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ABSTRACT
Trustworthiness is a field of research that seeks to estimate
the credibility of information by using knowledge of the
source of the information. The most interesting form of
this problem is when different pieces of information share
sources, and when there is conflicting information from dif-
ferent sources. This model can be naturally represented as a
bipartite graph. In order to understand this data well, it is
important to have several methods of exploring it. A good
visualization can help to understand the problem in a way
that no simple statistics can.

This paper defines several desiderata for a “good” visu-
alization and presents three different visualization methods
for trustworthiness graphs.

The first visualization method is simply a näıve bipartite
layout, which is infeasible in nearly all cases. The second
method is a physics-based graph layout that reveals some
interesting and important structure of the graph. The third
method is an orthogonal approach based on the adjacency
matrix representation of a graph, but with many improve-
ments that give valuable insights into the structure of the
trustworthiness graph.

We present interactive web-based software for the third
form of visualization.

Categories and Subject Descriptors
H.5.0 [Information Interfaces and Presentation]: Gen-
eral
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1. INTRODUCTION
Problems that involve inference over graph structures are

ripe for visualization. This is due to the fact that the struc-
ture of the graph nearly always matters to the inference
algorithm. The world of graph theory gives us many ways
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Figure 1: A standard bipartite layout of a trustwor-
thiness graph. Sources are blue, claims are green
if true, red if false. Edges connect claims to their
sources. This is toy data.

to characterize the structure of a graph (degree distribution,
connectedness, number of cliques, diameter, PageRank [1]),
but if a picture is worth a thousand words, a graph visual-
ization is worth a thousand statistics.

Even disregarding the possibility of an incomplete set of
characteristics, it is entirely possible that when analyzing the
graph, one may not think to check even obvious characteris-
tics (e.g. graph connectedness). Although data exploration
is a crucial first step to a good understanding of a prob-
lem, it is often skipped, either because it is not immediately
clear how to visualize, or because algorithm development
may seem more important.

This paper argues that a good visualization of a trustwor-
thiness graph can bring understanding to the problem that
no other metric can, and illustrates this with real-world data.
We believe that our visualization recommendations can help
trustworthiness researchers to develop better trustworthi-
ness algorithms.

We begin by defining the problem of trustworthiness, give
a brief literature review, then describe the data that is being
analyzed in these settings, and then move to our proposed
visualization approaches.
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2. TRUSTWORTHINESS
Trustworthiness is a field in which algorithms are used to

infer such qualities as believability, credibility, or trustwor-
thiness of propositional statements, or claims, by using the
source of the claims. Intuitively, if we don’t know the ve-
racity of a given claim, but we do know that the source of
the claim has been reliable in the past, then we can make a
reasonable judgement on the unknown claim. This may be
called decision by context, where the context refers to neigh-
bors in an underlying graph. (In an orthogonal approach, it
certainly makes sense to discern trustworthiness from inher-
ent characteristics of data, as in textual entailment. This
might be called decision by content. We focus only on the
contextual side of trustworthiness here.)

We define a trustworthiness graph G(V,E) as having ver-
tices V , partitioned into sources S ⊂ V and claims C ⊂ V .
That is, S ∪C = V , and S ∩C = ∅. Edges are directed and
point from S to C. Further, C is partitioned into M mu-
tual exclusion sets. The mutual exclusion set is important
semantically for this to be a trustworthiness graph: there
is typically one correct answer in each mutual exclusion set.
That is, a source may not claim that X is true and also claim
that X is false. There are versions of the problem that re-
lax these restrictions, which might allow multiple correct
answers.

The simplest trustworthiness algorithm is majority vot-
ing, in which the “true” answer in each mutual exclusion set
is taken to be the one with the greatest degree (the most
sources asserting it). The next simplest algorithm is Hubs
and Authorities, or HITS [2], also known as Sums [3]. For
each node, we initialize the hub score, yp, and the authority
score, xp, to 1. Then, we iterate until convergence (normal-
izing at each iteration).

xp ←
∑

q:(q,p)∈E

yq, yp ←
∑

q:(p,q)∈E

xq

Finally, having obtained a hub and authority score for
each node, we order the claim nodes in each mutual exclu-
sion set by the authority score. The claim with the largest
authority is chosen to be “true”. (Note that in the specific
case of using a bipartite graph, directed from left to right,
the sources will have authority score 0 and the claims will
have hub score 0).

One open question in the field is regarding how the struc-
ture of the trustworthiness graph affects the algorithm. For
example, HITS can be shown to perform well on certain
hand-made graphs, but for most graphs it produces results
nearly identical to the majority voting algorithm. An im-
portant step in understanding how the structure of trustwor-
thiness graphs affects the result is to visualize each graph.

3. RELATED WORK
Although there is no work directly related to visualization

of trustworthiness, there is work on trustworthiness, and
work on visualization of graphs.

Trustworthiness algorithms have been studied in a variety
of applications: information retrieval [1, 2], fact finding [3],
knowledge base population [4, 5], crowdsourcing [6], repu-
tation estimation [7], classification [8], and information ex-
traction validation [9]. One common thread between all of
these is the trustworthiness graph.

Traditionally, research on visualization of graphs has fo-

Sources
Total 52

Claims
Total 49496
Unique 15828

Claims per Source
Mean 952
Max 2731
Min 103
Std dev 601
Mutual Exclusion Sets
Total 1897

Claims per ME
Mean 26
Max 598
Min 1
Std dev 47

Table 1: Statistics over the KBP2013 data. Notice
how this table alone gives little insight into the data.

cused on node-link representations [10]; that is, a visualiza-
tion consisting of nodes and links or edges (as seen in Figures
1 and 2). The problems to be solved involve minimizing edge
crossings, accurately depicting communities and structure,
and various other aesthetic and structural criteria.

However, work in [11] suggests that optimizing for these
graph criteria may not result in aesthetically pleasing and
easily understandable graphs. Motivated by this result, [12]
proposes that adjacency matrix-based representations can
be more readable, especially for graphs that are large or
dense. An adjacency matrix obviates the need for compli-
cated and slow layout algorithms, and has the ability to
present data in a compact format. Since then, there have
been several projects taking this approach [13, 14].

In this work, we propose a new matrix-based representa-
tion for visualizing trustworthiness graphs.

4. DATA
For concrete illustration purposes, we use data from the

Knowledge Base Population (KBP) Slot Filling Validation
(SFV) task, from the year 2013 [15]. This task is a follow-on
task from the Slot Filling (SF) task. In SF, a participating
system is given a set of queries, and a set of documents
(mostly newswire documents). Each query consists of an
entity, which is either a person or an organization, and sev-
eral “slots” to be filled. Slots are dependent on the type of
the entity. For example, a person entity has such slots as
“date of birth”, or “cause of death”, while an organization
entity has slots like “date founded” and “website”.

For each query, each participating system fills in as many
slots as it can. Then, the outputs from all systems are ag-
gregated to form the input dataset for SFV, where the goal
is to decide if a “filler” for a given slot is true or false.

Each slot may be filled by several different sources sepa-
rately. Since not all sources have the same quality or accu-
racy, this means that there may be conflicting information,
which makes this an interesting trustworthiness problem.

To make the connection explicit, each SF system is con-
sidered a “source” and each filler is considered a “claim”. A
given slot for a given query (e.g. “Johanna Smith : date of
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birth”) forms a mutual exclusion set, and all fillers for that
query+slot are the members in the mutual exclusion set.

This data is labeled, which means that every filler has a
binary true or false label associated with it. The visualiza-
tion methods described below are targeted at labeled data,
but are valuable also for unlabeled data.

5. VISUALIZATION
As motivation, let us consider some simple statistics over

the KBP 2013 data (Table 1). It is helpful to remember that
this is a baseline representation. It is useful to ask, what is
missing? What is hidden?

As a way to formalize such questions, we define a set of
desiderata for a thorough understanding of trustworthiness
data. Items with stars (*) are only applicable if a labeling
of claims is available.

1. Know if the graph is connected. (If not, know the
distribution of component sizes).

2. Know the number of sources and the number of claims.

3. Know the distribution of claims over sources and sources
over claims.

4. For each claim:

(a) Know how many sources made this claim.

(b) Know if responding sources responded to similar
claims.

(c) * Know the accuracy of responses for this claim.

(d) * Know the accuracy of responses to similar claims.

(e) * Know the accuracy of each responding source.

5. For each source:

(a) Know how many claims this source made.

(b) Know which types of claims this source tended to
respond to.

(c) * Know the accuracy of this source.

(d) * Know how this source compares to other sources
in terms of claims answered, and in terms of ac-
curacy.

6. For each mutual exclusion set:

(a) Know how many claims are in this set.

(b) * Know the breakdown of true and false claims.

(c) * Compare claim response patterns with similar
mutual exclusion sets.

While the first three of these can be represented with sim-
ple statistics, some important information may remain hid-
den. For example, while point 1 is certainly useful, it is
not always informative. Imagine a subgraph that is isolated
from the main graph except for a small number of edges.
A connectedness algorithm would correctly call this graph
connected, but would miss the important subtlety of being
almost not connected. (The graph is Figure 2 is one example
of this situation.)

It may be said that knowing the minimum-cut of the graph
could be useful. This is not quite true – the min-cut on most
trustworthiness graphs is 1. A more useful form could be the
balanced min-cut algorithm, which sets constraints on the
size of each partition. Nonetheless, the right visualization
can give this information and more.

We now present three different visualization options.

Figure 2: Physics-based layout. Red and green
nodes represent false and true claims respectively,
blue nodes represent sources, edges are grey. This
visualization highlights how communities naturally
form in the data. This is KBP2013 SFV data.

5.1 Standard Bipartite
Because the trustworthiness graph is bipartite, there is an

obvious representation choice – the node-link format, with
sources stacked vertically on the left, claims, grouped by mu-
tual exclusion set, stacked on the right, and edges between
them. Figure 1 shows an example of this on a toy dataset.

While this satisfies several of the simple desiderata, it
breaks down at scale. When there are hundreds or thousands
of claims, this becomes unwieldy. If we put the sources on
the left and the claims on the right, each arranged vertically
as in Figure 1, then there could well be more nodes in the
claims column then there are vertical pixels in most screens.

But even if that weren’t a fatal flaw, there is the prob-
lem of minimizing edge crossings, which is known to be NP-
complete [16]. There are heuristics to aid in solving this
problem, but we would like to suggest that the best solution
is to not have the problem in the first place.

This visualization is presented mostly as a warning: we
have tried it, and it is not helpful.

5.2 Physics-based Layout
One way to obviate the problem of edge-crossings is to

allow entirely new node placements (i.e. not in two rigid
lines). One nice way to do this is to use a physics-based
layout, as seen in Figure 2. This is using Gephi [17] as the
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Figure 3: Adjacency matrix representation. Each column represents a mutual exclusion set, and each rect-
angle in the column represents an individual claim. Each row represents a source, and all rectangles in that
row are claims made by that source. In this image, mutual exclusion sets (columns) are grouped by their
slots (i.e. title, or spouse). The faint gray lines delineate different groups. This is KBP2013 SFV data.

visualization engine, and the OpenOrd layout1 [18], using
the KBP2013 data introduced in Section 4. In a physics-
based layout, each node is treated as a mass (with some
small repellent forces for all other masses), and each edge is
treated as a spring. The layout runs a physical simulation in
which forces operate on the 2-dimensional graph until there
is an equilibrium. Intuitively, this tends to make edges as
short as possible, and to isolate strongly-connected commu-
nities of nodes. There are a variety of layout algorithms,
physics-based and otherwise [10]. We chose OpenOrd be-
cause it produced the most informative layout.

The nodes are color-coded according to correctness: the
green nodes are true, and the red nodes are false. Blue
nodes represent sources, and edges are grey. In this dataset,
clearly, most claims are incorrect.

This layout can provide some interesting insights. First,
and most importantly, it gives a clear idea of how connected
is the graph. This is very important among algorithms like
HITS [2], where a disconnected graph can produce mean-
ingless results (in a nutshell: influence cannot flow between
disconnected graphs).

In a similar vein, this gives a good idea of the communities
in the graph. Claims that are asserted by a single source
are placed close to the source. Such claims are intuitively
unlikely to be correct – in general, we would expect at least
two witnesses.

Another value of this layout is a quick idea of where the
correct nodes tend to lie. For example, it’s possible that a
trustworthiness graph may have one source providing nearly
all of the correct answers, and the rest making false claims.
This layout will show this clearly. For the dataset presented,

1
https://marketplace.gephi.org/plugin/openord-layout/

the visualization confirms the intuition that “loner” sources
are less likely to produce correct answers, and that correct
answers tend to correlate with high degree.

5.3 Adjacency Matrix Representation
Although a physics-based layout is useful for getting a

bird’s eye view of the data, for quickly discovering commu-
nities, and for seeing how sources interact with each other, it
still leaves something to be desired. In particular, informa-
tion about individual mutual exclusion sets is nonexistent
(see point 6 in the desiderata). It is possible and even likely
that the nodes of a mutual exclusion set are spread out.

Our final proposal is built on the observation that we want
to see structure on both sides of the bipartite graph, not just
the source side. Further, on the claim side, we would like to
have visual information about mutual exclusion sets.

This visualization has two modes. The first mode (seen in
Figure 3) is based on a modified adjacency matrix represen-
tation of a graph. It is modified in the sense that each mu-
tual exclusion set becomes a supernode, replacing all claim
nodes which it contains. A source is connected to the su-
pernode if it is connected to a claim in the set. Since the
graph is bipartite and directed, only one quadrant of the ad-
jacency matrix is non-zero, and only this quadrant is shown.

In other words, the rows are sources, and the columns are
mutual exclusion sets. A cell is filled if the source (row)
made a claim in the mutual exclusion set (column). In the
visualization, a filled cell is represented with a colored rect-
angle. Again, red and green represent false and true claims
respectively. When the mouse is hovered over a rectangle,
an information box displays the values for that claim.

In the second mode, each column is collapsed to look like
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Figure 4: Collapsed adjacency matrix representation. Each column represents a mutual exclusion set, and
each square in the column represents an individual claim. The vertical axis merely serves to measure the
number of claims in each column. This is the collapsed view of Figure 3.

a histogram of claims per mutual exclusion set, as shown in
Figure 4.

Note that each rectangle represents an individual claim,
not a unique answer. These are differentiated from each
other not by the content, but by the source. This is differ-
ent from the graph-based representations where a claim node
represents a unique answer, and the degree of the node rep-
resents how many systems have made that claim. There are
many more rectangles in this representation than there are
nodes in the graph-representations. The rectangles loosely
correspond to edges in the graph.

One stroke against the bipartite layout was that few screens
are large enough to display all the nodes. Although this
approach may seem similar, the matrix form affords a sub-
stantial benefit. First, the claims can be drawn much more
compactly because the x and y dimensions have meaning.
Second, in the bipartite layout, it is difficult (or at least
tedious) to see the source of a claim because one needs to
follow the edge from source to claim. There is no guarantee
that source and claim will be close to each other.

For both modes, there is the option to sort the columns
by a number of different metrics, for example, by number of
claims in the column, or by number of correct claims in the
column. In the KBP2013 data, each mutual exclusion set is
composed of a query and a slot, so these are sorting options
also. Naturally, it is possible to write custom sorting metrics
for any new data set.

The power of this visualization comes from the ability to
sort columns, and from the ability to expand the columns
and see how sources respond over different sortings. With
these features, we are now equipped to answer many ques-
tions that the two prior visualizations could not.

We can now see the distribution of claims inside different
groupings. For example, in the KBP2013 data, it is natural

to group claims by slot. Each group then has a secondary
sort on the number of claims per column. From this view,
we are able to quickly and easily compare the number of
claims per slot. Since the group is sorted by the number of
claims, we can also see the how claims are distributed. For
example, the leftmost group in Figure 4 has a large number
of claims and what looks like a linear distribution, while the
group second from the right has far fewer claims, and follows
something similar to an exponential distribution.

An analogous analysis can be made when the claims are
grouped by query.

We can also see how systems respond by different group-
ings. For example, when grouping by slot, we can see how
certain systems respond only to certain slots, or avoid cer-
tain slots. Perhaps more valuable is the view that certain
systems tend to answer almost indiscriminately, even when
other systems are cautious in their answers. In Figure 3, the
bottom system is an example of both these points, evidenced
by a nearly solid line of red punctuated by a complete si-
lence in two slot groups. To a designer of a trustworthiness
algorithm, this gives the valuable intuition that high output
systems may be untrustworthy.

All of this information is useful because it gives interesting
insights into the structure of the graph. There are theoreti-
cal results on the performance of trustworthiness algorithms
on specific types of graphs, namely regular graphs [6]. How-
ever, it is not clear how to create an algorithm to perform
optimally on graphs that are not regular (such as the exam-
ple graph in this paper). In such a case, it is not even clear
how to quantify “irregularity”, and the need for other ways
to explore the data becomes apparent.

Finally, this visualization is not only useful in the initial
data exploration phase. After a trustworthiness algorithm
has been run on the data, it is possible to filter the dataset
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by the labeling of each claim (i.e. keeping only the claims
labeled as true). It is interesting to see which systems are
adjudged to have provided the correct answers.

This visualization is available as an interactive demo.2

6. DISCUSSION
We have presented a list of desiderata for a good trust-

worthiness visualization, and argued that these cannot be
satisfied using only simple statistics on the graph. To meet
these desiderata, we have shown three different visualization
techniques, and commented on their effectiveness.

The first method is using a simple standard bipartite lay-
out of a graph. We argued that this method is infeasible for
the purpose because it does not scale elegantly. The second
method is using a physics-based layout of the trustworthi-
ness graph. We found that this visualization is useful in dis-
covering large-scale communities of nodes, and for getting
a global picture of the data. Unlike the first method, this
scales to a large number of nodes. But while it does well
at big-picture understanding, it fails to reveal more fine-
grained facets. Our final method, based on the adjacency
matrix representation of the graph, gives much more control
by allowing exploration of the data by different attributes of
claims and sources.
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