
Counterfactual Estimation and Optimization of Click
Metrics in Search Engines: A Case Study

Lihong Li1 Shunbao Chen1

1Microsoft Corp.
Redmond, WA 98052

Jim Kleban2
∗

Ankur Gupta1

2Facebook Inc.
Seattle, WA 98101

ABSTRACT
Optimizing an interactive system against a predefined online met-
ric is particularly challenging, especially when the metric is com-
puted from user feedback such as clicks and payments. The key
challenge is the counterfactual nature: in the case of Web search,
any change to a component of the search engine may result in a
different search result page for the same query, but we normally
cannot infer reliably from search log how users would react to the
new result page. Consequently, it appears impossible to accurately
estimate online metrics that depend on user feedback, unless the
new engine is actually run to serve live users and compared with a
baseline in a controlled experiment. This approach, while valid and
successful, is unfortunately expensive and time-consuming. In this
paper, we propose to address this problem using causal inference
techniques, under the contextual-bandit framework. This approach
effectively allows one to run potentially many online experiments
offline from search log, making it possible to estimate and optimize
online metrics quickly and inexpensively. Focusing on an impor-
tant component in a commercial search engine, we show how these
ideas can be instantiated and applied, and obtain very promising
results that suggest the wide applicability of these techniques.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics—
Experimental Design; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval; H.3.3 [Information
Storage and Retrieval]: Online Information Services

Keywords
Experimental design; counterfactual analysis; Web search; query
correction/rewriting; information retrieval; contextual bandits

1. INTRODUCTION
The standard approach to evaluating ranking quality of a search

engine is to evaluate its ranking results on a set of human-labeled

∗This work was done when J. Kleban was with Microsoft.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742562.

examples and compute relevance metrics like mean average preci-
sion [1] and normalized discounted cumulative gain (NDCG) [15].
Such an approach has been highly successful at facilitating easy
comparison and improvement of ranking functions (e.g., [32]).

However, such offline relevance metrics have a few limitations.
First, there can be a mismatch between users’ actual information
need and the relevance judgments. For example, for the query “tom
cruise,” it is natural for a judge to give a high relevance score to the
actor’s official website, http://tomcruise.com. However, search log
from a commercial search engine may suggest the opposite—users
who issue that query are often more interested in news about the
actor, not the official website. Second, in some applications like
personalized search [24], judges often lack necessary information
to provide sensible labels. Third, user experience with a search
engine can depend on other modules like user interfaces. Relevance
labels for query-document pairs only reflect one aspect of a search
engine’s overall quality. Finally, an important factor in nowadays
search engine is its monetization performance (from advertising),
which cannot be easily judged by human labelers.

All the challenges above imply the strong need for considering
user feedback in evaluating, and potentially optimizing, a search
engine. For example, user behavior like clicks is used to infer per-
sonalized relevance for evaluation purposes [31], and to compare
two ranking systems by interleaving [6].

Unfortunately, metrics that depend on user feedback are hard to
estimate offline, due to their counterfactual nature. For example,
suppose we are interested in measuring the time-to-first-click met-
ric. When we change any part of the search engine, the final search
engine result page (SERP) for a particular query may be different,
and hence users’ click behavior may change as well. Based on
search log, it is often challenging to infer what a user would have
done for a SERP different from the one in the log. Prediction errors
of state-of-the-art user click models (e.g., [7, 12] and their variants)
are likely much larger than usual improvements of click-based met-
rics in nowadays commercial search engines that are already highly
optimized. Therefore, offline evaluation based on such user models
may not always be reliable.

In practice, the common solution is to run a controlled experi-
ment (a.k.a. an A/B test). Specifically, one randomly splits users
into two statistically identical groups, known as control and treat-
ment, respectively. Users in the control group are served by a base-
line search engine, while users in the treatment group by a modified
engine (which often differs from the baseline in one component).
The experiment usually lasts for days or weeks, at the end of which
online metrics (like click-through rate and time to first click) of the
two systems are calculated. One then applies statistical hypothesis
testing to conclude whether the modified engine is better than the
baseline at a certain significance level.

929

Controlled experiments have proved very successful in prac-
tice (e.g., [16]), allowing engineering and business decisions to be
made in a data-driven manner. However, these experiments usually
require nontrivial engineering resources and are time-consuming,
since the experiments are run on real users, so significant efforts are
needed to avoid surprises in the experiments. Furthermore, when
trying to optimize a click metric, one often takes a guess-then-
check approach: an easy-to-compute proxy metric (like NDCG)
is used offline to obtain a modified (and hopefully better) engine,
whose online metric improvement (if any) is verified in an A/B
test. Due to its approximation nature, the offline proxy metric can
be misleading in determining which modified system to run in the
experiment. Combined with the long turnaround time of A/B tests,
such an indirect optimization procedure can be rather inefficient.

In this paper, we advocate the use of causal inference techniques
from statistics to perform unbiased offline evaluation of click met-
rics for search engines. Compared to A/B tests, offline evaluation
allows multiple models to be evaluated on the same search log,
without the need to be run online. Effectively, this technique makes
it possible to run many A/B tests simultaneously, leading to sub-
stantial increase in experimentation agility, and to even optimize
against the online metrics directly. First, we describe in Section 2
the contextual bandit as a general framework to capture many inter-
active problemss encountered in Web search. Section 3 presents the
basic technical idea of offline evaluation, and discusses solutions to
a few important practical issues. Section 4 gives details in a case
study in a commercial search engine. Section 5 discusses related
work. Finally, Section 6 concludes the paper. Interested readers are
referred to a longer technical report [19] for more details.

2. FORMULATION
The contextual-bandit formalism [18] has proved useful in many

important applications with interactions, such as online advertis-
ing [18] and content recommendation [20]. Formally, we define
by A = {1, 2, . . . ,K} a set of actions, and by X a set of contex-
tual information. A contextual bandit describes a round-by-round
interaction between a learner and the environment: at each round,
• Environment chooses contextual information x, and a reward

signal ra for each a ∈ A. Only x is revealed to the learner.
• Upon observing x, the learner chooses an action a ∈ A, and

observes the corresponding reward ra (but not other ra′).
Here, we assume ra ∈ [0, 1] and that (x,~r) is drawn i.i.d. from
some unknown distribution D, where ~r = (r1, . . . , rK) is the
reward vector. A common goal for a contextual-bandit learn-
ing algorithm is to optimize its action-selection policy, denoted
π : X → A, in order to maximize the expected reward it gets
through interaction with the environment. For convenience, we call

V (π) := E(x,~r)∼D
[
rπ(x)

]
the value of policy π, which measures how much per-round reward
it receives on average. If we run π to choose actions for T rounds
and observe the corresponding reward in every round, the value of
π can be estimated simply by averaging the observed reward, and
this estimate will converge to V (π) as T increases.

As an example, consider federated search where a search engine
needs to decide, given a query, whether (and where) to include ver-
tical search results like news and images on the final SERP (e.g.,
[9]). Here, the context x contains the submitted query, user profile,
and possibly other information. The actions are how to combine
the vertical search result with Web search results. The reward is
often click-through (or its variants) of the vertical results. Finally,
a basic problem in federate search is to optimize the policy that de-
cides what to do with vertical search results given current context

in order to maximize reward. In Section 4, we will study in more
details another important component of a search engine.

An important observation in contextual bandits is that, only re-
wards of chosen actions are observed. Therefore, data in a contex-
tual bandit is often in the form of (x, a, ra). If this data is used to
evaluate a policy π, which chooses a different action π(x) 6= a,
then we simply do not have the reward signal to evaluate the policy
in that context. This paper is to study how unbiasded offline policy
evaluation can be done in modern search engines.

3. UNBIASED OFFLINE EVALUATION

3.1 Basic Techniques
As is observed previously [4], offline policy evaluation can be

interpreted as a causal inference problem, an important research
topic in statistics. Here, we try to infer the average reward V (π)
(the causal effect) if policy π is used to choose actions in the ban-
dit problem (the intervention). The approach we take in this pa-
per relies on randomized data collection, which has been known to
be a critical condition for drawing valid causal conclusions. Ran-
domzied data collection proceeds as follows: at each round,
• Environment chooses (x,~r) i.i.d. from some unknown distri-

bution D, and only reveals context x.
• Based on x, one computes (c.f., Section 3.2) a multinomial

distribution ~p := (p1, p2, . . . , pK) over the actions A. A
random action a is drawn according to the distribution, and
the corresponding reward ra and probability pa are logged.

At the end of the process, we have a set D, called “exploration
data,” containing data of the form (x, a, ra, pa). In statistics, the
probabilities pa are also known as propensity scores.

When we are to evaluate the value of an arbitrary policy π offline
using the exploration data D, the following estimator may be used:

V̂offline(π) :=
∑

(x,a,ra,pa)∈D

ra · I (π(x) = a)

pa
, (1)

where I (C) is the set-indicator function that evaluates to 1 if con-
dition C holds true, and 0 otherwise.

The key benefit of this estimator is that it is unbiased (see, e.g.,
[4, 29]): ED

[
V̂offline(π)

]
= V (π) for any π, provided that ev-

ery component in ~p is nonzero. In other words, as long as we can
randomize action selection, we can construct an unbiased estimate
of any policy’s value without even running it online on live users.
Such a property holds even for certain non-static metrics, such as
those that fluctuate periodically. This benefit is highly desirable,
since the offline evaluator allows one to simulate many A/B tests in
a fast, inexpensive, and reliable way.

3.2 How to Randomize Data
The unbiasedness guarantee holds for any probability distribu-

tion ~p, as long as none of its components is zero. However, vari-
ance of our offline evaluator depends critically on this distribution.
The evaluator gives more accurate (and thus more reliable) esti-
mates when variance is lower.

Calculations show that the offline evaluator has a variance

Var
[
V̂offline(π)

]
= E(x,~r)∼D

[
r2
π(x)

(
1

pπ(x)

− 1

)]
.

Therefore, the variance is smaller when we place more probability
mass to actions that are chosen by policy π. In reality, however,
one typically does not know π ahead of time when data are being
collected, and there may be multiple policies to be evaluated on
the same exploration data. One natural choice, as adopted by some

930

authors [20, 21], is to minimize the worst-case variance, leading to
a uniform distribution: pa ≡ 1/K for all a.

There are at least two limitations for this choice. First, choosing
an action uniformly at random may be too risky for user experience,
unless one knows a priori that every action is reasonably good.
Second, when improving an existing policy that is already working
reasonably well, it is likely that any improvement does not differ
too much from it. Minimizing the worst-case variance may not
yield the best variance reduction in reality. These two concerns
imply a more conservative data collection procedure that can be
more effective than the uniform random distribution. Intuitively,
given a baseline policy (like the existing policy in production), we
may inject randomization to it to generate randomized actions that
are close to the baseline policy. The precise implementation of this
idea depends on the problem at hand. In Section 4.2, we describe
a sensible approach that has worked well, which is expected to be
useful in other scenarios.

Finally, in order to prevent unbounded variance, it is helpful to
enforce a lower bound pmin when computing ~p. If such a condi-
tion cannot be met (say, due to system constraints), one can still
use max{pmin, pa} to replace pa in Equation 1, as done by other
authors [29]. Such a thresholding trick may introduce a small bias
to the offline estimator, but can drastically decrease its variance so
that the overall mean squared error is reduced.

3.3 How to Verify Propensity Scores
Use of Equation 1 requires logging the probabilities pa. Any

error in calculating and logging them can lead to a bias in the final
offline estimator. Furthermore, since the reciprocal of the score is
used in the estimate, even a small error in the score can lead to a
much larger bias in the offline estimator when pa is close to 0. In
a complex system, it is often nontrivial to get the scores correct.
It is thus important to verify propensity scores before trusting the
offline estimates. In our experience, this verification turns out to
be one of the most critical, and sometimes challenging, steps when
doing offline evaluation.

One solution1 is to obtain and log a randomization seed when-
ever an action is chosen. Specifically, in each round of data collec-
tion (e.g., Section 3.2), we choose a seed s (which may be a hashing
function of context x and timestamp, etc.) and use it to reset the in-
ternal state of a pseudo-random number generator. Then, we use
the generator to select a random action from the multinomial dis-
tribution ~p. The final data have the form of (x, s, a, pa, ra), con-
taining one more component, s. When verifying data offline, we
may simply use the seed s to repeat the randomized data collection
process, and check consistency among x, s, a and pa.

An alternative, somewhat simpler approach does not require re-
setting the pseudo-random number generator in every round of data
collection. Instead, it runs simple statistical tests to detect incon-
sistency. Such an approach has been quite useful in our experience,
although we note that it only detects some but not all data issues.

One such test, which we call an arithmetic mean test, is to com-
pare the number of times a particular action a∗ ∈ A appears in
the data to the expected number of occurrences conditioned on the
logged propensity scores. Standard hypothesis tests can be used to
estimate whether the gap between the two quantities is statistically
significant or not. If the gap is significant, it indicates errors in the
randomized data collection process.

Another test, which we found useful, is based on the
following observation: for any context x and action a∗,

Ea∼~p

[
I(a=a∗)
pa∗

+
I(a6=a∗)
1−pa∗

]
≡ 2. Therefore, we may compare

1Proposed by Leon Bottou et al., in private communication.

the mean of the above random variable from the data, and verify
if it is close to the expected value, 2, using statistical hypothesis
tests. Since the condition above uses harmonic means of propen-
sity scores, we call it a harmonic mean test.

3.4 How to Construct Confidence Intervals
Equation 1 gives a point-estimate, which in itself is not very use-

ful without considering variance information: when we compare
the offline estimates of two policies’ values, we must resort to reli-
able confidence intervals to infer whether the difference in the two
point-estimates are significant or not.

Based on various concentration inequalities, Bottou et al. [4] de-
veloped a series of interesting confidence intervals that give useful
insights. In practice, however, as suggested by the same authors, it
may be better to use normal approximation to obtain confidence in-
tervals, which is the approach we take here. Specifically, from the
exploration data setD, we can compute the standard, unbiased esti-
mate of the standard deviation σ̂ of the random variable raI(π(x)=a)

pa

from data D. Then, a 95% confidence interval can be constructed:
V̂offline ± 1.96×σ̂√

|D|
, for instance. Such an approximation works well

when data size |D| is large and the ratios ra/pa are bounded.

4. CASE STUDY

4.1 Speller
Speller is a critical component in a search engine, enabling it

to translate queries with typing and phonetic errors to their correct
forms, so that it can match and rank relevant Web results and instant
answers even when user-typed query is misspelt. Spelling correc-
tion for web queries is a hard problem, particularly because of ab-
sence of a dictionary of terms and new words and entities emerging
on the Web as you are reading this. Further, one person’s typo
could be another person’s correct query. For example, given that a
user typed “CCN” has both the possibility of him wanting to type
“CNN” but ending up making a typo to “CCN,” or really having an
intent to type “CCN.” Typically, noisy channel models are applied
to address this by computing probabilities of each of them being
the true intents, given that “CCN” was typed, using popularities of
“CCN” and “CNN” as well as how likely a user is to make this ex-
act typo. With additional features, machine learning can be used to
rank these candidates [8, 11].

The problem we focus on here is to train a model to select a sub-
set of candidates off an already computed set of rewritten queries
for a given input query. The idea to select multiple such candidates
is to mitigate the risk of picking a bad correction early in the life-
time of the query [28]. After fetching the results for each of these
formulations, we would either predict a single best rewrite or merge
the results of multiple such rewrites.

While training the ranker of rewritten query candidates via
human-labeled corrections works for a large number of queries, in
cases such as above, a judge may be at a complete loss on what
the users’ real intent was or predicting what is the likelihood of the
two intents CCN and CNN. Hence, it is desirable to learn which
spelling correction actually serves the user’s intent implicitly from
user behavior. Furthermore, this approach is much cheaper than a
human judging the queries offline. For a given spelling correction
algorithm, the user’s satisfaction can be measured by modeling how
the user interacted with the search engine on a real search session.

Having said that, every single technique or algorithm in the im-
provement of a search algorithm cannot be exposed to the user to
measure its goodness, given that: (1) It can pose risk to the rele-
vance and quality of results seen by the users in the experiment.

931

(2) User query volume restricts total number of experiments that
can be run per unit time. (3) Cost of failure is higher online since
typically more investment is required to make code robust enough
to bring it in front of the users. (4) Online experimentation results
are noisier and harder to analyze against baseline, since the queries,
users and sessions on which two algorithms were run differ. These
concerns lead to a need of an offline evaluation system even when
the labels at first place have been collected via online data.

Using terminology in Section 2, the context includes the user-
typed query and rewritten candidates (together with their features);
an action is a subset of candidate rewrites; and the reward is a met-
ric derived from user clicks on the final search result page. Due to
business sensitivity, the metric is not revealed, although it suffices
to say that the metric measures goodness of the final SERP for the
present user. From now on, this metric is referred to as the target
metric. Apparently, the actions affect the final SERP, which in turn
affect user clicks and the reward.

4.2 Data Collection
Our data collection process was run on a small fraction of ran-

dom users (identified by browser cookies) for a week in late 2013,
yielding about 15M impressions. This is the exploration data set D
to be used in the following experiments.

To avoid adverse user experience, we require the top can-
didate must be included in the action for every impression.
Other candidates were sent randomly: for i ∈ {2, . . . , L},
Pr (qi is chosen) := 1

1+exp(λ1(s1−si)+λ2)
, where si was a score

indicating how good candidate qi was as a reformulation of the
original query; λ1 and λ2 were parameters tuned to yield a good
balance between aggressiveness of exploration and potential neg-
ative user experience. In our case, the parameters were chosen so
that the selection probabilities Pr (qi is chosen) fell in [0.1, 0.9],
and that an offline metric based on judge labels was not severely af-
fected. With these probabilities, propensity scores of actions (each
being a subset of query candidates) can be computed easily.

There are a few benefits of using this randomization scheme.
First, by always including q1 in P , the final SERP is usually rea-
sonably good, so users who were included in the data-collection
process would not notice much decrease in relevance quality. Sec-
ond, the scheme is motivated by the intuition that candidates with
higher scores tend to be better, so are more likely to be chosen by a
good policy. Biasing data collection towards such more promising
candidates will likely reduce variance (c.f., Section 3.2).

After data were collected, we ran the arithmetic and harmonic
mean tests described in Section 3.3 and found no major issues. It is
worth mentioning that the tests were able to help detect data issues
in earlier versions of data collection, leading to fixes that eventually
improved data quality.

4.3 Bootstrapping Histogram
In Section 3.4, we advocate the use of asymptotic normal ap-

proximation to construct confidence intervals. The underlying as-
sumption is that, when the amount of data is large, the estimator
in Equation 1 is almost normally distributed. Here, we verify this
assumption empirically with bootstrapping.

In particular, we sampled impressions from D with replacement
to get a bootstrapping set D1 of the same size as D. The sampling
procedure was repeated B = 1000 times, and we ended up with B
data sets: D1,D2, . . . ,DB . On each of them, we computed the un-
biased offline estimate of click-through rate (CTR) for some fixed
policy π. Finally, we had B estimates of CTR for the same policy.
Since we were dealing with a large data set, we implemented the

Figure 1: Bootstrapping histogram. The x-axis is the offline
CTR estimate. The y-axis is the frequency of the bootstrapped
estimates that fall into the respective range of CTR.

Figure 2: Online vs. offline target metric values. Each point
corresponds to one of the 7 days in the data collection period.

online bootstrap [23], which is essentially identical to the standard
bootstrap for the size of our data.

Figure 1 gives the histogram of the B estimates of CTR.2 It
is rather close to a normal distribution, as expected. The result
thus validates the form of confidence intervals given in Section 3.4.
Given the size of our data, the confidence intervals computed this
way were all tiny, usually on the order of 10−2 or less. We therefore
did not show these tiny intervals in the plots in the paper.

4.4 Accuracy against Ground Truths
We now investigate accuracy of the offline evaluator. During the

same period of time whenD was collected, we also ran a candidate
selection policy π on a fraction of users. The online statistics of π
could then be used as “ground truth,” which can be used to validate
accuracy of the offline estimator using exploration data D.

First, we examine the estimate of the target metric for each day
of the week. Figure 2 is a scatter plot of the online (true) vs. offline
(estimated) values. As expected, the offline estimates are highly
accurate, centering around the online ground truth values. Also in-
cluded in the plot is a biased version of the offline estimate, labeled
“Offline (biased),” which uses the following variant of Equation 1:

V̂
(biased)
offline (π) :=

∑
(x,a,ra,pa)∈D raI (π(x) = a)∑

(x,a,ra,pa)∈D I (π(x) = a)
.

This estimator, which is not uncommon in practice, ignores sam-
pling bias in D. The effect can be seen from the much larger esti-
mation error compared to the online ground truths, confirming the
need for using the reciprocal of propensity scores in Equation 1.

We now look at the CTR metric more closely. Figure 3 plots how
daily CTR varies within one week. Again, the offline estimates
2All CTRs and target metrics reported in the paper are normalized
(i.e., multiplied by a constant) for confidentiality reasons.

932

Figure 3: Daily click-through rates (CTR).

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 3 4 5 6 7 8
URL Position

Online
Offline

Figure 4: CTR as a function of position on SERP.

match the online values very accurately. The gap between the two
curves is not statistically significant, as the 95% confidence inter-
vals’ widths are roughly 0.01. Figure 4 gives the fraction of clicks
contributed by URLs of different positions on the SERP. Figure 5
measures how many clicks were received within a given time after
a user submitted the query. All results show high accuracy of the
offline evaluator. We have also done the same comparison on other
metrics and observed similar results.

4.5 Offline Optimization
While offline evaluation can be very useful on its own, reduc-

ing a substantial fraction of online A/B testing, it can be used as a
subroutine for offline optimization of policies.

We used a different data set similarly collected from fall 2013,
and split it randomly into a training set (2/3) and an evaluation set
(1/3). From the training set, we extracted training data whose (bi-
nary) labels were determined based on whether the sent candidate
contributed positively to the target metric. Hence, we obtained a
binary classification problem, in which one tries to predict whether
a rewritten query will contribute to the target metric, conditioned
on the original query. Boosted logistic regression was used to learn
a model, which outputs a number for every query-candidate pair.

When learning such a model, a few meta-parameters had to be
chosen to balance the target metric improvement and capacity con-
straints (since sending too many rewrites can be expensive). Here,
we did a grid search on the most important parameter. For each
value, we used the unbiased offline evaluation (Equation 1) to pre-
dict its online target metric, and selected the best one that respects
capacity constraints. Based on the offline evaluation results, we
picked a model and ran an A/B test. In a two-week experiment
done in late 2013, the model did show a statistically significant im-
provement over the existing (already highly optimized) production
baseline, demonstrating the power of the offline evaluator. Inter-
ested readers are referred to our technical report [19] for more de-

0.5

0.6

0.7

0.8

0.9

1

1.1

0 50 100 150 200
Time (in seconds)

Online
Offline

Figure 5: CTR as a function of time (in seconds).

tails of the optimization step and a few successful cases where the
new model improves upon the baseline.

5. RELATED WORK
There is a long history of evaluation methodology research in the

information retrieval community [27]. The dominant approach is
to collect relevance judgments for a collection of query-document
pairs, and compare different retrieval/ranking functions against
metrics like mean average precision and normalized discounted cu-
mulative gains. This approach has been very successful as a low-
cost evaluation scheme. However, several authors have argued for
several of its limitations (e.g., [2, 33]), in addition to the ones dis-
cussed in Sections 1 and 4.1; an alternative, “user-centered” eval-
uation emphasizes interaction between user and the search engine.
One challenge with the user-centered approach is the relatively high
cost for system evaluation and comparison. Our work, therefore,
demonstrates a promising solution in a large-scale search engine.

In industry, people also measure various online metrics (e.g.
CTR) to monitor and compare systems while running them to serve
users. Randomized control experiments (e.g., [16]) are the standard
way to measure and compare such online metrics. The more recent
interleaving technique may also be used to quickly identify the win-
ner between competing systems [6]. Both techniques requires run-
ning experiments on users, while our offline approach here can be
more efficient and less expensive. An interesting exception is the
recent work [13] that applies unbiased offline evaluation to infer
interleaving outcomes. It should be noted that, for evaluating a sin-
gle policy, our approach is less efficient; however, since the same
exploration data is used to evaluate multiple policies, it is expected
to be much more data-efficient in the long run.

As mentioned earlier, the offline evaluation technique is closely
related to causal inference in statistics [14] (as well as the covari-
ate shift problem in machine learning [26]), in which one aims to
infer, from observational data, the counterfactual effect on some
measurement by changing the policy (more often called “interven-
tion” in the statistics literature). Such counterfactual methods have
shown promise in a few important Web applications recently [4, 5,
17, 18, 21, 29, 30, 25]. In contrast to previous work that uses a
general framework [4], we focus the more specialized contextual
bandit model as in [18, 29, 21], which is natural and rich enough to
model many interactive machine learning problems. Furthermore,
instead of adding noise to parameters in a system to collect explo-
ration data [4], we randomize actions directly, which is more effi-
cient when the number of actions is small. A common algorithmic
tool in these works (including ours) is importance sampling for bias
correction, which requires randomization (or natural exploration)
in data. They therefore share a common limitation that the variance
tends to be large when the number K of actions is large.

933

6. CONCLUSIONS
In this work, we formulate a class of optimization problems in

search engines as a contextual bandit problem, and focus on the of-
fline policy evaluation problem. Our approach uses counterfactual
analytic techniques to obtain an unbiased estimate of the true policy
value, without the need to run the policy on real users. Using data
collected from a commercial search engine, we verified the reliabil-
ity of such an evaluation, and also showed a successful application
of it for offline optimization.

The promising results in this paper suggest a number of inter-
esting directions for future research. The action set in Speller is
tractably small when we only consider a short list of candidates.
The set of actions in a ranking problem, defined naively, consists
of all permutations of URLs. This is an exponentially large set that
can cause the variance to be large. It would be interesting to see
how to leverage successful ideas in related work [4, 10, 22] to ad-
dress this issue. Another direction worth investigating is direct op-
timization of policies based on exploration data with, for instance,
the offset tree algorithm among other approaches [3].

Acknowledgements
We thank Leon Bottou, Chris Burges, Nick Craswell, Susan Du-
mais, Jianfeng Gao, John Platt, Ryen White, and Yinzhe Yu for
helpful discussions.

7. REFERENCES
[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern

Information Retrieval: The Concepts and Technology behind
Search. Addison-Wesley Professional, 2nd edition, 2011.

[2] Nicholas J. Belkin. Some(what) grand challenges for
information retrieval. SIGIR Forum, 42(1):47–54, 2008.

[3] Alina Beygelzimer and John Langford. The offset tree for
learning with partial labels. In KDD, 2009.

[4] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela,
Denis Xavier Charles, D. Max Chickering, Elon Portugaly,
Dipankar Ray, Patrice Simard, and Ed Snelson.
Counterfactual reasoning and learning systems: The example
of computational advertising. JMLR, 14:3207–3260, 2013.

[5] David Chan, Rong Ge, Ori Gershony, Tim Hesterberg, and
Diane Lambert. Evaluating online ad campaigns in a
pipeline: Causal models at scale. In KDD, 2010.

[6] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and
Yisong Yue. Large scale validation and analysis of
interleaved search evaluation. ACM TOIS, 30(1):6, 2012.

[7] Olivier Chapelle and Ya Zhang. A dynamic Bayesian
network click model for Web search ranking. In WWW, 2009.

[8] Silviu Cucerzan and Eric Brill. Spelling correction as an
iterative process that exploits the collective knowledge of
Web users. In EMNLP, 2004.

[9] Fernando Diaz. Integration of news content into Web results.
In WSDM, 2009.

[10] Miroslav Dudík, John Langford, and Lihong Li. Doubly
robust policy evaluation and learning. In ICML, 2011.

[11] Jianfeng Gao, Xiaolong Li, Daniel Micol, Chris Quirk, and
Xu Sun. A large scale ranker-based system for search query
spelling correction. In COLING, 2010.

[12] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael J.
Taylor, Yi-Min Wang, and Christos Faloutsos. Click chain
model in Web search. In WWW, 2009.

[13] Katja Hofmann, Anne Schuth, Shimon Whiteson, and
Maarten de Rijke. Reusing historical interaction data for
faster online learning to rank for IR. In WSDM, 2013.

[14] Paul W. Holland. Statistics and causal inference. Journal of
the American Statistical Association, 81(6):945–960, 1986.

[15] Kalervo Järvelin and Jaana Kekäläinen. Cumulated
gain-based evaluation of IR techniques. ACM Trans. Inf.
Syst., 20(4):422–446, 2002.

[16] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and
Randal M. Henne. Controlled experiments on the web:
Survey and practical guide. Data Minining and Knowledge
Discovery, 18:140–181, 2009.

[17] Diane Lambert and Daryl Pregibon. More bang for their
bucks: Assessing new features for online advertisers.
SIGKDD Explorations, 9(2):100–107, 2007.

[18] John Langford, Alexander L. Strehl, and Jennifer Wortman.
Exploration scavenging. In ICML, 2008.

[19] Lihong Li, Shunbao Chen, Ankur Gupta, and Jim Kleban.
Counterfactual analysis of click metrics for search engine
optimization. Technical Report MSR-TR-2014-32, Microsoft
Research, 2014.

[20] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire.
A contextual-bandit approach to personalized news article
recommendation. In WWW, 2010.

[21] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang.
Unbiased offline evaluation of contextual-bandit-based news
article recommendation algorithms. In WSDM, 2011.

[22] Lihong Li, Jin Kim, and Imed Zitouni. Toward predicting the
outcome of an A/B experiment for search relevance. In
WSDM, 2015.

[23] Nikunj C. Oza and Stuart Russell. Online bagging and
boosting. In AISTATS, 2001.

[24] James Pitokow, Hinrich Schütze, Todd Cass, Rob Cooley,
Don Turnbull, Andy Edmonds, Eytan Adar, and Thomas
Breuel. Personalized search. CACM, 45(9):50–55, 2002.

[25] Ashok Kumar Ponnuswami, Kumaresh Pattabiraman,
Desmond Brand, and Tapas Kanungo. Model
characterization curves for federated search using click-logs:
Predicting user engagement metrics for the span of feasible
operating points. In WWW, 2011.

[26] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D. Lawrence, editors. Covariate
Shift and Local Learning by Distribution Matching. MIT
Press, 2008.

[27] Stephen Robertson. On the history of evaluation in IR.
Journal of Information Science, 34(4):439–456, 2008.

[28] Daniel Sheldon, Milad Shokouhi, Martin Szummer, and Nick
Craswell. Lambdamerge: merging the results of query
reformulations. In WSDM, 2011.

[29] Alexander L. Strehl, John Langford, Lihong Li, and
Sham M. Kakade. Learning from logged implicit exploration
data. In NIPS 23, 2010.

[30] Liang Tang, Romer Rosales, Ajit Singh, and Deepak
Agarwal. Automatic ad format selection via contextual
bandits. In CIKM, 2013.

[31] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Potential
for personalization. ACM Trans. Comput.-Hum. Interact.,
17(1), 2010.

[32] TREC. The Text REtrieval Conference. http://trec.nist.gov.
[33] Andrew H. Turpin and William Hersh. Why batch and user

evaluations do not give the same results. In SIGIR, 2001.

934

	Introduction
	Formulation
	Unbiased Offline Evaluation
	Basic Techniques
	How to Randomize Data
	How to Verify Propensity Scores
	How to Construct Confidence Intervals

	Case Study
	Speller
	Data Collection
	Bootstrapping Histogram
	Accuracy against Ground Truths
	Offline Optimization

	Related Work
	Conclusions
	References

