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ABSTRACT
Detection of anomalous changes in social networks has been
studied in various applications such as change detection of
social interests and virus infections. Among several kinds of
network changes, we concentrate on the structural changes
of relatively small stationary communities. Such a change is
important because it implies that some crucial changes have
happened in a special group, such as dismiss of a board of
directors. One difficulty is that we have to do this in a noisy
environment. This paper, therefore, proposes an algorithm
that finds stationary communities in a noisy environment.
Experiments on two real networks showed the advantages of
our proposed algorithm.

Categories and Subject Descriptors
H.2.8 [Data management]: Database Applications – Database

General Terms
Clustering, Data mining

Keywords
Social communication network, spatial-temporal analysis,
event mining, community detection

1. INTRODUCTION
There has been considerable interest in the change anal-

ysis of social networks, such as communications among in-
dividuals through text messages [Newman et al. 2002], rela-
tions of opinions among bloggers [Gruhl et al. 2004, Agarwal
et al. 2008], and collaboration among coauthored scientists
[Newman 2006]. These networks change more or less their
structure over time. Detection of their anomalous changes
is of great interests across various applications such as tran-
sitions of social interests [Akoglu and Faloutsos 2008, Sun
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et al. 2007], outbreaks of rumours and infections [Gruhl et al.
2004] .

A dynamic network is typically represented by a time se-
ries of graphs. A change in a graph sequence falls into one of
three main categories according to the structure level of in-
terest: global structure, local structure and the community-
level structure. Changes in global structure are detected by
a statistic of the whole graph such as the network diameter
[Leskovec et al. 2005]. This is useful to understand how the
graph evolves as a whole. Changes in local structures are
detected around a node of interest or a small subgraph of
interest. Such a change detection is useful when we know in
advance that some nodes or subgraphs have a high poten-
tial of change [Akoglu and Faloutsos 2008, Idé et al. 2007].
Changes in community-level structure are seen in between
above two levels. This level focuses some densely connected
groups of nodes, called communities [Newman 2006]. In
social networks, one group of communities repeats merg-
ing/splitting or growing/shrinking, while another group of
communities remains unchanged for a long time [Palla et al.
2007]. The former group are ad-hoc communities formed
temporally with a short life. The latter group has a longer
life and is often of key communities such as a board of direc-
tors [Priebe and Conroy 2006, Newman 2006] and a group
of opinion leaders in blog networks [Agarwal et al. 2008].
Therefore, changes in such a stable community are one of
important signs of crucial events in practice.

In this paper, we focus on community-level changes of
communications among individuals through e-mails and phone-
calls. In this network, a node is an individual and an edge
represents the interaction between two individuals at one
time. A group sharing a common interest/profit may have
a strong connection among its members and exchange mes-
sages frequently, but the group is not so large in the scale
of the whole network. In general such a network includes
a noise, i.e., some messages may be wrongly sent, private
contacts may be hided, some rare case contacts or urgent
inquiries from an extra group may occur. Therefore, one of
the most challenging issues is to find small but stationary
communities in a noisy environment.

To carry out change detection on stationary communities,
we have to 1) establish a methodology to extract only sta-
tionary communities, along with an appropriate definition of
a community, and 2) choose an appropriate statistic show-
ing changes in each community, and 3) establish a way to
detect changes according to the value of the statistic. In this
paper, we mainly concentrate on the first issue and compare
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several community models for stationary community extrac-
tion in noisy environment, and then apply them to change
detection in a time series of graphs.

2. PRELIMINARIES

2.1 Notations
Let G = (V,E) be an undirected graph where V is a set of

nodes and E ⊆ V × V is a set of edges. We express the set
of nodes by V = {1, 2, 3, . . . , |V |} and assume no self loop.
We express G by the adjacency matrix A = (aij) defined by

A = (aij), aij =

{
1 (eij ∈ E)
0 (otherwise)

, (1)

where eij is the edge between nodes i and j. For subsets
U,U1, U2 ⊆ V , let us define the within-set weight W (U) and
the between-set weight B(U1, U2) by

W (U) =
∑

i,j∈U,i<j

aij , B(U1, U2) =
∑

i∈U1,j∈U2

aij . (2)

Suppose a dynamic system producing a random sequence
of graphs G(1), G(1), . . . , G(t), . . ., where G(t) = (V,E(t)), ∀t.
We assume the existence of a noise such that an edge in E(t)

disappears with the probability ϵ (0 < ϵ < 1
2
) and an absent

edge e′ /∈ E(t) turns to an existing edge with the probability
ϵ as well. This means that, by this noise, the probability p
of the appearance of an edge in E(t) changes to p′ as

p′ = p(1− ϵ) + (1− p)ϵ = (1− 2ϵ)p+ ϵ. (3)

Note that p′ > p for p < 1/2 and p′ < p for p > 1/2. That is,
density becomes close to 1/2 by this noise. We assume that
edges occur at random according to the above probability,
while V remains unchanged. Under this assumption, the
expected graph G = (V,E) with the noise is an weighted
clique with edge weight p′ij between every node pair of i and
j. The finite sample-averaged weight in time period [1, t] is
given by

p̂′ij :=
1

t

t∑
s=1

1{eij ∈ E(s)}, (4)

where 1 is the indicator function. We denote Ĝ[1,t] as the
graph with edge weight p̂′ij .

2.2 Problem of Community Detection
Typically, the extraction of a family of communities

U = {U1, U2, . . . , UK}, ∀Uk ⊆ V , is achieved by solving the
following the maximization problem:

max
U

Q(U) = max
U1,U2,...,UK

K∑
i=1

q(Ui), (5)

s.t. Ui ∩ Uj = ∅, ∀i ̸= j,
∪K

i=1 Ui = V , (6)

where q : 2V → R is a given quality function for a commu-
nity. The number K of communities is determined empiri-
cally or by a model selection criterion. This formulation is
known as the graph partitioning problem [von Luxburg 2007].
In this problem, the key is how to choose q(·) appropriately.

Figure 1: Communities found by Modularity, Ex-
traction and ρ-Dense core (ρ = 0.5). The value of
ϵ is the strength of noise. The color of nodes ex-
presses the membership of the nodes, while a gray
node does not belongs to any community.

Table 1: Summary of graph partitioning criteria
Aiming
Community

Criterion
(Who, When)

Quality function q(U) Robustness

Balanced
Community

Ratio Cut
(Hagen, ‘92)

−B(U,U)

|U |
⃝

EigenCluster
(Sarkar, ‘96)

W (U)

|U | ⃝

Normalized Cut
(Malik, ‘00)

− B(U,U)

W (U) +B(U,U)
⃝

Modularity
(Newman, ‘04)

W (U)− (W (U) +B(U,U))2

2W (V )
×

Dense
Community

Graph Scan (*)
(Wang, ‘08)

log

(
W (U)

µ(U)

)W (U)

+

×
log

(
W (V )−W (U)

µ(V )− µ(U)

)(W (V )−W (U))

Extraction
(Zhao, ‘11)

|U |
|U |W (U)−B(U,U) ×

ρ-Dense Core
(Koujaku, ‘14)

W (U)− ρ

2
|U |(|U | − 1) ⃝

(*) µ(U) is the expected number of edges inside U defined as µ(U) = 1
2
|U |(|U | − 1)η(V ).

3. CHANGE DETECTION OF COMMUNI-
TIES

3.1 Community Models
Fig. 1 shows how stably three algorithms can find the

communities in different levels of noises. Two main points
of evaluation of algorithms are a) if they extract only sta-
tionary communities, and b) how robust they are against
noise. From Fig. 1, we notice that 1) Modularity [Newman
2006] assigns forcibly every node to one of the communi-
ties (against our evaluation point a)), 2) Extraction [Zhao
et al. 2011] is a little weak to the strong noise (against our
evaluation point b)), and 3) ρ-Dense core [Koujaku et al.
] succeeds to find only stationary communities in the noisy
environment. We need such a robustness as the ρ-Dense core
shows in noisy communication networks.

Table 1 summarizes the representative quality functions
including the above three algorithms. Other than these al-
gorithms, various models have been proposed such as Ra-
tio cut [Hagen and Kahng 1992], EigenCluster [Sarkar and

794



Boyer 1996] and Normalized cut [Malik 2000], mainly in com-
puter science. A group of them prefers to divide a graph
into the subgraphs of almost equal sizes. Such a trial is ef-
fective in some applications such as an equal distribution
of resources, for example, an assignment of taks in parallel
computing. The number K of communities may be given
by experimenters (Ratio cut, EigenCluster and Normalized
Cut) or by referring to the complexity of networks as a whole
(Modularity). These criteria forcibly assign every node to
one of the communities. However, in social networks, such a
forcible assignment is not always preferred since a large frac-
tion of nodes have only few edges and they do not form com-
munities (isolated nodes) [Newman et al. 2002, Zhao et al.
2011] which are hardly dealt with these criteria. Therefore,
another group of quality functions are recently gathering in-
terest such as Graph Scan [Wang et al. 2008], Extraction
[Zhao et al. 2011] and ρ-Dense core [Koujaku et al. ] that
are able to deal with such isolated nodes. These criteria find
the most dense communities only. Graph Scan and Extrac-
tion find only a single community, while ρ-Dense core finds
multiple communities at once. In order to extract multiple
communities, either of the former two criteria repeats the
process in a greedy manner as long as the quality of a newly
found community is higher than a pre-determined threshold.
The Dense core solves the maximization problem (5) opti-
mally or sub-optimally and excludes automatically isolated
nodes. For this reason, we compare these three criteria of
Graph Scan, Extraction, and Dense core in the following.

3.2 Framework of change analysis
The framework of change detection on the basis of com-

munities is shown in Fig. 2. We construct the past graph
G− and the present graph G+ by double sliding windows

G− := Ĝ[t−w+1,t], G+ := Ĝ[t+1,t+w] (7)

where w is the window size. From these two graphs, we ex-
tract the past communities U− and the present communities
U+. Then, we calculate a change score zt between U− and
U+ by Variational Information (VI) [Meila 2007]:

zt = V I(U+,U−) = H(U+) +H(U−)− 2I(U+,U−), (8)

where H and I are the entropy and the mutual entropy of
the partition:

H(U) =
∑
U∈U

|U |
|V | log

(
|U |
|V |

)
, (9)

I(U ,U ′) =
∑
U∈U

∑
U′∈U′

|U ∩ U ′|
|V | log

(
|V ||U ∩ U ′|
|U ||U ′|

)
. (10)

Finally, we regard the time t as a changing point if zt is larger
than a threshold θ. There is a trade-off between sensitivity
and robustness. For detecting an abrupt change, we need a
shorter w, but then we suffer from many false alarms instead.
Reversely, with a longer w, we may detect a gradual change,
but loose sensitivity. In general, abrupt changes are detected
with a small value of w, while gradual changes are found with
a large value of w.

Time

Input : Graph Sequence

Output :Sequence of change scores

Change 
Evaluation

Community 
Extraction

Past communities Present Communities

Past

t-w tt-2w

......

t-w+1

......

Present

Time

t-w tt-2w t-w+1

Figure 2: Change detection framework with double
sliding windows
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Figure 3: Base graphs of six scenarios of changes

4. EXPERIMENTS

4.1 Analysis of Synthetic graphs
We generated a sequence of 100 graphsG(1), G(2), . . . , G(100)

based on seven graphs shown in Fig. 3. The original graph
Fig. 3 (a) consists of two cliques expressing communities that
are surrounded by 50 isolated nodes. From t = 1 to t = 50,
the graph G(t) stays in the original with a flip noise with the
probability ϵ. At t = 51, the graph generation mechanism
changes and starts producing a difference sequence accord-
ing to one of six scenarios of changes: (b) merge, (c) split,
(d) growth, (e) shrink, (f) birth or (g) death.

We say that a detector succeeded if it detected at least
one change within [51− w + 1, 51 + w], otherwise failed. A
change was reported when the change score becomes larger
than a pre-defined threshold θ. We generated 100 graph
sequences in each scenario and evaluated the Area Under
the receive operator Curve (AUC) for different values of θ.
The curve is drawn on the plane of the false alarm rate and
the recall rate. After drawing the curve, we calculated the
AUC by the trapezoid integration. We set the parameter of
community detectors so as to achieve the highest AUCs i.e.,
we set significance level of Graph Scan and Extraction to
0.01 and the density parameter ρ of ρ-dense core to ρ = 0.5.
In order to test the performance under difficult conditions,
we set the very short window size w = 5 and strong noise
intensity ϵ = 0.1, 0.2.
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Table 2: AUCs of community change detection tasks
ϵ = 0.1 ϵ = 0.2

Merge Split Growth Shrink Birth Death Merge Split Growth Shrink Birth Death
Modularity 0.46 0.66 0.77 0.75 0.73 0.76 0.31 0.66 0.68 0.74 0.80 0.72
Graph scan 0.98 0.39 0.96 0.94 0.98 1.00 0.70 0.65 0.62 0.69 0.72 0.65
Extraction 0.57 0.78 0.83 0.78 0.86 0.77 0.54 0.62 0.83 0.67 0.84 0.84
ρ-Dense core

1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.82 0.90 0.89 0.97 0.98
(ρ = 0.5)

Table 3: List of major events in Enron Inc.
ID

Month/Year Event description

#1 May 00 Significant rise in energy price in Calfornia
#2 Aug 00 Enron’s stock price attained its greatest value
#3 Jan 01 Electricity crisis led by Enron
#4 Feb 01 Alternation in CEO
#5 Apr 01 CEO gave offensive comments at public
#6 Jul 01 Alternation in CEO
#7 Sep 01 Large amounts of Enron stock was sold
#8 Dec 01 Enron bankrupted
#9 Jan 02 CEO was resigned

Table 2 shows the AUCs of four criteria. Graph Scan
gained the high values of AUCs in five scenario with ϵ =
0.1 only, but no with ϵ = 0.2. The ρ-Dense core achieved
the highest AUCs in all scenarios of changes both for ϵ =
0.1 and ϵ = 0.2. Extraction showed stable and acceptable
performance for both ϵ = 0.1 and ϵ = 0.2.
From these results, we can say that Modularity and Graph

Scan are not appropriate for our goal. Therefore, we com-
pared only the ρ-Dense core and Extraction in the following
experiments.

4.2 Analysis of E-mail interactions
Next, we examined the network constructed from the daily

record [Shetty and Adibi 2004] of e-mail interactions among
151 employees in Enron Inc. A node represents an employee
and two nodes are connected at day t when one employee
sends an e-mail to another employee in the day. We analyzed
the network with ρ-Dense core and Extraction. We trimmed
the parameters of community detectors and window size so
as to showed the clear peaks in their change scores. The
parameter of Extraction and ρ-dense core are set to 0.01
and 0.3, respectively and the window size w is set to w = 15.
The major social events are summarized in Table 3. In any
event, it seems necessary for some persons to communicate
to each other.
Fig. 4 shows the change scores of ρ-Dense core and Ex-

traction. The detected change points are shown by red bars.
Note that the scales of Y -axis are different. We notice that
the change scores of Extraction are larger than those of ρ-
Dense core. This indicates that the ρ-Dense core is more
pessimistic than Extraction. We examined detail changes
at (A) detected by ρ-Dense core. There is no clear change
in the amount of e-mails (Fig. 4 (a)) and Extraction does
not regard this day as a change point (Fig. 4 (c)). We vi-
sualized the graphs before and after this change point (A)
in Fig. 5. We can recognize some amount of change in the
communities surrounded by the red dotted rectangles.

4.3 Analysis of Phone-call interactions
The network we examined last is constructed from the

daily record of phone-call interactions among 106 students
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(A) (B) (C)

(D)

0

0.5

1

1.5

2

Jan 00 Apr 00 Jul 00 Oct 00 Jan 01 Apr 01 Jul 01 Oct 01 Jan 02

V
I

(c) Extraction ((E),(F) show detected events by Extraction)
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Figure 4: Frequency of e-mails (a), change scores
(VI) of ρ-Dense core (b) and Extraction (c) in Enron
data. Detected change points are red bars.

Table 4: List of major events in School.
ID Day/Mon Related Event

# 1 20 Sep New semester
# 2 6 Dec Winter Vacation begins
# 4 17 Jan Thesis due
# 3 3 Feb First day of classes

in MIT [Eagle and (Sandy) Pentland 2005]. A node is a
student and two nodes are connected if the corresponding
two students communicate at day t. We set the window size
w to w = 15 and the parameter of Extraction and ρ-dense
core to 0.01 and 0.2, respectively which were determined
as the same with the analysis of E-mail interactions. The
major events are summarized in Table 4.

Fig. 6 shows the number of phone-calls and the change
scores of two algorithms. The change points detected by
the two algorithms are different although (C) and (F) are
close. The graphs before/after the change point (A) and
(D) are shown in Figs. 7 and 8. We can see that ρ-Dense
core finds the changes of many small communities, while
Extraction finds the changes of larger communities.
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(a) Before (ρ-Dense core)

(b) After (ρ-Dense core)

Figure 5: Graphs before/after change point (A)
where the width of an edge represents the value
of its weight. EMP, MGR, VP, P and DIR stand
for Employee, Managers Vice President, President
and Director. ρ-Dense core extracts the change of
communities surrounded by dotted rectangles. For
example, the community in the bottom rectangle
seems to have been collapsed after this change.
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Figure 6: Frequency of phone-calls (a), change
scores (VI) of ρ-Dense core (b) and Extraction (c)
in MIT student data. The detected change points
are red bars.

(a) Before (ρ-Dense core) (b) After (ρ-Dense core)

Figure 7: Graphs before/after change point (A) de-
tected by ρ-Dense core. We can see that many small
communities have changed.

(a) Before (Extraction) (b) After (Extraction)

Figure 8: Graphs before/after change point (D) de-
tected by Extraction. Two small communities have
been combined into a large community

5. DISCUSSION
The ρ-Dense core model focuses on only the changes in

densely connected relatively small subgraphs, rather the changes
of the whole graph. This is preferred if such a subgraph
corresponds to a small but powerful/special community in
practice. In the example of e-mail networks, monitored
groups might be a community of executives or a project-
based group. In MIT student data, such a community might
be a small group of friends or a circle.

We notice that the change points detected by the two
algorithms are totally different from the points of the so-
cial events in both networks. In some sense, this is natu-
ral because these algorithms monitor only relatively small
but stationary communities and their changes are not al-
ways connected to social events happening in the whole net-
works. Reversely speaking, that is attraction of these algo-
rithms. That is, from the detected community-level changes,
we might find several interesting communities whose change
may give a large impact later or show some potential cause
of accidents.

ρ-Dense core model has a parameter ρ to determine the
standard level of the density of communities to be extracted.
A larger value of ρ is useful to find smaller but densely con-
nected communities, and a smaller value is useful for larger
but sparser communities. However it is not so easy to find an
appropriate value of ρ to the problem at hand. Therefore, a
few number of trial and error is necessary while monitoring
the change scores and graphs.
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6. CONCLUSION
Aiming at community-level change detection in a dynamic

network, we have compared the state-of-the-art community
extraction algorithms in two viewpoints of the exclusive ex-
traction of stationary communities and the robustness to
noise. We demonstrated that our previously proposed com-
munity model, ρ-dense core [Koujaku et al. ] achieves the
best in these two viewpoints. We also have shown that we
can detect the several types of changes of stationary com-
munities such as birth, grow, grow, shrink, birth and death.
The effectiveness was confirmed on two real-life networks of
communications through e-mails and phone-calls.
Future work is to explore more appropriate statistics for

community changes and to establish a way to detect the
changes skillfully and efficiently, hopefully better than hu-
man inspections. More intensive investigation is necessary
to confirm the effectiveness in a wider field of real-world ap-
plications such as fraud detections and intrusion detections.
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