at a time in a single CPU
operation. While it is a constant speedup, it is certainly not
negligible. Our approach only uses integer operations that
are faster and have higher throughput in instructions per cy-
cle on modern processors than floating point operations used
for k-means clustering. Furthermore, due to the extremely
concise representation of our model as binary signatures, we
observe more cache hits. Cache misses are extremely costly
on modern processors with main memory accesses taking
more than 100 cycles. When using traditional sparse repre-
sentations, the cluster means in the root of the tree contain
many millions of terms, quickly exceeding processor cache
size. With signatures a cluster means always consumes 4096
bits.

By the use of efficient representations and algorithms we
turn the problem of fine grained clustering of the entire web
into a tractable problem.

5http://sf.net/projects/ktree/files/clueweb_
clusters/
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6. EMPIRICAL ANALYSIS
We ran the experiments on a dual-socket Xeon E5-2665

based system. Each CPU package has 8×2.4 GHz CPU cores
connected in a ring topology, for a total of 16 CPU cores.
The program used 64GB of memory to store the tree in
memory where the data set is 240GB to 350GB on disk. We
streamed the data points from a 7200rpm 3TB SATA disk
providing 150MB per second of sequential read performance,
although this much bandwidth was not needed. A mid-range
machine like this can be purchased for around 5,000 USD.

The ClueWeb 09 and 12 collections took approximately
two and three days to index and resulted in 240GB and
350GB signatures indexes. It is a concise representation of
the collections that measure in tens of terabytes when un-
compressed. The EM-tree processes these document signa-
tures to produce document clusters. Clustering the ClueWeb
09 and 12 signatures took approximately 15 and 20 hours.
Both ran for five iterations and produced 700,000 and 600,000
clusters respectively.

Most of the literature on cluster evaluation focuses on
evaluating document clusters by comparison to the ground
truth set of categories for documents. It poses problems
when evaluating large-scale collections containing millions
to billions of documents. Human assessors are required to
label the entire collection into many thousands of potential
topics. Even if a small percentage of the collection is labeled,
how does an assessor choose between many thousands of po-
tential topics in a general purpose document collection such
as the World Wide Web? The experience of labeling large
test collections such as RCV1 [26] demonstrate that cate-
gorizing a general purpose document collection such as the
web is a daunting task for humans. RCV1 contains 800,000
short newswire articles with hundreds of categories. Even
though this collection is many orders of magnitude simpler
than the web, assessors still struggled with categorization.

There are no topical human generated labels available
for ClueWeb. Therefore, we propose novel uses of exter-
nal sources of information as proxies for cluster validation:
(1) ad hoc relevance; and (2) spam classification. The in-
formation retrieval evaluation community has already dealt
with the problem of assessor load in ad hoc relevance eval-
uation via the use of pooling [32]. Pooling reduces assessor
load and topics evaluated are specific and well defined. The
issue of assessor load is alleviated by using ad hoc relevance
to assess document clustering, instead of category labels for
every document in a collection.

We also present another alternative evaluation based upon
spam classification produced in earlier research by Cormack
et. al. [11]. The goal in this case is to place documents with
the same spam score into the same cluster. It measures how
consistent the clustering is with respect to the external mea-
sure of spam learned from 4 different spam classifications.
We of course conjecture that there is some underlying topical
vocabulary that spammy documents use. Clustering, group-
ing documents on the basis of shared vocabulary, should
show a correlation with spam detection scores – which are,
of course, independently derived.

Before we present results of these two cluster validation
experiments, we present some qualitative evaluation by in-
spection of partial documents content in the final trees in
Tables 1, 2 and 3.

6.1 Ad Hoc Relevance Based Evaluation
The use of ad hoc relevance judgments for evaluation of

document clusters is motivated by the cluster hypothesis
[20]. It states that relevant documents tend to be more
similar to each other than non-relevant documents for a
given query. The cluster hypothesis connects ad hoc in-
formation retrieval and document clustering. Documents in
the same cluster behave similarly with respect to the same
information need [28, 29, 15]. It is due to the clustering
algorithm grouping documents with similar vocabularies to-
gether. There may also be some higher order correlation
due to effects caused by the distributional hypothesis [19]
and limitation of the analysis to the size of the document.

6.1.1 Oracle Collection Selection
We have evaluated document clustering solutions by cre-

ating plots for the optimal ordering of clusters for ad hoc
queries. This ordering is created by an oracle collection
selection ranking that has full knowledge of relevant doc-
uments. Clusters are ordered by the number of relevant
documents they contain. Cumulative recall is calculated by
traversing the cluster ranking in descending order. Then the
percentage of recall and documents visited is averaged across
all queries. It represents the optimal ordering of the given
clusters for a given query and represents an upper bound on
recall ranking performance for the given set of clusters. Rel-
evant documents group together in clusters when the cluster
hypothesis holds. Additionally, this grouping is better than
expected from randomly distributing documents into clus-
ters of the same size. In summary, we assign to any clus-
tering solution the performance of the oracle in collection
selection. The better the clustering solution, the better the
oracle performs in collection selection. Fewer clusters have
to be searched to recall relevant documents.

There are no baselines available for clustering the ClueWeb
collections into the order of a million clusters. Therefore, we
compare our clustering solutions against a random partition-
ing baseline. A common problem when comparing different
clustering solutions is that, by nature, different clustering
solutions are produced by different methods. It can intro-
duce structural bias to the evaluation. Unequal cluster sizes
can lead to different performance measurements. In order to
compare any given clustering solution against an equivalent
random partitioning, we impose the same cluster structure
on the random solution. We assign documents randomly
to the same cluster structure obtained from clustering. In
this manner, there is no structural bias to either solution,
random or derived through clustering [14]. It eliminates ad-
vantages of ineffective clustering solutions. For example, if
almost all documents are placed in a single cluster except
for one document being placed in every other cluster, then
the large cluster will almost always contain all the relevant
documents to any query. An evaluation that tests to see
if collection selection discovers the correct cluster to search
concludes that the dysfunctional solution is indeed the best
– it almost always finds the right cluster. On the other
hand, if the same ineffective solution is compared to a ran-
dom baseline having the same dysfunctional structure then
the clustering solution it is found to offer no improvement.

221



Weight Loss Investment Language Politics SciFi and Fantasy
9f08ef2b0 9f06c7770 9f0476410 9f0a77b10 9f0b871e0
220 documents 1169 documents 106 documents 1213 documents 198 documents

383 bits – find a meetup
group near you weight
loss meetups pelham

463 bits – find a meetup
group real estate buy-
ing investing meetups
alexandria

386 bits – find a meetup
group linguistics mee-
tups aurora

637 bits – find a meetup
group democratic under-
ground meetups port-
land

667 bits – find a meetup
group star trek meetups
long beach

417 bits – find a meetup
group weight loss mee-
tups englewood

587 bits – find a meetup
group real estate buying
investing meetups de-
catur

630 bits – find a meetup
group near you lan-
guage lovers meetups
naperville

851 bits – find a meetup
group democratic under-
ground meetups worces-
ter

706 bits – find a meetup
group star trek meetups
allendale

474 bits – find a meetup
group fitness meetups
staten island

801 bits – find a meetup
group investing meetups
lake jackson

941 bits – find a meetup
group near you scandi-
navian languages mee-
tups skokie

1097 bits – find a
meetup group near you
dennis kucinich meetups
lakewood

1009 bits – find a
meetup group near you
comic books meetups
reading

550 bits – find a meetup
group fitness meetups
new rochelle

998 bits – find a meetup
group near you real
estate buying investing
meetups soulsbyville

1252 bits – find a
meetup group near you
hungarian language
meetups libertyville

1671 bits – harford
county democrats

1157 bits – find a
meetup group buffy
meetups london

580 bits – find a meetup
group weight loss mee-
tups clinton

1752 bits – westfield
group mergers and
acquisitions alacrastore-
com

1844 bits – algebra 1
terms and practice prob-
lems chapter 1 lesson 1
flash cards quizlet

1911 bits – welsh statu-
tory instruments 2005

1804 bits – fleet registra-
tion station archive star
trek online forums

http://ktree.sourceforge.net/emtree/clueweb09/9f033ca50.html

Table 1: ClueWeb09 – Sample From Meetup.com Cluster

Hepatitis HIV Vaccine Treating HIV Disease Research Bacteria
a5b5f0820 a5ae2f420 a5b62af80 a5b48c900 a5b88ca20
774 documents 165 documents 752 documents 288 documents 126 documents

http://ktree.sourceforge.net/emtree/clueweb09/a5acc38a0.html

Table 2: ClueWeb09 – Sample From Diseases Clusters

The performance of different clustering solutions is normal-
ized against the performance of a random baseline solution
having an identical clustering structure.

6.1.2 ClueWeb Results
For the ClueWeb09 collection, we have evaluated three dif-

ferent clustering solutions. The first approach is by Kulkarni
and Callan [23] using KL-divergence and k-means and the
other two by the EM-tree algorithm. First we describe the
approaches, and then compare their quality.

Kulkarni and Callan describe an experiment with ClueWeb09
where a 500,000 document sample of the ClueWeb09 col-
lection was clustered using k-means with a KL-divergence
similarity measure to produce 1000 clusters. It maps the
500 million documents onto these clusters. We have cho-
sen this analysis for a direct comparison with EM-tree, even
though it does not represent fine-grained clustering. How-
ever, it allows us to perform a side by side comparison with
a published baseline. We processed the entire ClueWeb
with an EM-tree containing two levels of tree nodes of order
m = 1000. The first level contained 1000 clusters and the
second 691,708 clusters due to pruning. The first level of
the EM-tree and the method of Kulkarni and Callan using
k-means both produced 1000 clusters. Therefore, these clus-
tering solutions are directly comparable. We also compare
solution quality of fine grained clusters, using the second

level of the EM-tree. We demonstrate that using many more
fine-grained clusters can produce higher quality clusters with
respect to ad hoc relevance. Furthermore, the EM-tree can
produce higher quality clusters with respect to spam, even
at 1000 clusters. Direct comparison KL-divergence k-means
approach is not possible for 691,708 clusters. It does not
scale to produce this many clusters.

We generate cumulative recall plots for the three methods
using the oracle collection selection approach. Each of the
3 approaches appear in separate plots in Figures 4, 5, and
6. We place most relevant documents first using the oracle
ranking process. We visit clusters in descending order of
recall. The average percentage of total documents in the
collection contained in the first n clusters is display along
the x-axis. The y-axis is the average percentage of recall
included in the first n clusters when averaged over all topics.
Visiting a cluster produces a mark on the curve. So, after
seeing 2 marks, 2 clusters have been visited in the order
specified by the oracle ranking.

Each clustering has a unique random baseline created
where the cluster size distribution matches that of each clus-
tering solution. In all cases, there is a difference between the
random baseline and the clustering solution. Useful learn-
ing has occurred. The baseline normalization removes any
effect of random chance or ineffective cluster size distribu-
tions. Therefore, all three clustering solutions support the
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Logistics Software Video Surveillance Computer Security Wireless Enterprise Software
a7aded0e0 a7b3b8f60 a7b145970 a7b5417c0 a7b361450
213 documents 818 documents 2007 documents 326 documents 415 documents

http://ktree.sourceforge.net/emtree/clueweb09/a7aa623c0.html

Table 3: ClueWeb09 – Sample From Information Technology Cluster

cluster hypothesis that relevant documents tend to cluster
together.

In comparison to the 1000 clusters produced by the first
level of EM-tree in Figure 5, the KL-divergence k-means ap-
proach in Figure 4 clearly groups relevant documents better.
It achieves total recall after 2.81% of the collection is vis-
ited, whereas the EM-tree approach does not achieve this
until 4.19%. Figure 7 highlights difference between the two
approaches. All three approaches are plotted on one graph
without their baselines. We note that this is not a surprising
result – k-means is superior to EM-tree in terms of quantiza-
tion distortion rates. However, this is a trade off as it is also
much more computationally intensive. If a particular appli-
cation requires 1000 clusters then, the KL-divergence with
k-means approach is clearly better at grouping relevant doc-
uments together. A 500,000 document sample provides ade-
quate statistics for learning 1000 clusters. However, suppose
that fine granularity clustering is sought after and applying
k-means recursive clustering to the entire collection is nec-
essary. We clustered 500,000 documents into 1000 clusters
using a sparse vector approach using k-means, and it took
approximately ten hours using a very fast implementation.
If each of these 1000 clusters are clustered into another 1000
clusters using the recursive k-means approach, then each
subset requires another 500,000 document sample to learn
another 1000 subclusters. As there are 1000 partitions, tak-
ing ten hours per partition, it would take another 10,000
hours to produce a similar number of clusters as EM-tree,
making this k-means based approach infeasible.

EM-tree can produce many more clusters in the second
level that group relevant documents much more tightly. In
Figures 7 and 8, the second level of EM-tree reaches total
recall after 0.06% of the collection has been visited. Be-
cause these clusters still group relevant documents together,
and support the cluster hypothesis, we also conclude they
are highly topical. Relevant documents for a given query
are related to the same topic because they satisfy the same
information need. Many applications can benefit from iden-
tifying small clusters of highly topical documents. This is
discussed further in Section 7.

The random baseline for the second level of EM-tree looks
surprisingly effective. It achieves total recall after only vis-
iting 0.22% of the collection. It is not unexpected because
this baseline is close to the worst case possible, where each
relevant document for a given query appears in a separate
cluster. There are on average 80 relevant documents per
query for the 148 queries. So the oracle returns an aver-
age of 80 clusters per query to achieve 100% recall. Indeed,
the first cluster in the random baseline contains 4.3% or
3.44 relevant documents on average. It decreases to below
the average of one document per cluster by the 15th cluster.
Some clusters still contain more than one relevant document
on average because the cluster size distribution in the ran-
dom baseline matches that of clustering. Large clusters can
receive more relevant documents due to their size.

In contrast, the first EM-tree cluster in the second level
contains 25% or 20 relevant documents on average. Addi-
tionally, the first EM-tree cluster contains 450 documents
on average, whereas the first random baseline cluster con-
tains 30,000 documents on average. We calculate precision
by dividing the number of relevant documents by the num-
ber of documents in the cluster. The first EM-tree cluster
has a precision of 4.44% on average, whereas the first ran-
dom baseline cluster has a precision of 0.011% on average.
It is some 400 times worse.

Furthermore, clusters in the random baseline contain a
mixture of relevant documents with mostly random off topic
documents. It makes it much harder for a non-oracle ranker
to find them using vocabulary statistics. There are on aver-
age 3.4 documents mixed with 30,000 random other off-topic
documents in the first cluster in the random baseline.

The plots of EM-tree level 1 and 2 in Figures 5 and 6
look very similar when the x-axis scale is ignored. It indi-
cates that the same relationships between the random base-
line and the clustering exist in both levels of the EM-tree.
While the same relationships exist, the 2nd level contains
691 times more clusters. The cluster hypothesis holds in the
same way, even though the size of the clusters is reduced by
almost three orders of magnitude. It verifies that there is no
significant loss of fidelity in fine granularity clustering.

We conducted the same experiments on ClueWeb12. We
were unable to compare the KL-divergence approach [23] as
clusters have not been made available for this recent collec-
tion. However, the same trends for the EM-tree emerge as
shown in Figure 9. All the corresponding plots were highly
similar but were left out for brevity. The relevance judg-
ments from the 2013 TREC Web Track have much deeper
pooling, increasing our confidence in the results.

6.2 Spam Based Evaluation
We have performed another evaluation using external knowl-

edge in the form of spam scores. These spam scores have
been produced by an approach by Cormack et. al. [11] using
a supervised learning approach that combines training from
4 different labeled spam datasets. It quantizes the spam
scores into 100 values. A score of 99 is the least spammy
and 0 the most. For instance, a document score of 99 indi-
cates that 99% of the collection is more spammy than the
said document. These spam scores have shown to be useful
for improving search quality in ad hoc retrieval [11].

If a perfect document clustering exists with respect to
spam, it places documents with the same spam score in the
same cluster. We have evaluated clusters by taking the av-
erage spam score for documents in the cluster. Clusters are
sorted and traversed by descending spam score. We then
observe the percentage of the documents contained in the
clusters visited so far. Again, we create a random baseline
for each clustering solution. As expected, almost all clusters
average out to a spam score of 50. We display the best possi-
ble oracle solution by ordering documents according to their
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KL−divergence k−means on sample
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Figure 4: ClueWeb09 – 1000 KL-
divergence k-means clusters
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Figure 5: ClueWeb09 – 1000 EM-
tree level 1 clusters
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EM−tree level 2
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Figure 6: ClueWeb09 – 691,708 EM-
tree level 2 clusters
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Figure 7: ClueWeb09 – Comparing
all approaches
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Figure 8: ClueWeb09 – Comparing
all approaches – Zoomed
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Figure 9: ClueWeb12 – Comparing
all approaches

spam score; i.e. all documents with a score of 99, then 98
and so on. It is a straight line where the first ranked cluster
contains all documents with a spam score of 99, then those
with a spam score of 98, and so forth. Therefore, the closer
an actual clustering solution comes to this straight line from
the top left to the bottom right, the better the clustering is
with respect to the spam scores.

We evaluated the same clustering solutions as in Section
6.1. These are KL-divergence k-means [23] and the two clus-
terings produced by level 1 and 2 of the EM-tree. For the
ClueWeb09 collection, the results of this experiment can be
seen in Figure 13. Each of the clusterings have been plot-
ted separately with random baselines and optimal document
ordering in Figures 10, 11 and 12.

The signature-based approach with EM-tree better groups
documents according to spam score than the KL-divergence
k-means approach when producing 1000 clusters. It is the
opposite result to using ad hoc relevance judgments where
KL-divergence k-means was superior. The finer grained clus-
tering in the 2nd level of EM-tree allows more pure clusters
with respect to spam.

For ClueWeb12, we have only created the final plot com-
paring all approaches for brevity in Figure 14. We omitted
the random baselines because they behave in exactly the
same manner. The plots look very similar for ClueWeb12
and ClueWeb09.

7. APPLICATIONS
Recent results in computer vision demonstrate the useful-

ness of scalable algorithms for unsupervised feature learn-

ing [25, 10]. The EM-tree algorithm using signatures could
be advantageous in computer vision applications where the
generation of many clusters from large amounts of data is
desirable.

Near duplicate object detection is another application for
large scale fine-grained clustering, particularly for eliminat-
ing near-duplicate web pages. In fact, we found many near
duplicate pages in ClueWeb 2012.

Most existing cluster based re-ranking and query expan-
sion approaches use fine-grained clusters of the top k re-
sults returned by a search engine. It limits the analysis to
documents returned by the search engine, and usually it
is based solely on the keywords in the query. With fine-
grained clusters of web-scale collections made available by
the EM-tree algorithm, re-ranking and query expansion of
documents that do not contain the keywords becomes a pos-
sibility. Common cluster membership associates documents
based on other keywords that appear in relevant documents.
Such documents do not necessarily contain the query key-
words. Another area of information retrieval, collection se-
lection, is apt for the application of our approach. Kulkarni
and Callan [23] have demonstrated the effectiveness of se-
lective search using collection selection and 1000 clusters of
ClueWeb09. It only visits the first few clusters per query.
Our results indicate that relevant results cluster in the same
way, even when there are almost three orders of magnitude
more clusters.

The clustering solutions produced by EM-tree may be use-
ful for scaling classification applications. Nearby points con-
tained in a few fine-grained clusters can be used to build a
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Figure 10: ClueWeb09 – 1000 KL-
divergence k-means clusters
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Figure 11: ClueWeb09 – 1000 EM-
tree level 1 clusters
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Figure 12: ClueWeb09 – 691708
EM-tree level 2 clusters
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Figure 13: ClueWeb09 – Comparing
all approaches
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Figure 14: ClueWeb12 – Comparing
all approaches

classifier. Alternatively, clusterings can be used for classifi-
cation directly.

Sub-document clustering is now a possibility for large-
scale document collections where splitting documents into
fragments creates even more objects to cluster. It makes
sense to split larger documents since such documents prob-
ably contain multiple sub-topics. However, splitting docu-
ments in web-scale collections certainly push it well beyond
the capability of standard commodity hardware. However,
with EM-tree it may be possible to consider such clustering
of document fragments.

8. CONCLUSION
In this paper, we presented solutions for two major prob-

lems in web-scale document clustering – scalable and effi-
cient document clustering and evaluation of cluster validity
where categorical labeling of collections is unavailable and
unfeasible.

The proposed EM-tree algorithm can cluster hundreds of
millions of documents into hundreds of thousands of clusters
on a single 16 CPU core machine in under 24 hours. It is
standard hardware available to organizations of all sizes. To
the best of our knowledge, clustering on a single machine at
this scale has not been reported in the literature. To the
contrary, the few published attempts at this scale have used
high-performance computing resources, well beyond reach
of most organizations. These attempts were also on lower
dimensional non-document data. For document clustering,
this is far beyond any examples we have been able to find.
The largest scale approach we could find sampled 500,000

documents to produce 1,000 clusters. It then maps the 500
million documents onto these clusters [23]. The closest com-
parison we could find is a method that clusters the same
order of magnitude of images into a similar order of mag-
nitude of clusters using 2000 CPUs [27, 34]. However, this
approach does not cluster documents that are sparse and
high dimensional. Another approach parallelized k-means
using 16,000 CPUs on a super computer to produce 1,000
clusters of 1 billion much lower dimensional weather data
[4].

We presented two novel evaluations using ad hoc rele-
vance and spam classifications to assess the validity of clus-
ters where no category labels are available. This evalua-
tion demonstrated that the fine-grained clustering created
by EM-tree led to higher quality clusters. Additionally, we
expect this approach to clustering to be applicable to many
different types of web scale data emerging from sources such
as images, sound recordings, sensors, positioning systems,
genome research, marketing data and many more fields.
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