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ABSTRACT
Click-through rates and conversion rates are two core ma-
chine learning problems in online advertising. The evalua-
tion of such systems is often based on traditional supervised
learning metrics that ignore how the predictions are used.
These predictions are in fact part of bidding systems in on-
line advertising auctions. We present here an empirical eval-
uation of a metric that is specifically tailored for auctions
in online advertising and show that it correlates better than
standard metrics with A/B test results.

Categories and Subject Descriptors
H.3.4 [Information Storage And Retrieval]: Systems
and Software—Performance evaluation
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1. INTRODUCTION
Online advertising is a major business for Internet compa-

nies, reaching $43 billion revenue in 2013. Its main forms are
paid (or sponsored) search – where text ads appear alongside
search results of a web search engine – or display advertising
where advertisers pay publishers for placing graphical ads on
their web pages. Second price auctions are now commonly
used as a mechanism for selling advertisements opportuni-
ties on web pages [3].

Several payment options are offered to the advertisers in
an online advertising market. If the goal of an advertising
campaign is getting their message to the target audience (for
instance in brand awareness campaigns) then paying per im-
pression (CPM) with targeting constraints is normally the
appropriate choice for the advertiser. However, many adver-
tisers would prefer not to pay for an ad impression unless
that impression leads the user to the advertiser’s website.
Performance dependent payment models, such as cost-per-
click (CPC) and cost-per-conversion (CPA), were introduced
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to address this concern. In order to determine the winner of
the auction, these bids need to be converted to an expected
price per impression (eCPM).

The focus of this paper is evaluating the performance of
a bidder, defined as an agent that takes the CPC or CPA
that the advertiser is willing to pay and submits a CPM
bid for the impression. The bidder may either be exter-
nal to the marketplace, for instance a demand-side platform
(DSP) bidding on a real-time bidding (RTB) exchange [9],
or internal as in paid search.

The eCPM of a CPC or CPA bid will depend on the prob-
ability that the impression will lead to a click or a conver-
sion event. Estimating these probabilities accurately is thus
critical, both for paid search [7] and display advertising [1].
Offline evaluation of these probabilities is usually done as
with any supervised learning problem, using standard met-
rics such as log likelihood or squared error. But these metrics
are oblivious to how the probabilities will affect the bidder
performance. We propose here an empirical study of a met-
ric recently proposed in [5] that is specifically designed for
evaluating a bidder.

The idea is to take into account the value of the highest
competing bid on the exchange in the metric: if that bid
is much lower (resp. much higher) than the eCPM, then a
misprediction has hardly any influence because the bidder
would have won (resp. lost) the auction anyway. The metric
aims at estimating the bidder profit under a distribution
of the highest competing bid. The reason for having such
a distribution instead of using the observed bid value (i.e
the cost of the impression) is to increase the robustness by
considering that this bid could have been different.

We will first introduce in Section 2 the setting in which
the bidder is to be evaluated and then discuss the expected
utility, a metric designed for evaluating a bidder. An exper-
imental evaluation of that metric, including correlation with
A/B test results will be presented in Section 3, before the
concluding remarks of Section 4.

2. BIDDER EVALUATION

2.1 Setting
The setting is as follows. A bidder competes for an im-

pression opportunity and needs to submit a CPM bid for
that impression in a second-price auction. It values a cer-
tain action (such as a click or a conversion) with a value v.
The bidder predicts that if the ad is displayed, the proba-
bility of that action occurring (a = 1) is p. The value of an
impression is thus vp and since the second-price auction is
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incentive compatible, the bidder bids b = vp for the impres-
sion.1 Whether the bidder wins the auction depends on the
highest competing bid c. When b > c, the bidder wins and
pays c; if the impression is followed by the action of interest,
the bidder receives a reward of v.

The payoff for the auction can thus be written as:{
av − c if pv > c;

0 otherwise.
(1)

2.2 Baseline metrics
We are given a set of historical events (xi, ai, vi, ci), where

xi are some context features and where lost bids have been
filtered out. In other words, if p̄ is the production function
used to collect the data, then ∀i, p̄(xi)vi > ci. This last
inequality would not hold if exploration data were included,
i.e. impressions for which the bid was higher than the eCPM.
We suppose in the rest of this paper that no such data was
collected. A new prediction function p can be evaluated
using standard metrics [8] such as,

Log likelihood∑
i

ai log(p(xi)) + (1− ai) log(1− p(xi))

Squared error ∑
i

(ai − p(xi))2

These metrics focus on the quality of the predictions but
ignore the bidding system in which they are used. Another
possibility is to replay the logs and to estimate the profit (1)
that the bidder would generate with the new prediction func-
tion: ∑

i

(aivi − ci)I(p(xi)vi > ci),

where I is the indicator function. We call this metric the
utility. The issue with that metric is that without any ex-
ploration data, overpredictions are not penalized. In partic-
ular, if p ≥ p̄, then p(xi)vi ≥ p̄(xi)vi > ci and the utility is
the same for p and p̄:

∑
i

(aivi − ci)I(p̄(xi)vi > ci) =
∑
i

aivi − ci

=
∑
i

(aivi − ci)I(p(xi)vi > ci). (2)

2.3 Expected utility
Using exploration data with the utility would penalize

overpredictions and fix the issue describe above. But col-
lecting such data is expensive and might not be feasible.
Another way to penalize overpredictions is to pretend that
the highest competing bid may have been different. More
precisely, given an observed second price c, let Pr(c̃ | c) be
the distribution capturing which other values the highest

1The value may be non-zero when the bidder loses the auc-
tion: the user may convert without seeing the ad; there
might also be further impression opportunities for him. In
these cases the bid should be lowered, but we ignore these
possibilities in this paper.

competing bid may have taken. The expected utility (EU)
under this distribution is:

EU =

∫ pv

0

(av − c̃) Pr(c̃ | c)dc̃ (3)

We empirically study in this paper the suitability of (3) for
the purpose of evaluating a bidder. In a closely related work,
[5] analyzes the same expected utility as a loss function to
train machine learning models. The idea of introducing a
corrupting distribution to make a statistic or a loss function
more reliable is also known in the machine learning literature
as noise injection [2, 6].

Two limit distributions for P (c̃ | c) are noteworthy:

Dirac at the observed price c: this original utility (1).

Uniform : it is easy to show (see [5, Theorem 2]) that the
expected utility is, up to an irrelevant additive term
and multiplicative factor, equal to the squared error,
weighted by the value: v2(a− p)2.

One of the compelling feature of the expected utility is
thus that it includes two baseline metrics (utility and weighted
squared error) as special cases. And it also well-calibrated in
the sense that its expected value is maximized under perfect
predictions, pi = E(ai | xi) [5, Theorem 4]. This last prop-
erty is a direct consequence of the truthfulness of a second-
price auction.

2.4 Competing bid distribution
Given an observed second price c, which distribution Pr(c̃ | c)

should we choose to compute the expected utility (3)? A
natural choice would be a log-normal distribution centered
at c. Log-normal distributions have indeed been found to fit
quite well observed winning bids in Yahoo’s RightMedia ex-
change [4]. We have in fact experimented with this distribu-
tion and obtained satisfactory results. But this distribution
does not include the special case of the uniform distribu-
tion discussed above: the log-normal does not converge to a
uniform distribution as its variance goes to infinity.

The Gamma distribution on the other hand contains the
two baselines as special cases. A Gamma distribution with
α = βc + 1 and free parameter β has the following density
function:

Pr(c̃ | c, β) ∝ c̃βc exp(−βc̃).
As β → 0, Pr(c̃ | c, β) convergences toward the uniform

distribution. And as β → ∞, the variance of the distri-
bution, α/β2, goes to 0, while the mean, α/β, converges
toward c. In other words, it convergences towards a Dirac
distribution at c.

With this choice of the highest competing bid distribution,
the expected utility becomes:

avγ(βc+ 1, βpv)− βc+ 1

β
γ(βc, βpv),

where γ is the incomplete gamma function. We experiment
in the next section with this metric for different values of β.

3. EMPIRICAL EVALUATION
For this work we collected traffic logs of Criteo, a global

leader in performance display advertising, specialized in re-
targeting. Criteo acts as an intermediary between publishers
and advertisers by paying publishers on a CPM basis and
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gets paid by advertisers whenever there is a click on an ad
(CPC) or when there is a conversion following that click
(CPA).

We compare the performance of a CPC bidder offline and
online (i.e. through an A/B test). A CPC bidder takes
as input a bid request, that includes various features used
to estimate the CTR of the display opportunity, as well as
the value of a click. The bidder predicts the CTR with a
prediction function and it multiplies this prediction by the
value of the click to form the bid. The metrics (offline and
online) were computed on a 4 days period during which the
A/B test was live. The offline metric is the expected utility
(3) computed on all the logs with various values of β, while
the online metric is the profit on its own population, in other
words the utility,

∑
i aivi − ci.

Instead of computing a correlation across different pairs
of predictions functions, we fixed a pair of functions and
computed a correlation across publisher networks. A good
correlation means that if we estimate offline a prediction
function to be better than the other one on a given network,
then the corresponding bidder would indeed generate more
profit on that network. A publisher network corresponds
roughly to an RTB platform. Small networks were grouped
together in order to ensure that each of them had at least
30M impressions. We ended up with 25 networks.

The difference in online metrics is much noisier than the
difference in offline metrics; this is because the former is an
unpaired difference while the latter is a paired one. In order
to reduce the noise, we computed the correlations by taking
into account the confidence intervals on the online results.
This was done by randomly sampling the online profits ac-
cording to their confidence intervals, computing the correla-
tion with the offline metrics, and averaging the correlations
over 100 trials. The experimental protocol is summarized
in algorithm 1. Two correlation coefficients were computed,
Pearson r (linear correlation) and Kendall τ (ranking corre-
lation).

Algorithm 1 Computation of the correlation coefficients

Require: Two prediction models, an A/B test
1: Compute offline metrics for both models and each pub-

lisher network during the A/B test period.
2: Take the difference and normalize by the the total num-

ber of displays for that network.
3: for i=1 to 100 do
4: Resample the logs
5: Compute the bidder profit on each population.
6: Take the profit difference and normalize.
7: Compute the correlation between these online and of-

fline metrics.
8: end for
9: Report the average correlation.

The correlation coefficients as a function of β are plotted
in figure 1. The best correlation is achieved for β = 10. Note
that this value corresponds to a rather large variance: for a
cost2 c = 10−3 the variance is about 0.1.

The correlations for different offline metrics are reported
in table 1. The weighted MSE is in fact a negative MSE in
such a way that a positive difference means an improvement

2a cost for thousand impressions (CPM) is indeed of the
order of $1
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Figure 1: Correlation between A/B test results and
the expected utility as a function of β. As β → 0,
the metric is equivalent to a weighted MSE, while
as β → +∞, it is equivalent to the utility.

Pearson r Kendall τ
MSE 0.283 ±0.04 0.153 ±0.03
Weighted MSE 0.441 ±0.06 0.234 ±0.03
Utility 0.243 ±0.02 0.158 ±0.02
EU (β=10) 0.608 ±0.03 0.311 ±0.03

Table 1: Correlations coefficients and their standard
deviation – as computed by algorithm 1 – between
A/B test results and offline metrics.

and that the correlation coefficients are expected to be pos-
itive. As mentioned before, the columns weighted MSE and
utility correspond to β = 0 and β = ∞ respectively. The
correlation of the regular MSE is worse than the weighted
MSE, presumably because the regular MSE does not take
into account the values associated with each action: it is
more costly to make a prediction error while bidding on an
item with a large value than on one with a small value.

Finally a scatter plot of the offline / online differences
is shown in figure 2. Even though the correlation between
expected utility and online results is not that large (probably
because of noise in the online measurements), it is still much
better than the correlation with the weighted MSE.

4. CONCLUSION
For the purpose of evaluating the accuracy of a prediction

model, the MSE seems well suited, but does not take into
account how the predictions are used by the bidder. The
regular utility on the other hand tries to estimate the bidder
profit but may fail to correctly penalize mispredictions. The
expected utility, a metric recently proposed in [5], captures
best of both words. This paper demonstrated empirically
that indeed the expected utility achieves better correlations
with online results.
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Figure 2: Scatter plots of offline vs online results, each point representing a publisher network. Left: expected
utility, right: weighted MSE
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