
LightLDA: Big Topic Models on Modest Computer Clusters
Jinhui Yuan1, Fei Gao1,

Qirong Ho3, Wei Dai2, Jinliang Wei2, Xun Zheng2, Eric P. Xing2,
Tie-Yan Liu1, and Wei-Ying Ma1

1Microsoft Research
2School of Computer Science, Carnegie Mellon University

3Institute for Infocomm Research, A*STAR, Singapore

{jiyuan,feiga,tie-yan.liu,wyma}@microsoft.com,hoqirong@gmail.com,{wdai,jinlianw,xunzheng,epxing}@cs.cmu.edu

ABSTRACT
When building large-scale machine learning (ML) programs, such
as massive topic models or deep neural networks with up to trillions
of parameters and training examples, one usually assumes that such
massive tasks can only be attempted with industrial-sized clusters
with thousands of nodes, which are out of reach for most practi-
tioners and academic researchers. We consider this challenge in the
context of topic modeling on web-scale corpora, and show that with
a modest cluster of as few as 8 machines, we can train a topic model
with 1 million topics and a 1-million-word vocabulary (for a total
of 1 trillion parameters), on a document collection with 200 bil-
lion tokens — a scale not yet reported even with thousands of ma-
chines. Our major contributions include: 1) a new, highly-efficient
O(1) Metropolis-Hastings sampling algorithm, whose running cost
is (surprisingly) agnostic of model size, and empirically converges
nearly an order of magnitude more quickly than current state-of-
the-art Gibbs samplers; 2) a model-scheduling scheme to handle
the big model challenge, where each worker machine schedules the
fetch/use of sub-models as needed, resulting in a frugal use of limit-
ed memory capacity and network bandwidth; 3) a differential data-
structure for model storage, which uses separate data structures for
high- and low-frequency words to allow extremely large models to
fit in memory, while maintaining high inference speed. These con-
tributions are built on top of the Petuum open-source distributed M-
L framework, and we provide experimental evidence showing how
this development puts massive data and models within reach on a
small cluster, while still enjoying proportional time cost reductions
with increasing cluster size.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Distributed Systems; G.3 [Probability and Statistics]: Prob-
abilistic algorithms (including Monte Carlo); G.4 [Mathematical
Software]: Parallel and vector implementations

General Terms
Design, Algorithms, Experimentation, Performance

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741115 .

Keywords
Large Scale Machine Learning; Distributed Systems; Topic Model;
Model Scheduling; Data Parallelism; Metropolis-Hastings; Param-
eter Server; Petuum

1. INTRODUCTION
Topic models (TM) are a popular and important modern machine

learning technology that has been widely used in text mining, net-
work analysis and genetics, and more other domains [17, 5, 23,
24, 2]. Their impact on the technology sector and the Internet has
been tremendous — numerous companies having developed their
large-scale TM implementations [13, 1, 21], with applications to
advertising and recommender systems. A key goal of contemporary
research is to scale TMs, particularly the Latent Dirichlet Alloca-
tion (LDA) model [5], to web-scale corpora (Big Data). Crucially,
Internet-scale corpora are significantly more complex than smaller,
well-curated document collections, and thus require high-capacity
parameter space featuring up to millions of topics and vocabulary
words (and hence trillions of parameters, i.e. Big Models), in order
to capture long-tail semantic information that would otherwise be
lost when learning only a few thousands of topics [21].

To achieve massive data and model scales, a typical approach
is to engineer a distributed system that can efficiently execute well-
established parallelization strategies (e.g., split documents over work-
ers, which have shared access to all parameters, possibly stored in
a distributed manner) for LDA [16, 12, 21], while applying algo-
rithmic speedups such as the SparseLDA [22] or AliasLDA [11]
samplers to further decrease running time. Such efforts have en-
abled LDA models with tens of billions of parameters to be inferred
from billions of documents, using up to thousands of machines [13,
1, 12, 21]. While such achievements are impressive, they are un-
fortunately costly to run: for instance, a cluster of thousands of
machines will cost millions of dollars to set up (not to mention the
future costs of power and regular maintenance). Alternatively, one
might rent equivalent computation capacity from a cloud provider,
but given the current typical price of ≥ $1 per hour per research-
grade machine, a single month of operations would cost millions
of dollars. Neither option is feasible for the majority of researchers
and practitioners, who are more likely to only have modest budgets.

Rather than insisting that big computing is the only way to solve
large ML problems, what if we could solve large topic models with
trillions of parameters in a more cost-effective manner, by provid-
ing an implementation that is efficient enough for modest clusters
with at most tens of machines? We approach this problem at three
levels: (1) We perform distributed cluster LDA inference in a data-

1351

parallelism and model-scheduling fashion: in each iteration, ev-
ery worker processes a subset of the training data, scheduling the
fetch/use of a sub-model slice by slice. We do this in a memory-
and network-efficient manner: we fix each data partition to a par-
ticular worker (i.e., data are never moved around), but we regu-
larly change which model partitions each machine works on —
specifically, we store the model in a distributed parameter server,
and stream model partitions as needed to worker machines; (2) we
develop a novel Metropolis-Hastings (MH) sampler with careful-
ly constructed proposals that allows for O(1) amortized sampling
time per word/token, resulting in a fast convergence (in terms of
real time) that beats existing state-of-the-art LDA samplers by a
significant margin [22, 11]; (3) we employ a differential data struc-
ture to leverage the fact that web-scale corpora exhibit both high-
frequency as well as low-frequency words, which can be treated
differently in storage (i.e., a hybrid internal representation). This
gives a best-of-both-worlds outcome: the high memory efficiency
of sparse data structures, with the high performance of dense data
structures.

By realizing these ideas using the open-source Petuum frame-
work (www.petuum.org) [9, 10, 6], we have produced a compute-
and-memory efficient distributed LDA implementation, LightLDA,
that can learn an LDA model with one trillion model parameters
(one million topics by one million vocabulary words) from billion-
s of documents (200 billion tokens in total), on a computer cluster
with as few as 8 standard machines (whose configuration is roughly
similar to a typical compute instance from a cloud provider) in 180
hours, which proportionally drops to 60 hours on 24 machines. In
terms of parameter size, our result is two orders of magnitude larg-
er than recently-set LDA records in the literature, which involved
models with tens of billions of parameters and typically used mas-
sive industrial-scale clusters [12, 21, 1, 13]; our data size is also
one order of magnitude larger than those same works1. We show
that LightLDA converges significantly faster than existing imple-
mentations across several datasets and model settings (vocabulary
size and number of topics). Notably, LightLDA’s per-token com-
putational complexity is independent of model size, hence it enjoys
high throughput even under massive models.

Overall, LightLDA benefits both from a highly efficient Metropo-
lis Hastings sampler built on a new proposal scheme, and a highly
efficient distributed architecture and implementation built on Petu-
um. It represents a truly lightweight realization (hence its name
LightLDA) of a massive ML program, which we hope will be eas-
ily accessible to ordinary users and researchers with modest re-
sources. Compared to using alternative platforms like Spark and
Graphlab that also offer highly sophisticated data- or model- par-
allel systems, or designing bespoke ground-up solutions like PL-
DA and YahooLDA, we suggest that our intermediate approach
that leverages both simple-but-critical algorithmic innovation and
lightweight ML-friendly system platforms stands as a highly cost-
effective solution to Big ML.

2. CHALLENGES AND RELATED WORK
Before discussing the challenges, we briefly review the Latent

Dirichlet Allocation (LDA) [5] model to establish nomenclature.
Specifically, LDA assumes the following generative process for
each document in a corpus:
• φk ∼ Dirichlet(β): Draw word distribution φk per topic k.
• θd ∼ Dirichlet(α): Draw topic distribution θd per document d.
• nd ∼ Poisson(γ): For each document d, draw its length nd (i.e.,

the number of tokens it contains).
• For each token i ∈ {1, 2, . . . , nd} in document d:
1[21] used 4.5 billion tokens, while [12] used 5 billion short docu-
ments of unspecified length.

– zdi ∼ Multinomial(θdi): Draw the token’s topic.
– wdi ∼ Multinomial(φzdi): Draw the token’s word.

To find the most plausible topics in a corpus and document-topic as-
signments, one must infer the posterior distribution of latent vari-
ables in LDA model, by using either a variational- or sampling-
based inference algorithm. Sampling-based algorithms are known
to yield very sparse updates that make them well-suited to settings
with a massive number of topics and distributed implementation.
In particular, the collapsed Gibbs sampler for LDA [7] is preferred.
It works as follows: all variables except the token’s topic indica-
tor zdi are analytically integrated out, and we only need to Gibbs
sample zdi according to

p(zdi = k|rest) ∝
(n−di

kd + αk)(n
−di
kw + βw)

n−di
k + β̄

, (1)

where zdi follows a Multinomial distribution with K outcomes
(i.e., K is the number of topics in the model), w is short for wdi,
β̄ :=

∑
w βw, n−di

kd is the number of tokens in document d that are
assigned to topic k (excluding zdi), n−di

kw is the number of token-
s with word w (across all documents) that are assigned to topic k
(excluding zdi), and n−di

k is the number of tokens (across all docs)
assigned to topic k (excluding zdi). To avoid costly recalculation,
these counts (also called “sufficient statistics") are cached as tables,
and updated whenever a token topic indicator zdi changes. In par-
ticular, the set of all counts nkd is colloquially referred to as the
document-topic table (and serves as the sufficient statistics for θd),
while the set of all counts nkw is known as the word-topic table
(and forms the sufficient statistics for φk).

While training LDA model, the Gibbs sampler needs to scan the
whole corpus for hundreds of times (i.e., iterations). In each itera-
tion, it sequentially process all the tokens in the corpus according to
Eq. 1 with an O(K) per-token complexity. Therefore, the amoun-
t of required computation for training LDA with Gibbs sampling
depends on both the scale of corpus (specifically, the number of to-
kens) and the size of model (the number of topics). However, in
many real-word applications especially the web-scale corpora, the
problem exhibits billions of documents and thousands (even mil-
lions) of topics [21]. Much research has been invested on scaling
LDA to ever-larger data and model sizes; existing papers usually
show an algorithmic focus (i.e. better LDA inference algorithm
speed) or a systems focus (i.e. better software to execute LDA in-
ference on a distributed cluster) — or even both foci at once.

In any case, the inference algorithm is one limiting factor to effi-
ciency. For example, the Peacock system [21] adopts the SparseL-
DA inference algorithm [22], which has a lower per-token compu-
tational complexity than the standard collapsed Gibbs sampler. We
note that the recently developed AliasLDA algorithm [11] provides
a further improvement on SparseLDA sampler. However, the per-
token computational complexity of AliasLDA still depends on the
document length and the sparsity of document-topic distribution,
therefore in some settings, AliasLDA may not be a substantial im-
provement over SparseLDA. To tackle this challenge, we develop
a new O(1)-per-token Metropolis-Hastings sampler that is nearly
an order of magnitude faster than the existing algorithms — which
allows us to process the same quantity of data with fewer resources
in a reasonable amount of time.

To tackle the Big Data and the Big Model challenges, algorithm-
s alone are not enough, and we must also resort to an efficien-
t distributed implementation. Recent large-scale implementation-
s of LDA [13, 1, 21, 12] demonstrate that training is feasible on
big document corpora (up to billions of documents) using large,
industrial-scale clusters with thousands to tens of thousands of CPU
cores. At a high level, the above large-scale LDA papers differ
substantially in the degree to which they employ data-parallelism

1352

(commonly realized by splitting documents over machines) versus
model-parallelism (often realized by splitting word-topic distribu-
tions over machines). Data-parallelism is a well-accepted solution
to the Big Data problem, in which many distributed CPU cores
can be used to sample thousands of tokens simultaneously. Fur-
thermore, the total pool of memory across the cluster allows the
entire (large) model to be persisted in a distributed fashion, hence
supporting in-memory computation. This strategy addresses a key
issue in the Big Model problem. Our distributed LDA implemen-
tation is based on a parameter server (PS) architecture [1, 9, 12].
PS architectures have shown appealing properties for distributed
machine learning (e.g., allowing asynchronous communication in
data-parallelism), and we use Petuum’s PS for its theoretically-
guaranteed SSP consistency model [9]. However, instead of using
clusters with thousands of nodes, this paper aims to solve the Big
Data and Big Model challenges with a modest computer cluster
(i.e., tens of nodes).

In implementations that are predominately data-parallel [1, 12],
the strategy is to make the word-topic distributions globally-shared,
so that the inference algorithm can be agnostic to their physical
layout across machines. The training data are partitioned and dis-
tributed to worker machines — that is, each worker only processes
a subset of data — and the system schedules the inference compu-
tation on token topic indicators zdi in a document-centric manner.
We do not expect either [1] or [12] to handle very large topic mod-
els with over 1 trillion parameters (the largest reported result was
10 billion parameters in [12]). In particular, [12] depends on the
assumption that once the entire corpus has been distributed to suffi-
ciently many machines, the local documents on each machine will
only activate a small portion of the complete model, and therefore
the memory required by each machine will not be too large. Con-
sequently, their design cannot handle large topic models without a
large computer cluster. The RLU cache technique used in an earli-
er version of Petuum [9] can partially resolve this issue and allow
big models with data-parallel computing in small computer cluster:
when sub-models corresponding to frequent words are accessed,
they are likely to be in the local cache. However, for sub-models
corresponding to long-tail words, the cache miss rate will be high,
and a lot of network communication will be triggered.

The Peacock system [21] realizes both data- and model-parallel
ideas, by grouping token topic indicators zdi according to their
words wdi; this is beneficial because it reduces the proportion of
the word-topic distributions that must be held at each worker ma-
chine. In particular, [21] adopted a grid-like model-parallel parti-
tioning strategy, where each worker handles a subset of data and a
part of the model. A shortcoming of this particular strategy is that
workers only process one part of any particular document, so each
document must be processed by several worker machines. Hence
the system not only needs to synchronize the word-topic distribu-
tions among workers, but also the document-topic distributions —
in other words, both training data and model need to be transferred
among workers. In typical clusters, network bandwidth is often the
largest bottleneck in the whole system, and the additional network
overhead due to transmitting training data and doc-topic distribu-
tions will reduce efficiency.

3. A MODEL-SCHEDULING SCHEME FOR
BIG MODEL

To tackle the aforementioned problems in classic parallelization
schemes, we proposed a new scheme called data-parallelism and
model-scheduling. As the name suggests, our scheme employs
data-parallelism, by partitioning and distributing the training da-
ta into different worker machines; this ensures that each document

���������	�

���������	��

���������	��

�����

��

�����

�

�����������	��
�����

�����
���������	�
��������������������	�����������

���������	�

��	�

��

��	�

Figure 1: Model scheduling in each worker machine. The arrows
across documents d1, d2, . . . indicate the token sampling order — ob-
serve that we sample tokens z associated with words v in the word-topic
table (model) slice V1, before moving on to tokens corresponding to V2,
and so forth. Once all document tokens in the data block have been
sampled, the system loads the next data block from disk. Each docu-
ment is sparse (with respect to the vocabulary): shaded cells indicate
that the document has one or more tokens z corresponding to word v,
whereas white indicate that the document has no tokens corresponding
to word v (and are hence skipped over).

will be processed by one fixed worker, so training data and doc-
topic distributions do not have to be synchronized among worker-
s. Model scheduling refers to how we handle the distributed (big)
model or word-topic table; we take extra steps to maximize mem-
ory and CPU efficiency. The basic idea is to split the word-topic
distributions (the LDA model) into slices, and fetch/use the mod-
el from the parameter server slice-by-slice only when needed (like
streaming). This new distribution scheme is more communication-
efficient than the implementations of LDA mentioned in Section 2.

At minimum, any distributed LDA implementation must parti-
tion (1) the token topic indicators zdi and doc-topic table nkd (col-
lectively referred to as the data), as well as (2) the word-topic table
nkw (the model). When an LDA sampler is sampling a token topic
indicator zdi, it needs to see the specific row nkwdi in the word-
topic table (as well as the complete document d). However, naive
partitioning can lead to situations where some machines touch a
large fraction of the word-topic table: suppose we sampled every
document’s tokens in sequence, then the worker would need to see
all the rows in word-topic table corresponding to words in the docu-
ment. Using our fast Metropolis-Hastings sampler (described in the
following section), each worker machine can sample thousands of
documents per second (assuming hundreds of tokens per documen-
t); furthermore, we have empirically observed that a few million
documents (out of billions in our web-scale corpus) is sufficient
to activate almost the entire word-topic table. Thus, the naive se-
quence just described would rapidly swap parts of the word-topic
table (which could be terabytes in size) in and out of each worker’s
RAM, generating a prohibitive amount of network communication.

The model-scheduling scheme proposed in this paper is meant to
resolve the conflict between fast LDA sampling and limited mem-
ory capacity at each worker. The data partition assigned to a par-
ticular worker machine is most likely to be too big to reside in the
worker machine’s RAM. Therefore, the private data of each worker
is further split into a few blocks. While generating the data blocks
prior to running the LDA sampler, and we note that it is cheap to
determine which vocabulary words are instantiated by each block.
This information is attached as meta-data to the block. As shown in
Figure 1, when we load a data block (and its meta-data) into local
memory (denoted by the red rectangle), we choose a small set of
words (say V1 in the figure) from the block’s local words. The set of
words is small enough that the corresponding rows n·,wdi in word-
topic table can be held in the worker machine’s local memory – we
call this set of rows a “model slice". The worker fetches the model

1353

slice over the network, and the sampler only samples those tokens
in the block that are covered by the fetched slice; all other tokens
are not touched. In this manner, each worker only maintains a thin
model slice in local memory, and re-uses it for all the documents
in the current data block. Once all tokens covered by the slice have
been sampled, the worker fetches the next model slice over the net-
work (say V2), and proceeds to sample the tokens covered by it.
In this manner (similar to sliding windows in image processing or
the TCP/IP protocol, but managed by a local scheduler), a worker
processes all the tokens in a data block, one slice at a time, before
finally loading the next block from disk. This swapping of blocks
to and from disk is essentially out-of-core execution.

In addition to keeping worker memory requirements low, this
model-scheduling also mitigates network communication bottle-
neck, in the following ways: (1) workers do not move onto the
next model slice until all the tokens associated with the current s-
lice have been sampled, hence we do not need to apply caching and
eviction strategies to the model (which could incur additional com-
munication, as model slices are repeatedly swapped in and out);
(2) we overlap the computation and the loading (data blocks from
disk, model slices from a distributed parameter server) with pipelin-
ing to hide I/O and network communication latency (further details
in Section 6). We note that PLDA+ [13] makes use of pipelining
in a similar (though not exactly identical) spirit. Finally, we point
out that the model-scheduling strategy “sends the model to the da-
ta", rather than the converse. This is motivated by two factors: (1)
the data (including tokens wdi and corresponding topic indicators
zdi) are much larger than the model (even when the model may
have trillions of parameters); (2) as the model converges, it gets
increasingly sparse (thus lowering communication), while the data
size remains constant. Other distributed LDA designs either adopt
a “send data to model" strategy or have to communicate both data
and model among workers [21], which is costly in our opinion.

4. A FAST MCMC ALGORITHM
As just discussed, model scheduling enables very large, trillion-

parameter LDA models to be learned from billions of documents
even on small clusters. However, it alone does not allow huge L-
DA models to be trained quickly or in acceptable time, and this
motivates our biggest technical contribution: a novel sampling al-
gorithm for LDA, which converges significantly faster than recent
algorithms such as SparseLDA [22] and AliasLDA [11]. In order to
explain our algorithm, we first review the mechanics of SparseLDA
and AliasLDA.

SparseLDA. SparseLDA [22] exploits the observation that (1)
most documents exhibit a small number of topics, and (2) most
words only participate in a few topics. This manifests as sparsi-
ty in both the doc-topic and word-topic tables, which SparseLDA
exploits by decomposing the collapsed Gibbs sampler conditional
probability (Eq. 1) into three terms:

p(zdi=k|rest)∝ αkβw

n−di
k +β̄︸ ︷︷ ︸

r

+
n−di
kd βw

n−di
k +β̄︸ ︷︷ ︸

s

+
n−di
kw (n−di

kd +αk)

n−di
k +β̄︸ ︷︷ ︸

t

. (2)

When the Gibbs sampler is close to convergence, both the second
term s and the third term t will become very sparse (because docu-
ments and words settle into a few topics). SparseLDA first samples
one of the three terms r, s or t, according to their probability mass-
es summed over all K outcomes. Then, SparseLDA samples the
topic k conditioned upon which term r, s or t was chosen. If s or
t was chosen, then sampling the topic k takes O(Kd) or O(Kw)
time respectively, where Kd is the number of topics document d
contains, and Kw is the number of topics word w belongs to. The

amortized sampling complexity of SparseLDA is O(Kd+Kw), as
opposed to O(K) for the standard collapsed Gibbs sampler.

AliasLDA. AliasLDA [11] proposes an alternative decomposi-
tion to the Gibbs sampling probability:

p(zdi = k|rest) ∝
n−di
kd (n−di

kw + βw)

n−di
k + β̄︸ ︷︷ ︸

u

+
αk(nkw + βw)

nk + β̄︸ ︷︷ ︸
v

. (3)

AliasLDA pre-computes an alias table [20] for the second term,
which allows it to be sampled in O(1) time via Metropolis-Hastings.
By re-using the table over many tokens, the O(K) cost of building
the table is also amortized to O(1) per token. The first term u is
sparse (linear in Kd, the current number of topics in document d),
and can be computed in O(Kd) time.

4.1 Metropolis-Hastings Sampling
SparseLDA and AliasLDA achieve O(Kd + Kw) and O(Kd)

amortized sampling time per token, respectively. Such accelerated
sampling is important, because we simply cannot afford to sam-
ple token topic indicators zdi naively; the original collapsed Gibb-
s sampler (Eq. 1) requires O(K) computation per token, which
is clearly intractable at K = 1 million topics. SparseLDA re-
duces the sampling complexity by exploiting the sparsity of prob-
lem, while AliasLDA harnesses the alias approach together with
the Metropolis-Hastings algorithm [15, 8, 19, 3]. Our LightLDA
sampler also turns to Metropolis-Hastings, but with new insights
into the design of proposal distribution, which is most crucial for
high performance. We show that the sampling process can be ac-
celerated even further with a well-designed proposal distribution
q(·) to the true LDA posterior p(·).

A well-designed proposal q(·) should speed up the sampling pro-
cess in two ways: (1) drawing samples from q(·) will be much
cheaper than drawing samples from p(·); (2) the Markov chain
should mix quickly (i.e. requires only a few steps). What are the
trade-offs involved in constructing a good proposal distribution q(·)
for p(·)? If q(·) is close to p(·), then the constructed Markov chain
will mix quickly — however, the cost of sampling from q(·) might
end up as expensive as sampling from p(·) itself. On the contrary, if
q(·) is very different from p(·), we might be able to sample from it
cheaply — but the constructed Markov chain may mix too slowly,
and require many steps for convergence.
4.2 Cheap Proposals by Factorization

To design an MH algorithm that is cheap to draw from, yet has
high mixing rate, we adopt a factorized strategy: instead of a single
proposal, we shall construct a set of O(1) proposals, and alternate
between them. To construct these proposals, let us begin from the
true conditional probability of token topic indicator zdi:

p(k) = p(zdi = k|rest) ∝
(n−di

kd + αk)(n
−di
kw + βw)

n−di
k + β̄

. (4)

Observe that it can be decomposed into two factors:

q(zdi = k|rest) ∝ (nkd + αk)︸ ︷︷ ︸
doc−proposal

× nkw + βw

nk + β̄︸ ︷︷ ︸
word−proposal

. (5)

Even if we exploit sparsity in both terms, sampling from this con-
ditional probability costs at least O(min(Kd,Kw)). To do better,
we utilize the following observation: the first term is document-
dependent but word-independent, while the second term is doc-
independent but word-dependent. Furthermore, it is intuitive to
see that the most probable topics are those with high probability
mass from both the doc-dependent term and the word-dependent
term; hence, either term alone can serve as a good proposal q —
because if p has high probability mass on topic k, then either ter-
m will also have high probability mass on k (though the converse

1354

Figure 2: An example showing how to build an alias table. This proce-
dure transforms a non-uniform sampling problem into a uniform sam-
pling one. The alias table maintains the mass of each bin and can be
re-used once constructed. More details about the alias method can be
found in [14].

Figure 3: Illustration of how we sample the doc-proposal in O(1)

time, without having to construct an alias table.
is not true). Just as importantly, both factors keep relatively stable
during the sampling process2, so that the alias method [14] (also
used in AliasLDA [11]) can be applied to both factors to reduce the
sampling cost from either proposal (where the cost of constructing
the alias table is getting amortized). We now discuss the proposals
individually.

Word-Proposal for Metropolis-Hastings. Define pw as the word-
proposal distribution

pw(k) ∝
nkw + βw

nk + β̄
. (6)

The acceptance probability of state transition s → t is

min{1, p(t)pw(s)
p(s)pw(t)

}. (7)

Let πw := p(t)pw(s)
p(s)pw(t)

, we can show that

πw=
(n−di

td +αt)(n
−di
tw +βw)(n

−di
s +β̄)(nsw+βw)(nt+β̄)

(n−di
sd +αs)(n

−di
sw +βw)(n

−di
t +β̄)(ntw+βw)(ns+β̄)

. (8)

Once t ∼ pw(t) is sampled, the acceptance probability can be com-
puted in O(1) time, as long as we keep track of all sufficient statis-
tics n· during sampling. Intuitively, πw is high (relative to topic
s) whenever the proposed topic t is either (1) popular within doc-
ument d, or (2) popular for the word w. Since the word-proposal
tends to propose topics t which are popular for word w, using the
word-proposal will help explore the state space of p(k). We do not
need to worry about the situation that the proposed state t is popular
for word w but not for the true conditional probability p(k), since
in this case, t will be very likely to be rejected due to the low accep-
tance probability πw used in the MH process. To sample from pw in
O(1), we use alias table similar to [11]. As illustrated by Figure 2,
the basic idea of the alias approach is to transform a non-uniform
distribution into a uniform distribution (i.e., alias table). Since the
alias table will be re-used in MH sampling, the transformation cost
gets amortized to O(1) 3.
2This is crucial because alias tables must be re-used to amortize
computational complexity, which in turn requires the target distri-
bution to be stable enough. This also explains why the decompo-
sition in AliasLDA can not lead to an O(1) algorithm, that is, the
first term in Eq. 3 involves the product of nkd and nkw, and is not
stable enough to use alias approach.
3This strategy keeps the Metropolis-Hastings proposal pw fixed
over multiple documents, rather than changing it after every token.
This is well-justified, since Metropolis-Hastings allows any pro-
posal (up to some conditions) provided the acceptance probability
can be correctly computed. We have already argued in Section 4.2

Although the alias approach has low O(1) amortized time com-
plexity, its space complexity is still very high, because the alias
table for each word’s proposal distribution stores 2K values: the
splitting point of each bin and the alias value above that splitting
point; this becomes prohibitive if we need to store a lot of words’
alias tables. Our insight here is that the alias table can be sparsified;
specifically, we begin by decomposing pw= nkw

nk+β
+ βw

nk+β
. We then

draw one of the two terms, with probability given by their masses
(this is known as a mixture approach). If we draw the first term,
we use a pre-constructed alias table (created from nkw, specific to
word w) to pick a topic, which is sparse. If we draw the second
term, we also use a pre-constructed alias table (created from βw,
common to all words w and thus amortized over all V words) to
pick a topic, which is dense. In this way, we reduce both the time
and space complexity of building word w’s alias table to O(Kw)
(the number of topics word w participates in).

Doc-Proposal for Metropolis Hastings. Define pd as the doc-
proposal distribution

pd(k) ∝ nkd + αk. (9)
The acceptance probability of state transition s → t is

min{1, p(t)pd(s)
p(s)pd(t)

}. (10)

Let πd := p(t)pd(s)
p(s)pd(t)

, we can show that

πd =
(n−di

td + αt)(n
−di
tw + βw)(n

−di
s + β̄)(nsd + αs)

(n−di
sd + αs)(n

−di
sw + βw)(n

−di
t + β̄)(ntd + αt)

. (11)

As with the word-proposal, we see that the doc-proposal accepts
whenever topic t is popular (relative to topic s) within document d,
or popular for word w. Again, we do not need to worry about the
case that the proposed state t is popular within the document but not
for the true conditional probability p(k), since in this case, t will be
very likely to be rejected due to the low acceptance probability πd

used in the MH process. We decompose pd(k)∝ nkd
nd+α

+ αk
nd+α

just
like the word-proposal, except that when we pick the first term, we
do not even need to explicitly build an alias table — this is because
the document token topic indicators zdi serve as the alias table by
themselves. Specifically, the first term nkd counts the number of
times topic k occurs in document d, in other words

nkd =

nd∑
i=1

[zdi = k], (12)

where [·] is the indicator function. This implies that the array zdi is
an alias table for the unnormalized probability distribution nkd, and
therefore we can sample from nkd by simply drawing an integer j
uniformly from {1, 2, . . . , nd}, and setting zdi = zdj . Figure 3
uses a toy example to illustrate this procedure. Hence, we conclude
that the doc-proposal can be sampled in O(1) non-amortized time
(because we do not need to construct an alias table)4.
4.3 Combining Proposals to Improve Mixing

While either the doc- or word-proposal alone can be used as an
as efficient MH algorithm for LDA, in practice many MH-steps (re-
peatedly sampling each token) are required to produce proper mix-
ing. With a small number of MH-steps, using the word-proposal
alone encourages sparsity in word-topic distribution (i.e. each word
belongs to few topics) but causes low sparsity in document-topic
distributions (i.e. each document contains many topics). Converse-
ly, using the doc-proposal alone with few MH-steps leads to spar-
sity in document-topic distribution but non-sparse word-topic dis-

that the acceptance probability can be computed in O(1) time by
simply keeping track of a few sufficient statistics n·.
4Unlike the word-proposal, pd changes after every token to reflec-
t the current state of zdi. Again, this is fine under Metropolis-
Hastings theory.

1355

Figure 4: An example that explains why cycling two proposals helps
mixing rate. The 2nd bin is a mode of p(k), and pd(k) is obviously not
a good proposal for this mode — but pw(k) is good at exploring it.

Figure 5: Word frequencies in topic modeling follow a power-law phe-
nomenon (log-log plot). The great difference in the frequency of hot
words versus long-tailed words makes selecting the right data struc-
ture difficult, as discussed in the text. This plot is obtained from 15
billion web pages, with over than 3000 billion tokens.
tributions. Therefore, while either proposal can sample tokens very
quickly, they need many MH-steps to mix well.

The key to fast Metropolis-Hastings mixing is a proposal distri-
bution that can quickly explore the state space, and reach all states
with high probability (i.e., the modes). The word-proposal pw(k)
is good at proposing only its own modes (resulting in concentration
of words in a few topics), and likewise for the doc-proposal pd(k)
(resulting in concentration of docs onto a few topics). As Figure 4
shows, with the word-proposal or doc-proposal alone, some modes
will never be explored quickly.

How can we achieve a better mixing rate while still maintaining
high sampling efficiency? If we look at p(k)∝pw(k)× pd(k), we
see that for p(k) to be high (i.e. a mode), we need either pw(k)
or pd(k) to be sufficiently large — but not necessarily both at the
same time. Hence, our solution is to combine the doc-proposal and
word-proposal into a “cycle proposal"

pc(k) ∝ pd(k)pw(k), (13)
where we construct an MH sequence for each token by alternating
between doc- and word-proposal. The results of [19] show that
such cycle proposals are theoretically guaranteed to converge. By
combining the two proposals in this manner, all modes in p(k) will
be proposed, with sufficiently high probability, by at least one of the
proposals. Another potential benefit of cycling different proposals
is that it helps to reduce the auto-correlation among sampled states,
thus exploring the state space more quickly.

5. HYBRID DATA STRUCTURES FOR
POWER-LAW WORDS

Even with carefully designed data parallelization and model schedul-
ing, RAM capacity remains a critical obstacle when scaling LDA
to very large number of topics. The LDA model, or word-topic
table nkw, is a V ×K matrix, and a naive dense representation
would require prohibitive amounts of memory. For example, for
V = K = 1 million used in this paper’s experiments, the model
would be 4 terabytes in size assuming 32-bit integer entries. Even
with reasonably well-equipped machines each with 128 gigabytes
of RAM, just storing the matrix in memory would require 32 ma-
chines. In practice, the actual usage is often much higher due to

other system overheads (e.g. cache, alias tables, buffers, parameter
server).

A common solution is to turn to sparse data structures such as
hash maps. The rationale behind sparse storage is that document
words follow a power-law distribution (Figure 5). There are two
implications: (1) after removing stop words, the term frequency of
almost all meaningful words will not exceed the upper range of a
32-bit integer (2,147,483,647); this was measured on a web-scale
corpus with 15 billion webpages and over 3000 billion tokens, and
only 300 words’ term frequencies exceed the 32-bit limit. For this
reason, we choose to use 32-bit integers rather than 64-bit ones. (2)
Even with several billion documents, the majority of words occur
fewer than K times (where K may be up to 1 million in our experi-
ments). This means that most rows nk,· in the word-topic table are
extremely sparse, so a sparse row representation (hash maps) will
significantly reduce the memory footprint.

However, compared to dense arrays, sparse data structures ex-
hibit poor random access performance, which hurts MCMC algo-
rithms like SparseLDA, AliasLDA and LightLDA because they all
rely heavily on random memory references. In our experiments, us-
ing pure hash maps results in a several-fold performance drop com-
pared to dense arrays. How can we enjoy low memory usage whilst
maintaining high sampling throughput? Our solution is a hybrid da-
ta structure, in which word-topic table rows corresponding to fre-
quent words are stored as dense arrays, while uncommon, long-tail
words are stored as open-addressing/quadratic-probing hash tables.
In our web-scale corpus with several billion documents, we found
that the top 10% frequent words in the vocabulary cover almost
95% of all tokens in the corpus, while the remaining 90% of vocab-
ulary words are long-tail words that cover only 5% of the tokens.
This implies that (1) most accesses to the hybrid word-topic table
go to dense arrays, which keeps throughput high; (2) most rows of
the word-topic table are still sparse hash tables5, which keeps mem-
ory usage reasonably low. In our V =K=1 million experiments,
the hybrid word-topic table used 0.7TB, down from 4TB if we had
used purely dense arrays. When this table is distributed across 24
machines, only 30GB per machine is required, freeing up valuable
memory for other system components.

6. SYSTEM IMPLEMENTATION
Distributed implementations are clearly desirable for web-scale

data: they reduce training time to realistic levels, and most practi-
tioners have access to at least a small distributed cluster. However,
existing distributed LDA implementations have only been shown
to work at much smaller problem scales (particularly model size),
or suggest the use of extremely large computer clusters (sometimes
numbering in the thousands of machines) to finish training in ac-
ceptable time. What are the challenges involved in solving big LDA
problems on just tens of machines? If we want to train on a corpus
with billions of documents (each with at least hundreds of tokens)
occupying terabytes of space, then on the data side, simply copying
the data from disk to memory will take tens of hours, while transfer-
ring the data over the network also takes a similar amount of time.
On the model side, storing 1 trillion parameters (1 million words
by 1 million topics) can take up to terabytes of memory — neces-
sitating distributed storage, which in turn requires inter-machine
parameter synchronization, and thus high network communication
cost. In light of these considerations, our goal is to design an ar-
chitecture for LightLDA that reduces these data transmission and

5In order to further improve the throughput of the long tail words,
we set the capacity of each hash table to at least two times the term
frequency of a long-tail word. This guarantees a load factor that is
≤ 0.5, thus keeping random access performance high.

1356

Figure 6: System architecture, data/model placement and logical flow.

parameter communication costs as much as possible, thus making
execution on small clusters realistic.

System Overview. We build LightLDA on top of an open-source
framework for distributed large-scale ML, Petuum (www.petuum.org).
We specifically make use of its parameter server [18, 9, 12] for
bounded-asynchronous data-parallelism. We first introduce the gen-
eral parameter server idea, and then describe our substantial en-
hancements to make big LDA models possible on small clusters.

Parameter Server and Data Placement. At the basic level, our
parameter server (PS) presents a distributed shared memory inter-
face [9], where programmers can access any parameter from any
machine, agnostic to the physical location of the parameter. Es-
sentially, the PS extends the memory hierarchy of a single machine
(Figure 6); storage media closer to the CPU cores has lower access
latency and higher transmission bandwidth, but has much smaller
capacity. In the PS architecture, each machine’s RAM is split into
two parts: local RAM for client usage and remote RAM for dis-
tributed parameter storage (referred to as the “server" part). These
hardware limitations, together with the requirements imposed by
big topic model, strongly influence the manner in which we run
our Metropolis-Hastings algorithm.

We use the PS to store two types of LDA model parameters: the
word-topic table {nkv}K,V

k=1,v=1, which counts the number of to-
kens with word v assigned to topic k, and a length-K “summary
row" {nk}Kk=1 which counts the total number of tokens assigned
to topic k (regardless of word). 32-bit integers are used for the
word-topic table (using a combination of dense arrays and sparse
hash maps; see Section 5), and a 64-bit integer array for the sum-
mary row. We observe that as the LDA sampler progresses, the
word-topic table becomes increasingly sparse, leading to lower net-
work communication costs as time passes. Furthermore Petuum P-
S supports a bounded-asynchronous consistency model [9], which
reduces inter-iteration parameter synchronization times through a
staleness parameter s — for LightLDA, which is already a heavily-
pipelined design, we found the optimal value to be s = 1.

Given that the input data are much larger than the model (and
their volume remains unchanged throughout LDA inference), it is
unwise to exchange data over the network. Instead, we shuffle and
shard the corpus across the disks of all worker machines, and each
worker machine only ever accesses the data in its local disk. In Fig-
ure 6, {wdi, zdi}Dn,nd

d=1,i=1 indicates a shard of training data in the n-
th worker machine, where Dn represents the number of documents
in the n-th worker, nd indicates the number of tokens in document
d. Each worker’s local memory holds (1) the active working set of
data {wdi, zdi}

DSn ,nd

d=1,i=1, and (2) the model {nkv}K,VS
k=1,v=1 required

to sample the current set of tokens (using the Metropolis-Hastings
sampler). During sampling, we update the token topic indicators
zdi, and the word-topic table. The token-topic pairs ((wdi, zdi) are
local to the worker machine and incur no network communication,

��������	
��� ����	�
 �

���

�������

���������	�

��������	
��� ����	�
 �
����	��

������

����

�����
���������	�� ���������	��

�������

(a) Data block pipeline

��������	
��� ��������

���

������� �������

�����������	

��������	
��� ��������

�����������

����������������������

����	��

������

���	

�����

�����

�����

(b) Model slice pipeline

Figure 7: Pipelines to overlap computation, disk I/O and network.
while the word-topic table is stored in the PS and therefore requires
a background thread for efficient communication.

Token and Topic Indicator Storage. In data-parallel execution,
each worker machine stores a corpus shard on its local disk. For
web-scale corpora, each shard may still be very large — hundreds
of gigabytes, if not several terabytes — which prohibits loading the
entire shard into memory. Thus, we further split each shard into
data blocks, and stream the blocks one at a time into memory (Fig-
ure 1 left). Data-structure-wise, we deliberately place tokens wdi

and their topic indicators zdi side-by-side, as a vector of (wdi, zdi)
pairs rather than two separate vectors for tokens and topic indica-
tors (which was done in [1]). We do this to improve data locality
and CPU cache efficiency: whenever we access a token wdi, we al-
ways need to access its topic indicator zdi, and the vector-of-pairs
design directly improves locality. One drawback to this design is
extra disk I/O, from writing the (unchanging) tokens wdi to disk
every time a data shard gets swapped out. However, disk I/O can al-
ways be masked via pipelined reads/writes, done in the background
while the sampler is processing the current shard.

We point out that our model-scheduling and disk-swapping (out-
of-core) design naturally facilitates fault tolerance: if we perform
data swapping to disk via atomic file overwrites, then whenever the
system fails, it can simply resume training via warm-start: read the
swapped-to-disk data, re-initialize the word-topic table, and carry
on. In contrast, for LDA systems like PLDA+ [13] and YahooLDA
[1] to have fault recovery, they would require periodic dumps of
the data and/or model — but this incurs a nontrivial cost in the big
data/model scenarios that we are trying to address.

Tuning the Model Scheduling Scheme. In Section 3, we intro-
duced the high-level idea of model scheduling and its applications
to LDA. There are still a number of improvements that can be em-
ployed to improve its efficiency. We present the most notable ones:
1. After completing a data block or a model slice, a worker ma-

chine’s CPU cores need to wait for the next data block/model
slice to be loaded from disk/network respectively. We eliminate
this latency via pipelining (Figure 7). Specifically, the pipelin-
ing is achieved via a so-called double-buffering technique[4],
which requires double memory quotas but can successfully over-
lap the computation and the communication (i.e., keeps the C-
PUs always busy). We caution that perfect pipelining requires
careful parameter configuration (taking into consideration the
throughput of samplers, size of data blocks, size of model s-
lices).

2. To prevent data load imbalances across model slices, we gen-
erate model slices via sorting the vocabulary by word frequen-
cies, and then shuffling the words. In this manner, each slice

1357

will contain both frequent words and long tail words, improving
load balance.

3. To eliminate unnecessary data traversal, when generating data
blocks, we sort token-topic pairs (wdi, zdi) according to wdi’s
position in the shuffled vocabulary, ensuring that all tokens be-
longing to the same model slice are actually contiguous in the
data block (see Figure 1). This sorting only needs to be per-
formed once, and is very fast on data processing platforms like
Hadoop (compared to the LDA sampling time). We argue that
this is more efficient than the “word bundle" approach in PL-
DA+ [13], which uses an inverted index to avoid data traversal,
but at the cost of doubling data memory requirements.

4. We use a bounded asynchronous data parallel scheme [9] to re-
move the network waiting time occurring at the boundary of ad-
jacent iterations. Note that, to pre-fetch the first slice of model
for the next data block, we do not need to wait for the comple-
tion of the sampling on the current data block with the last slice
of the model. This is exactly what we call Stale Synchronous
Parallel (SSP) programming model.

5. We pre-allocate all the required memory blocks for holding da-
ta, model and local updates respectively. In other words, there is
no any dynamic memory allocations during the whole training
process. This helps remove the potential contention at the sys-
tem heap lock. According to the specified memory quotas for
either data or model, the system will automatically adjust the
width of model slice for scheduling and streaming.

Multi-thread Efficiency. Our sampler is embarrassingly paral-
lel within a single worker machine. This is achieved by splitting
the in-memory data block into disjoint partitions (to be sampled by
individual threads), and sharing the immutable in-memory mod-
el slice amongst the sampling threads. Furthermore, we make the
shared model slice immutable, and all the updates to the model are
firstly locally aggregated and then sent to be globally aggregated
at the parameter server. By keeping the model slice immutable,
we eliminate the race conditions of concurrent writing to a shared
memory region, thus achieving near-linear intra-node scalability.
While delaying model updates theoretically slows down the model
convergence rate, in practice, it eliminates concurrency issues and
thus increases sampler throughput, easily outweighing the slower
convergence rate.

Modern server-grade machines contain several CPU sockets (each
CPU houses many physical cores) which are connected to sepa-
rate memory banks. While these banks can be addressed by al-
l CPUs, memory latencies are much longer when accessing re-
mote banks attached to another socket — in other words, Non-
Uniform Memory Access (NUMA). In our experiments, we have
found NUMA effects to be fairly significant, and we partially ad-
dress them through tuning sampling parameters such as the num-
ber of Metropolis-Hastings steps (which influences CPU cache hit
rates, and mitigates NUMA effects). That said, we believe proper
NUMA-aware programming is a better long-term solution to this
problem. Finally, we note that setting core affinities for each thread
and enabling hardware hyper-threading on Intel processors can be
beneficial; we observed a 30% performance gain when employing
both.

7. EXPERIMENTAL RESULTS
We demonstrate that LightLDA is able to train much larger LDA

models on similar or larger data sizes than previous LDA imple-
mentations, using much fewer machines — due to the carefully
designed data parallelization and model scheduling, and especial-
ly the new Metropolis-Hastings sampler that is nearly an order of
magnitude faster than SparseLDA and AliasLDA. We use several
datasets (Table 7), notably a Bing “web chunk" dataset with 1.2

DATASET V L D L/V L/D
NYTIMES 101636 99542125 299752 979 332
PUBMED 141043 737869083 8200000 5231 90
BING WEBC 1000000 200B 1.2B 200000 167

Table 1: Experimental datasets and their statistics. V denotes vocabu-
lary size, L denotes the number of training tokens, D denotes the num-
ber of documents, L/V indicates the average number of occurrences of
a word, L/D indicates the average length of a document. For the Bing
web chunk data, 200B denotes 200 billion.

�������

�������

�������

�������

	������

������

�
 �� �
 �� �
 �� �

��
��
�
�
��
�
�	

�
�
�

��
�
	
��
�
��
��
��

��������	�
�����

���	��

����
���

Figure 8: Intra-node scalability of LightLDA, using 1, 16, 32 threads
on a single machine (no network communication costs).

billion webpages (about 200 billion tokens in total). Our experi-
ments show that (1) the distributed implementation of LightLDA
has near-linear scalability in the number of cores and machines; (2)
the LightLDA Metropolis-Hastings sampler converges significant-
ly faster than the state-of-the-art SparseLDA and AliasLDA sam-
plers (measured in a single-threaded setting); (3) most importantly,
LightLDA enables very large data and model sizes to be trained on
as few as 8 machines. Because LightLDA is significantly bigger
in model size than previous topic models, and employs a new form
of MH algorithm, a comparison on raw throughput (tokens or docs
processed per second) that is not calibrated against the model size
(as used in previous literature) is less meaningful. In this paper, we
focus on absolute speed of convergence (measured by wall clock
time to convergence) given the same machine setup, as a universal
metric.

7.1 Scalability of Distributed LightLDA
In these experiments, we establish that the LightLDA implemen-

tation scales almost linearly in computational resources. We begin
with intra-node, single-machine multi-threaded scalability: to do
this, we restrict the web chunk dataset to the 50,000 most frequen-
t words, so that the model can be held in the RAM of a single
machine. We then run LightLDA with 1, 16 and 32 threads (on a
machine with at least 32 logical cores), training a model with 1 mil-
lion topics on the web chunk dataset. To fully utilize the memory
bandwidth, we set the number of Metropolis-Hastings steps as 16
in all the scalability experiments. We record the number of token-
s sampled by the algorithm over 2 iterations, and plot it in Figure
8. The figure shows that LightLDA exhibits nearly linear scaling
inside a single machine.

Next, we demonstrate that LightLDA scales in the distributed
setting, with multiple machines. Using the same web chunk dataset
with V =50, 000 vocabulary words and K =1 million topics, we
run LightLDA on 1, 8 and 24 machines (using 20 physical cores and
256GB RAM per machine6), and set the Petuum parameter server
to use a staleness value of 1. A positive staleness value lets LightL-

6Such high-memory configurations can be readily purchased from
cloud compute providers, but are not obligatory for LightLDA. The
model-scheduling slices can be made thinner for small-memory
machines, and the system will still work.

1358

��������

�	�
����

�	������

���
����

��������

� �� ��� ���

��
�
��
��
�
��
	
�
�

�����

��������	
��
���������	

���	
�����

����	
�����

(a)

�

�����

�����

�����

�����

���� ����� ����� ����� ����� ����� ���	� 	��
�
���� ������

�
��

�
��
�
��
	

��

���������	

���������	
���������������������	

�����������������

�����������

(b)

�

��

���

���

���

���

���

� �� �� �� �� ���

�
�
�
�
��
��
	�
�

�
�

���������	

��������	���
�����������

(c)
Figure 10: (a) Log-likelihood over running time with 8 and 24 machines, on Bing web chunk dataset, using V = K = 1 million (1 trillion
parameters). (b) Compute time v.s. Network waiting time, as a function of iteration number. Observe that communication costs are significantly
higher during the first 10 iterations, when the model is still dense. (c) Model size (non-zero entries in word-topic table) versus iteration number.

�������

�������

�������

�������

	������

�
 �� �
 �� �

��
��
�
�
��
�
�	

�
�
�

��
�
	
��
�
��
��
��

��������	�
����

�����

�����������������������

����������������������������

���������������������������

Figure 9: Inter-node scalability of LightLDA, using 1, 8, 24 machines.

DA mask the delay between iterations due to transferring model
parameters over the network, yielding higher throughput at almost
no cost to quality. This time, we record the number of tokens sam-
pled over 100 iterations, and compute the average token throughput
over the first 10 iterations, the last 10 iterations, and all 100 itera-
tions. These results are plotted in Figure 9, and we note that scala-
bility is poor in the first 10 iterations, but close to perfect in the last
10 iterations. This is because during the initial iterations, the L-
DA model is still very dense (words and documents are assigned to
many topics, resulting in large model size; see Figure 10(c)), which
makes the system incur high network communication costs (Figure
10(b)) — enough to saturate our cluster’s 1 Gbps Ethernet. In this
situation, the pipelining (explained in Figure 7) does not mask the
extra communication time, resulting in poor performance. How-
ever, after the first 10 iterations or so, the model becomes sparse
enough for pipelining to mask the communication time, leading to
near-perfect inter-node scalability (as shown in Figure 10(c)). To
eliminate this initial communication bottleneck, we can initialize
the model more sparsely, or we simply upgrade to 10 Gbps Eth-
ernet (frequently seen in industrial platforms and cloud computing
services) or better.

Finally, we demonstrate that LightLDA is able to handle very
large model sizes: we restore the full V =1 million vocabulary of
the web chunk data and K = 1 million topics, yielding a total of
one trillion model parameters on 200 billion tokens. We then run
LightLDA on this large dataset and model using 8 and 24 machines,
and plot the log-likelihood curves in (Figure 10(a)). Convergence is
observed within 2 days on 24 machines (or 5 days on 8 machines),
and it is in this sense that we claim big topic models are now pos-
sible on modest computer clusters. It is noteworthy that the system
works well with no obvious performance drop on 8 machines even
when the vocabulary size is extended from one million to 20 mil-
lion (i.e., 20 trillion parameters in the model). This is due to the
fact that all the extended words will be long-tail ones. With the
help of hybrid data structure specifically designed for power-law
words, increasing the vocabulary size does not introduce obvious
memory footprint and performance load.

One might ask if overfitting happens on such large models, given

Figure 11: Log-likelihood versus running time for SparseLDA,
AliasLDA, LightLDA.
that the number of parameters (1 trillion) is larger than the number
of tokens (200 billion). We point out that (1) there is evidence to
show that large LDA models can improve ad prediction tasks [21],
and (2) the converged LDA model is sparse, with far fewer than 200
billion nonzero elements. As evidence, we monitored the number
of non-zero entries in word-topic table during the whole training
process, and observed that after 100 iterations, the model had only
2 billion non-zero entries (which is 1% of 200 billion tokens).

7.2 LightLDA Algorithm versus Baselines
We want to establish that our Metropolis-Hastings algorithm con-

verges faster than existing samplers (SparseLDA and AliasLDA)
to a high quality model. Using one computational thread, we ran
LightLDA, SparseLDA and AliasLDA on two smaller datasets (NY-
Times, PubMed) using K = 1, 000 or 10,000 topics, and plotted
the log-likelihood versus running time in Figure 11. We set the
number of Metropolis-Hastings step to 2, for both AliasLDA and
LightLDA. From the results, we make the following observation-
s: AliasLDA consistently converges faster than SparseLDA (as re-
ported in [11]), while LightLDA is around 3 to 5 times as fast as
AliasLDA. To better understand the performance differences, we
also plot the time taken by the first 100 iterations of each algorithm
in Figure 12. In general, LightLDA has a consistently low iteration
time and it does not suffer from slow initial iterations. AliasLDA
is significantly faster than SparseLDA on datasets with short doc-
uments (PubMed7), but is only marginally faster on longer docu-
ments (NYTimes). This is reasonable since the per-token complex-
ity of AliasLDA depends on the document length.

Although LightLDA is certainly faster per-iteration than SparseL-
DA and AliasLDA, to obtain a complete picture of convergence,
we must plot the log-likelihood versus each iteration (Figure 14).
We observe that SparseLDA makes the best progress per itera-

7Note that we use the whole PubMed data set in this experiment,
whereas the AliasLDA paper [11] only considered 1% of the total
PubMed data.

1359

Figure 13: Performance of different LightLDA Metropolis-Hastings proposals, on the NYTimes data set with K = 1000 topics.

Figure 12: Running time for each of the first 100 iterations of S-
parseLDA, AliasLDA, LightLDA. The curve for SparseLDA was omit-
ted from the K = 10, 000-topic PubMed experiment, as it was too slow
to show up in the plotted range.

Figure 14: Log-likelihood versus iteration number for S-
parseLDA, AliasLDA, LightLDA.

tion (because it uses the original conditional Gibbs probability),
while LightLDA is usually close behind (because it uses simple
Metropolis-Hastings proposals). AliasLDA (another Metropolis-
Hastings algorithm) is either comparable to LightLDA (on NY-
Times) or strictly worse (on Pubmed). Because the per-iteration
time taken for LightLDA and AliasLDA algorithm is very short
(Figure 12), in terms of convergence to the same loss level per time,
LightLDA and AliasLDA are significantly faster than SparseLDA
(with LightLDA being the faster of the two, see Figure 11). In sum-
mary, LightLDA can achieve the same topic model quality in much
less time than the other two algorithms.

Finally, we argue that the “cycle proposal" used in LightLDA,
which alternates between the doc-proposal and word-proposal, would
be highly effective at exploring the model space, and thus a bet-

ter option than either proposal individually. To demonstrate this,
in Figure 13, we plot the performance of the full LightLDA cycle
proposal versus the doc- and word-proposals alone, as well as S-
parseLDA (which represents the gold standard for quality, being a
non-Metropolis-Hastings Gibbs sampler). The plots are subdivided
into (1) full likelihood, (2) document likelihood, and (3) word like-
lihood ([18] explains this decomposition in more detail). Intuitive-
ly, a high doc-likelihood shows that the learned topics compact-
ly represent all documents, while a high word-likelihood indicates
that the topics compactly represent the vocabulary. Although the
doc- and word-proposals appear to do well on total likelihood, in
actual fact, the word-proposal fails to maximize the doc-likelihood,
while the doc-proposal fails to maximize the word-likelihood. In
contrast, the full LightLDA cycle proposal represents both docu-
ments and vocabulary compactly, and is nearly as good in quali-
ty as SparseLDA. We note that, by trading-off between the word-
proposal and doc-proposal, LightLDA allows explicit control of the
word-topic distribution sparsity versus the doc-topic distribution s-
parsity. For real-world applications that require one type of sparsity
or the other, this flexibility is highly desirable.

8. CONCLUSIONS
We have implemented a distributed LDA sampler, LightLDA,

that enables very large data sizes and models to be processed on a
small computer cluster. LightLDA features significantly improved
sampling throughput and convergence speed via a (surprisingly)
fast O(1) Metropolis-Hastings algorithm, and allows even smal-
l clusters to tackle very large data and model sizes thanks to the
carefully designed model scheduling and data parallelism archi-
tecture, implemented on the Petuum framework. A hybrid da-
ta structure is used to simultaneously maintain good performance
and memory efficiency, providing a balanced trade-off. On a fu-
ture note, we believe the factorization-and-combination techniques
for constructing Metropolis-Hastings proposals can be successful-
ly applied to the inference of other graphical models8, alongside
the model scheduling scheme as a new enhancement over existing
model partitioning strategies used in model-parallelism. It is our
hope that more ML applications can be run at big data and mod-
el scales on small, widely-available clusters, and we hope that this
work will inspire current and future development of large-scale ML
systems.

9. ACKNOWLEDGMENTS
The authors thank the reviewers for their comments that helped

improve the manuscript. This work is supported in part by DARPA
FA87501220324, and NSF IIS1447676 grants to Eric P. Xing.

8Given that all probabilistic graphical models have an equivalent
description as a factor graph, the factorization and cycling trick-
s can be used to speedup inference on general graphs when: (1)
the factored proposal distribution is stable enough, so that it makes
sense to apply the alias approach, and (2) the number of discrete
states is so large that sampling from a Multinomial distribution be-
comes a computation bottleneck.

1360

10. REFERENCES
[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and

A. J. Smola. Scalable inference in latent variable models. In
WSDM, pages 123–132, 2012.

[2] E. Airoldi, D. Blei, S. Fienberg, and E. Xing. Mixed
membership stochastic blockmodels. J. Mach. Learn. Res.,
9:1981–2014, 2008.

[3] C. Andrieu, N. D. Freitas, A. Doucet, and M. I. Jordan. An
introduction to MCMC for machine learning. Machine
learning, 50(1):5–43, 2003.

[4] M. Bauer, H. Cook, and B. Khailany. Cudadma: Optimizing
gpu memory bandwidth via warp specialization. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis,
pages 12:1–12:11, New York, NY, USA, 2011. ACM.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. J. Mach. Learn. Res., 3(30):993–1022, 2003.

[6] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing.
High-performance distributed ml at scale through parameter
server consistency models. In AAAI, 2015.

[7] T. L. Griffiths and M. Steyvers. Finding scientific topics.
PNAS, 101(1):5228–5235, 2004.

[8] W. K. Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika,
57(1):97–109, 1970.

[9] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. Xing. More effective
distributed ml via a stale synchronous parallel parameter
server. In NIPS. 2013.

[10] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P.
Xing. On model parallelization and scheduling strategies for
distributed machine learning. In NIPS, 2014.

[11] A. Li, A. Ahmed, S. Ravi, and A. J. Smola. Reducing the
sampling complexity of topic models. In KDD, 2014.

[12] M. Li, D. G. Andersen, J. W. Park, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed
machine learning with the parameter server. In OSDI, pages
583–598, 2014.

[13] Z. Liu, Y. Zhang, E. Y. Chang, and M. Sun. Plda+: Parallel
latent dirichlet allocation with data placement and pipeline
processing. ACM Transactions on Intelligent Systems and
Technology (TIST), 2(3):26, 2011.

[14] G. Marsaglia, W. W. Tsang, and J. Wang. Fast generation of
discrete random variables. Journal of Statistical Software,
11(3):1–11, 2004.

[15] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equations of state calculations by fast computing
machines. J. Chem. Phys., 21:1087–1091, 1953.

[16] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed algorithms for topic models. The Journal of
Machine Learning Research, 10:1801–1828, 2009.

[17] S. Shringarpure and E. P. Xing. mstruct: inference of
population structure in light of both genetic admixing and
allele mutations. Genetics, 182(2):575–593, 2009.

[18] A. Smola and S. Narayanamurthy. An architecture for
parallel topic models. Proc. VLDB Endow., 3(1-2), 2010.

[19] L. Tierney. Markov chains for exploring posterior
distributions. Annals of Statistics, 22:1701–1762, 1994.

[20] A. J. Walker. An efficient method for generating discrete
random variables with general distributions. ACM Trans.
Math. Softw., 3(3):253–256, 1977.

[21] Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin, L. Wang,
Y. Gao, J. Zeng, Q. Yang, et al. Peacock: Learning long-tail
topic features for industrial applications. arXiv preprint
arXiv:1405.4402, 2014.

[22] L. Yao, D. Mimno, and A. McCallum. Efficient methods for
topic model inference on streaming document collections. In
KDD, 2009.

[23] J. Yin, Q. Ho, and E. P. Xing. A scalable approach to
probabilistic latent space inference of large-scale networks.
NIPS, 2013.

[24] J. Zhu, A. Ahmed, and E. P. Xing. Medlda: maximum
margin supervised topic models for regression and
classification. In ICML, pages 1257–1264, 2009.

1361

