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ABSTRACT
We study the task of learning the preferences of online read-
ers of news, based on their past choices. Previous work has
shown that it is possible to model this situation as a com-
petition between articles, where the most appealing articles
of the day are those selected by the most users. The appeal
of an article can be computed from its textual content, and
the evaluation function can be learned from training data.
In this paper, we show how this task can benefit from an
efficient algorithm, based on hashing representations, which
enables it to be deployed on high intensity data streams. We
demonstrate the effectiveness of this approach on four real
world news streams, compare it with standard approaches,
and describe a new online demonstration based on this tech-
nology.
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I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis; I.7.4 [Document and Text Process-
ing]: Electronic Publishing

General Terms
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1. INTRODUCTION
The simultaneous online activities of millions of users gen-

erate a stream of clicks that contains valuable information
about their preferences.

We consider the scenario - typical for online newspapers
but also for social media sites such as Facebook - where users
are presented with a selection of news items to choose from.
In order to engage with the content, users need to click on it,
thereby revealing their choice, and in the process disclosing
some information about their preferences.

We are interested in using these choices in order to predict
which news items are more likely to be chosen in the future
by a specific class of users, based on information about their
past choices.

Any practical algorithm working in this setting needs to
not only be very scalable, due to the large amount of in-
formation generated in websites with high traffic, but also
online: that is it should be capable of constantly adapting
its behaviour based on recent data, in this way tracking any
potential drifts in users’ preferences.

For practical reasons, we also assume that we have only
information about which news items in a given news outlet
have become “popular”, or “trending”: in other words, who
are the winners in the competition for user attention, on a
given day. This data is publicly released by many websites.

From previous work, we know that the probability of a
news article becoming popular does depend on its content,
and that it is possible to identify which words increase the
probability of a news article being clicked [9]. However,
while the content of an article influences its appeal, the ac-
tual set of popular articles is defined by the ones with the
most appeal: in other words, an article needs to be more
appealing than its competitors in order to be chosen. The
same article could be a winner or a loser, in different days.
Previous work also shows that the appeal of an article can be
modeled as a linear function of its textual content, with the
parameters being estimated from a large number of train-
ing pairs, each showing a popular and a non-popular article
from the same day and page. In other words, this can be
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turned into a learning-to-rank task, and solved with machine
learning algorithms [11].

The scalability of this approach is very important, so in
this study we explore the use of an efficient representation
and an efficient learning algorithm for the task described
above. We have used a representation of text based on ran-
dom projections, implemented by means of a hashing func-
tion [16]. This representation, that efficiently reduces the
articles to a 4096 dimensional vector, is then combined with
an algorithm recently introduced: the Clasher [13] to pro-
vide classification of data streams. The entire construction
requires constant time and constant space to incorporate a
new training point or to label a new test point, and therefore
is ideally suitable for data streams.

We demonstrate that this approach works on a number
of real world data streams (those generated by BBC, New
York Times, Seattle Times, and NPR websites) and that its
predictive power is comparable with that of more classical
methods, such as the Lasso and Ridge Regression, while still
retaining its important computational efficiency.

Finally, we describe an online demonstration that show-
cases this technology, providing news recommendations us-
ing the methods reported in this paper.

2. LEARNING TO RANK PREFERENCES
Previous work has shown that the readers’ preferences

problem can not be solved if approached as a simple clas-
sification task (i.e. separating popular from non-popular ar-
ticles) [9] . This is due to the popularity of an article being
a relative quantity that is affected by the other articles that
are published on the same day. For example, an article that
was popular one day can easily be non-popular if it appears
in the following days news where more popular articles are
published.

To solve this problem, our prior results indicate that one
needs to solve a preference learning task that consists of clas-
sifying ordered pairs of articles [9]. We call this classifier a
ranker. For the ranking procedure we learn an appeal func-
tion that separates pairs of more-appealing (i.e. popular)
and less-appealing (i.e. non-popular) articles. Therefore the
ranking procedure is based on information about the pref-
erence relationship between pairs of data points (x+, x−).
Where x+ refers to an example drawn from the set of popu-
lar articles for an outlet and x− is drawn from the set of non-
popular articles, we want to learn the relationship between
the two items x+ and x−, expressed as a binary classification
problem on the vector of their difference x = x+ − x−.

3. EFFICIENT CLASSIFICATION ON DATA
STREAMS

We wish to perform our preference learning on data streams
of news articles that are continuously providing new articles
to learn from and to classify. This situation arises natu-
rally in many settings where one wishes to learn a user’s
preferences in an efficient manner, such as selecting items
to display to social media users. To tackle this challenge,
the preference learning classifier used must be online, in
that it learns from each new example as it arrives then dis-
cards it, while also using limited computational resources,
i.e. bounded memory and processing times. This challeng-
ing settings is obviously therefore unsuitable for traditional

offline classifiers [1, 5] and dimensionality reduction tech-
niques [3] which become intractable at large scale.

Here we build on our previous work to learn efficiently
from high dimensional data streams, to learn user prefer-
ences within the same setting. Our proposed method, first
introduced in [13], is an online classification algorithm that
benefits from constant time and memory complexity in the
dimensionality of the feature set size by using the Hashing
trick to perform Stochastic Gradient updates on the stream,
as summarised in the following sections.

The Hashing trick
Traditionally, a bag-of-words approach is adopted for text
classification, describing each term by its Term Frequency-
Inverse Document Frequency (TF-IDF) score [14]. However,
due to the Zipfian nature of text [12], a significant drawback
of this approach on data streams is keeping track of the
ever-growing vocabulary of words that have appeared in the
stream. For a real world, deployed system that needs to run
in a robust manner for long periods, such a drawback can
be problematic.

One solution is the Hashing trick, an efficient feature com-
pression technique that keeps sufficient information for learn-
ing while extracting scalable vector representations from
text on the fly. This can be summarised as follows:

Data samples are mapped from a v-dimensional feature
space into a low-dimensional random feature space by com-
pressing each feature (terms in this case) to its hash, where
each hash index is in the interval [1..m], and m � v is the
desired size of the compressed representation. In the com-
pressed feature space, terms collide uniformly around each
of the m preallocated hashes. It has been proved that un-
der mild conditions this transform roughly preserves inner
product evaluations [6] and unlike other competitive com-
pression techniques this trick does not rely on the full input
space representation and can therefore be applied very effi-
ciently on data streams at very large scale.

The new embedding is maintained on the stream by up-
dating the relevant statistics about the hashes processed so
far. In the compressed features, TF counts and TF-IDF
scores for the hashed features are approximated based on
the count-min sketch [4]. An analysis shows that this com-
pressed embedding approximates the geometry of the full
corpus-wise TF and TF-IDF input space. Extensive exper-
iments conducted on real world datasets have shown that a
compressed space composed of m = 212 hashes does not hurt
the performance of a topic classifier too much [13]. We refer
to this representation as the 12 byte hash representation of
an article or simply h12 for short. The reader is invited to
refer to [13] for full results and discussion.

Online approximation of the mean
In a classical setting, offline learning algorithms typically
process training data in batches, iterating over the data sev-
eral times until it converges on the solution to its convex op-
timisation problem. To solve this problem, where we have
a continuous stream of data, this poses an intractable prob-
lem for offline methods. In a streaming setting, we use an
online stochastic gradient descent method known as clash-
ing [13], where labelled data is represented as a set of hashes
(using the Hashing trick) or words (using a TF-IDF repre-
sentation) and used to maintain a labelled partition of the
feature space. A classifier that uses clashing in this way is
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therefore known as a Clasher, it can be summarised as fol-
lows. Given a stream of examples x1, . . . , xn drawn from a
class c, the mean point satisfies:

p∗ = arg min
p

n∑
i=1

1

2
‖p− xi‖22. (1)

Since the size of a stream is unbounded, in a realistic scenario
p∗ cannot be computed exactly. The Clasher estimates this
quantity online, the contribution of example x to the total
cost is 1

2
‖p−x‖22, where the gradient is ∇(p) = p−x. There-

fore, after one gradient step a new estimate for the mean is
given by: p − α∇(p) = (1 − α)p + αx, where the learning
rate α ∈ [0, 1] controls the deviation from the current mean.
As shown in the above derivation, at time t the Clasher ap-
proximates the mean prototype pt+1

c for each class c with a
smooth exponential average of x1, . . . , xt:

pt+1
c = (1− α)ptc + αxt (2)

When receiving data from a data stream, unlabelled data z
can be classified at any time by computing the class c∗ of
their closest prototypes in Euclidean distance:

c∗ = arg max
pc

‖pc − z‖. (3)

As shown in Eqn 2, unlike other online classifiers that
are trained discriminatively, the Clasher’s learning proce-
dure possesses inherent parallel capabilities: computations
can be easily distributed over different processors, one for
each class.

Previous work has shown that on real world text data,
the Clasher obtains competitive F-scores with respect to the
most accurate learning algorithms for text classification, us-
ing significantly fewer computational resources. In addition,
an analysis about the predictive performance of the Clasher
shows that it behaves well within the hashed space repre-
sentation detailed in the previous section. The reader is
referred to [13] for full results and discussion.

4. EXPERIMENTS
We have trained rankers on data streams within a global

interval of six years between 2008 and 2014 using both TF-
IDF representations (words) and scalable hash representa-
tions (h12). In this section we assess the accuracy of the
Clasher with respect to other competitive text classification
methods for the preference learning task. We first describe
the data streams used for learning user preferences, then
we introduce other text classification methods tailored for
preference learning and detail the protocol used for evalua-
tion. Finally, we present the results obtained and report the
performance for all evaluated methods.

Data description
Using our modular architecture for news media analysis [7,
8], we gathered data from four news outlet sources (BBC,
New York Times, Seattle Times, NPR) between 2nd May
2008 and 14th July 2014. For each outlet, we collect two
streams of training data, the Top Stories and the Most Pop-
ular1 news feeds. The Top Stories feeds feature the articles
which appeared on the main page of their news outlet, while
the Most Popular feeds feature those articles which received

1For NPR and New York Times, we use the Most Emailed
news feed as the Most Popular stream.

the most attention from the public. From these feeds, we
denote any article which appears in both the Top Stories
and Most Popular feeds of an outlet as popular, while non-
popular articles are those featured in a Top Stories feed that
do not appear in any Most Popular feed.

Following this, every article was mapped into both its TF-
IDF representation following standard preprocessing tech-
niques [10], using the New York Times corpus [15] as a fixed
size vocabulary (v ≈ 2×105), and its hash space representa-
tion where m = 212. As described in our ranking procedure,
we could then form training examples from pairs of popular
and non-popular articles by taking the vector of their differ-
ence. When forming these training examples, each pair is
randomly assigned to either form a positive or negative pair
by simply inverting the sign of the difference. This allows
us to maintain balanced training data when operating in a
streaming setting.

The number of pairs between 2nd May 2008 and 14th July
2014 for each outlet is detailed in Table 1, along with the
total number of days we had data available, the number of
popular articles and the number of non-popular articles.

Online evaluation of methods
We evaluated the performance of the Clasher for the pref-
erence learning task using both the TF-IDF representation,
and the hash space representation on each outlet. We com-
pare this with two other classifiers using the full TF-IDF
representation, namely online Ridge and online Lasso [2].
Each of the methods can be summarised as follows:

• Clasher(h12) is the proposed scalable method that
builds a noisy representation of the stream and ap-
proximates the mean of each class. It has inherent
parallel capabilities and learns in constant time and
memory complexity.

• Clasher(words) is the proposed method where the
compression step is not performed. It learns in linear
time and memory complexity.

• Ridge(words) seeks an online estimate of the least-
squares solution with small l2-norm. It deals well in
settings where the data is over represented in feature
space. It learns in linear time and memory complexity.

• Lasso(words) seeks a sparse online estimate of the
least-squares solution (with small l1-norm). It deals
well in settings where some features are correlated or
uninformative. It learns in linear time and memory
complexity.

For all methods we use decaying learning rates of the form
α(t) = (λt+ 1)−1, where λ is the regularization parameter.
It is set to 1 for the Clasher and to (

√
p)−1 for the Ridge

and the Lasso.
Since the pairing procedure can cause dependencies in the

data published within the same day, the error of a classifier
designed as a ranker will be biased within the same day. In-
deed, every popular article is paired with every non-popular
articles published that day, leading to many redundant pairs.
Therefore, to measure the performance of a ranking model
that was last updated on day d we compute its error rate
based on unseen data published on day d+ 1.
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News outlet Pairs (x+, x−) Published days Popular set Non-popular set

BBC 2,300,000 1,027 21,400 185,000
Seattle Times 1,480,000 1,341 7,400 266,000
New York Times 483,000 1,082 11,100 75,800
NPR 463,000 1,109 16,100 53,500

Table 1: Summary of the streams used for learning user preferences, collected between 2nd May 2008 and
14th July 2014.

(a) Seattle Times (b) New York Times

(c) NPR (d) BBC

Figure 1: Top 20 (black on white) and least 20
(white on black) stemmed features from the Clasher
on words model, showing the user preferences for
four outlets.

Results
Table 2 gives the average cumulative error rates obtained by
the models on each of the four outlets. The signal for appeal
is clearly the strongest for the Seattle Times audience with
all methods reaching an average error of 20% or below. The
signal appears to be the weakest for the BBC audience where
performance varies from 34% to 38% error.

The Clasher on the h12 representation performs remark-
ably well with respect to the other methods that use the full
TF-IDF space. It is particularly distinctive since the size
of the h12 space is only 2% of the size of the original input
space. Because we have used a fixed size TF-IDF space to
describe the articles on words it is possible that the h12 space
carries newer informative features for learning user prefer-
ences. For example, the word iPhone was not known to the

public until 2007, and now features as a very appealing word
for the BBC audience as illustrated in Figure 1d.

On average, the Lasso gives slightly poorer performance
than the other methods. Even though it is possible to im-
prove the Lasso’s accuracy by giving less emphasis to the
l1-norm constraint, it would be at the cost of poorer in-
terpretability, since more words will be assigned non-zero
values.

Figure 2 illustrates the learning curve of the models for
the Seattle Times and the BBC audiences. While the error
remains quite high for the BBC, as more data is processed
the model becomes better at predicting the user preferences.
This suggests that more data would be of benefit to improve
the performance of the model. On Seattle Times data, all
models quickly reach a stable regime where they make few
errors while predicting users preferences.

On both the BBC and Seattle Times data, the Clasher(h12)
converges as fast as the other methods on words: this can be
explained by the low distortion property of the compressed
hashed space. Although not described in detail in this pa-
per, the h12 representation data streams are processed much
faster than their TF-IDF counterparts, due to the large
amount of processing time spent by these methods on inner-
product evaluations. In contrast, the processing time for the
h12 space is reduced by 98%.

Finally, in Figure 1 we illustrate the word clouds rep-
resenting the top 20 positive and negative features of the
Clasher trained on words for each of the four outlets. The
word clouds are extracted by ranking the average coordi-
nates of the vectors w = p+ − p− normal to the hyper-
planes separating positive from negative pairs at the end of
each day. From Figure 1, we can observe that Seattle Times
readers have a strong interest in local sports news, with Sea-
hawks, Huskies and Mariners all being present as positive
features. We can also see that New York Times and NPR
readers share very similar interests, favouring content re-
lated to science, technology, health and education research.
We can see a general trend, also reported in [9], that readers
avoid news content about public affairs, as represented here
by terms such as Obama, Afghanistan, Iran and Pakistan
appearing prominently in the negative features.

5. NEWS RECOMMENDATION APPLICA-
TION

In order to recommend news and demonstrate the feasi-
bility of the Clasher for preference learning, we developed a
news recommendation application called Clickable. This ap-
plication, available at http://clickable.enm.bris.ac.uk

uses the Clasher(h12) to recommend the most appealing ar-
ticles each day from a large number of news sources as part
of our news analysis infrastructure [7, 8].
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News outlet Clasher(h12) Clasher(words) Ridge(words) Lasso(words)

Seattle Times 0.20 0.19 0.19 0.19
New York Times 0.26 0.25 0.25 0.29
NPR 0.27 0.26 0.26 0.29
BBC 0.34 0.34 0.35 0.38

Table 2: Comparison between the performance of the proposed Clasher(h12) method for learning user pref-
erences with three other competitive methods for text classification on words representation, including the
Clasher. Performance is measured by the average cumulative error rate of the ranker computed on the next
day’s data and reported for a global training interval of six years between 2nd May 2008 and 14th July 2014.
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Figure 2: Learning curves for the four methods evaluated over a six year interval between 2nd May 2008 and
14th July 2014. The learning curves show the cumulative error rate computed on the next days data.

Our aim is that based upon the users’ interaction with
the application, we will be able to train a user preference
model specific to our own users, as we capture a growing
number of interactions. We have bootstrapped the model
for user preferences with the BBC model, since we believe
this model is closest to our own users in the United Kingdom.
Over time, the model will learn what makes our users click
on specific articles that we recommend, and diverge from
the BBC preference model.

While our application does not currently experience such
large numbers of users that we would require such efficient

methods for assessing the appeal of the daily news, it does
allow the application to be very scalable, demonstrating how
one could use this approach in a large scale application with
millions of users, where one may wish to learn a new model
for each user. In such instances, the advantages of using
constant processing time and memory becomes crucial to
the tractability of the approach.
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Figure 3: Screenshots of the Clickable application
on a Nexus 5 Android phone.

6. CONCLUSIONS
In this paper, we study the problem of learning user pref-

erences from a stream of data, focussed in the news media
domain. We combine two previous works, one on learning
user preferences, the other on efficient classification for data
streams, and performed experiments showing that the pro-
posed combination of methods works well for our given task.

Further to this, we present an online application for news
recommendation (Clickable: http://clickable.enm.bris.

ac.uk based upon the evaluated models, demonstrating the
feasibility of such an approach and outlining how this can
be generalised easily to the case of multiple sets of users, as
would be found in a real world news aggregator, news portal
or social media site. It efficiently discovers which words
make a user-class click on articles, and can track changes,
due to its online nature.
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[13] Ricardo Ñanculef, Ilias Flaounas, and Nello
Cristianini. Efficient Classification of Multi-labelled
Text Streams by Clashing. Expert Systems with
Applications, 2014.

[14] Stephen Robertson. Understanding Inverse Document
Frequency: on Theoretical Arguments for IDF.
Journal of documentation, 60(5):503–520, 2004.

[15] Evan Sandhaus. The New York Times Annotated
Corpus. Linguistic Data Consortium, Philadelphia,
6(12), 2008.

[16] Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. Feature Hashing for
Large Scale Multitask Learning. In Proceedings of the
26th Annual International Conference on Machine
Learning. ACM, 2009.

890

http://clickable.enm.bris.ac.uk
http://clickable.enm.bris.ac.uk

	Introduction
	Learning to rank preferences
	Efficient classification on data streams
	Experiments
	News Recommendation Application
	Conclusions
	Acknowledgments
	References


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150313085226
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         6
         AllDoc
         6
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     5
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150313085226
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         6
         AllDoc
         6
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     5
     6
     5
     6
      

   1
  

 HistoryList_V1
 qi2base





