TinCan2PROV: Exposing Interoperable Provenance of
Learning Processes through Experience API Logs

Tom De Nies Frank Salliau

Ruben Verborgh

Erik Mannens Rik Van de Walle

{tom.denies,frank.salliau,ruben.verborgh,erik.mannens,rik.vandewalle}@ugent.be

Ghent University — iMinds
Department of Electronics and Information Systems, Multimedia Lab
Gaston Crommenlaan 8 bus 201
B-9050 Ledeberg-Ghent, Belgium

ABSTRACT

A popular way to log learning processes is by using the Ex-
perience API (abbreviated as xAPI), also referred to as Tin
Can. While Tin Can is great for developers who need to log
learning experiences in their applications, it is more chal-
lenging for data processors to interconnect and analyze the
resulting data. An interoperable data model is missing to
raise Tin Can to its full potential. We argue that in essence,
these learning process logs are provenance. Therefore, the
W3C PROV model can provide the much-needed interop-
erability. In this paper, we introduce a method to expose
PROV using Tin Can statements. To achieve this, we made
the following contributions: (1) a formal ontology of the
xAPI vocabulary, (2) a context document to interpret xAPI
statements as JSON-LD, (3) a mapping to convert xAPI
JSON-LD statements into PROV, and (4) a tool implement-
ing this mapping. We preliminarily evaluate the approach
by converting 20 xAPI statements taken from the public
Tin Can Learning Record Store to valid PROV. Where the
conversion succeeded, it did so without loss of valid infor-
mation, therefore suggesting that the conversion process is
reversible, as long as the original JSON is valid.

Categories and Subject Descriptors

H.1.m [Models and Principles]: Miscellaneous

1. INTRODUCTION

When a learning process is logged, this log describes which
resources, which actions, and which people were involved in
producing a certain result. In other words, this log consti-
tutes the provenance of a learning process. Provenance is
information about entities, activities, and people involved
in producing a piece of data or thing. The PROV family of
specifications [14] defines various aspects that are necessary

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

WWW 2015 Companion, May 18-22, 2015, Florence, Italy.

ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741744.

689

to allow the inter-operable interchange of provenance infor-
mation in heterogeneous environments, such as the Web.

Knowing this, we could investigate all the aspects of log-
ging learning processes, and create a data model based on
PROV. However, a significant effort has already been made
in this field, namely by the Advanced Distributed Learn-
ing (ADL) organization, in the form of the Experience API
(xAPI) [20] (also referred to as the Tin Can API), a specifi-
cation to structure experience logs in the JSON format. In
its most basic form, an xAPI statement corresponds to the
sentence “I did this, and it resulted in that”. In the xAPI,
the “I” is modeled as an actor, the “did” as a verb, the “this”
as an object, and the “that” as a result. Apart from these
basic concepts, various pieces of context information can be
added to each xAPI statement. The xAPI is already widely
adopted by organizations in the educational field®.

Instead of re-inventing the wheel, this paper specifies a
conversion approach between the xAPI and W3C PROV.
The approach consists of the following components, each sig-
nifying a contribution on their own: (1) an OWL ontology
of the xAPI vocabulary, (2) a context document to interpret
xAPI statements as JSON-LD [19], (3) a mapping to convert
xAPI JSON-LD statements into PROV, and (4) a tool im-
plementing this mapping. This way, developers are offered
a choice in technology and serialization when it comes to
logging, and the resulting Linked Data is more easily pub-
lished in a scalable way and made interoperable with other
provenance repositories.

The rest of this paper is structured as follows: first, we
discuss the context of this paper and its related work. Next,
we provide a general overview of our approach, after which
we describe each of the aforementioned components in detail
and provide a link to an online demonstrator. Finally, we
evaluate the approach before concluding with a brief discus-
sion and outlook to future work.

2. CONTEXT & RELATED WORK

The merit of interoperable provenance in the field of edu-
cation has already been illustrated in literature. For exam-
ple, it has been shown to help instructors to be more effective
and to improve the learning experience [2]. We argue that
it can provide teachers and students with an unseen amount
of valuable information about the learning process. For ex-
ample, the speed and continuity at which students complete

"http:/ /tincanapi.com/adopters/

a task — intermittent or all at once — may already indicate a
need to revise the task. If information such as that could be
linked to the lineage of the study material itself, it would be-
come possible to observe the direct effect of changes in the
material on the learning experience. The possibilities be-
come even greater when also taking into account the prove-
nance of the teaching staff (e.g., teachers leaving/joining),
the inventory of the IT infrastructure (e.g., the acquisition of
a new device), etc. Connections that would never be appar-
ent upon first glance would appear automatically, all because
the provenance of all these aspects is made interoperable.

Unfortunately, current models to track learning processes
are often designed with one particular use case in mind, and
their data is siloed (often for good reasons, such as privacy).
For example, Yeh et. al. [21] built an e-learning system that
keeps learning records such as grades, reading time, login
times, and online discussions. The purpose of their system
was to measure the effect of blended e-learning. Similarly,
the authors of [5] measure patterns in a Web 2.0 learning
environment.

A more comprehensive approach was proposed by Mazza
et al. [11] in the form of MOCLog, a tool to analyze and
present log data on a server running Moodle, an open-source
PHP-based learning management system. While the ratio-
nale behind their approach is similar to ours — namely that
all data that can be logged has potential value for analysis
—, their system is catered towards one specific technology.
This prevents other sources of external information to be
interlinked with the logged data. In fact, mapping the MO-
CLog data to PROV might be an interesting case for future
research efforts.

For a more extensive review of current student monitor-
ing technologies, we refer to Corbi & Burgos [1], who pro-
vide insights on standards such as the Caliper framework
by IMS [9], IEEE standard 1484.11.1/2 [8], JSON Activity
Streams [18], and the xAPI.

Of all the learning process monitoring technologies men-
tioned above, Tin Can seems to be the most developer-
friendly, which explains its wide adoption by the industry.
Therefore, exposing its data in a complementary way, by
mapping it reversibly to an interoperable model is a logical
step. The inspiration for this comes from previous concep-
tual mapping efforts to W3C PROV, driven by the same
philosophy. Examples of such mappings include our own
Git2PROV [3] mapping for the version control system Git,
the W3C Provenance WG’s Dublin Core mapping [4], and
a mapping to Datalog [12].

3. APPROACH

Figure 1 provides a high-level overview of our approach.

The workflow starts with a Tin Can statement in the
JSON format, which needs to be converted to PROV. We
could just map every Tin Can property to a corresponding
PROV concept. However, to allow for the mapping process
to be reversed (i.e., making it possible to convert the prove-
nance back to Tin Can), this would require an annotation in
each PROV statement, indicating the original Tin Can prop-
erty. While this is easily achieved by introducing an optional
attribute (e.g., tincan2prov:property='actor'), there is a
more elegant solution.

This solution consists of first converting the Tin Can state-
ment into proper Linked Data. The most straightforward

690

approach to do this is by providing a JSON-LD context® as
explained in Section 5, mapping each term in the Tin Can
statement to a IRI (Internationalized Resource Identifier)
describing that term. This allows the original JSON object
representing the Tin Can statement to remain unchanged,
while providing us with the identifiers (IRIs) necessary to
map the statement to PROV. This way, an xAPI actor ob-
ject mapped to a PROV Agent can be associated with both
types, with no need to introduce extra attributes.

Unfortunately, the IRIs provided by the ADL organiza-
tion for the basic Tin Can terms point to PDF and GitHub
URIs, making them not machine-interpretable. Ideally, the
IRIs should be dereferenceable to a human-readable (e.g.,
HTML) or machine-interpretable (e.g., OWL) representa-
tion, depending on which type is requested. As this is cur-
rently not the case, we created our own instance of the xAPI
ontology created by ADL, to be referred to from the JSON-
LD context. This is described in detail in Section 4. If
ADL would host its own instance of such an ontology in the
future, the IRIs could easily be adapted.

Once the JSON-LD context is in place, each concept in the
xAPI ontology is then mapped to its corresponding PROV
representation, as explained in Section 6. Finally, this rep-
resentation is serialized in one of the PROV serializations,
as described in Section 7.

{JSON Tin Can Statement }

1
Add JSON-LD context |- xAPI Ontology !

!

{JSON-LD Tin Can Statement }

Mapping to PROV

!

PROV Bundle

PROV-N PROV-O { PROV-JSON } <PROV-XML>

Figure 1: High-level overview of TinCan2PROV.

4. XAPI ONTOLOGY

At the time of this paper, the official specification of the
xAPI is hosted in two places: one PDF document [20] spec-
ifying version 1.0.1 and one GitHub repository® where the
ongoing development is managed. Unfortunately, neither of
these provide a machine-interpretable version of the xAPI,
leaving their IRIs unsuitable to be used as Linked Data.

The verbs and activities vocabularies are specified in a
better way. All possible values for the term verb are listed
at http://www.adlnet.gov/expapi/verbs/. Analogously,
all possible values for activity are listed at http://www.
adlnet.gov/expapi/activities/. Each verb and activity
has its own IRI, dereferenceable to a (human-readable) de-
scription of the concept. No machine-interpretable descrip-
tion is provided at this IRI at the time this paper was writ-
ten, but the overall structure of the vocabulary suggests that
this might be planned for the near future.

Zhttp://www.w3.org/TR/json-1d/#the-context
3http://GitHub.com/adlnet/xAPI-Spec/

To allow for our proposed workflow to be executed, we
created a formal version of the xAPI ontology as specified
by ADL. Specifically, we hosted our own version of the spec-
ification, in a human- and machine-interpretable way.

Our formal ontology corresponds for the most part to
the official xAPI specification. We constructed it by going
trough sections 4.0 and 5.0 of the xAPI document on ADL’s
GitHub repository, and creating an OWL ontology follow-
ing two simple rules. First, whenever an objectType was
encountered, a corresponding owl:Class was created and —
if applicable — linked to its superclass by rdfs:subClass0f.
Second, whenever a property was encountered, a correspond-
ing owl:0ObjectProperty was created. In both cases the
value of the rdfs:isDefinedBy property was set to the IRI
of the xAPL.md document on GitHub (followed by a #),
and rdfs:label was set to the name of the objectType.
Finally, the possible instances of the :Verb class were enu-
merated as every verb listed at http://www.adlnet.gov/
expapi/verbs/, and every activity listed at http://www.
adlnet.gov/expapi/activities/ was made a subclass of
:ActivityType. An example of a simple xAPI statement,
modeled in the ontology is illustrated in Figure 2.

rdf:type
:Statement

ex:statementl
rdf:type
vP :Agent
:actor
e extomdenes

:mbox
—>| mailto:tom.denies@ugent.be |
:name
“Tom De Nies”@en
rdf:type
:verb
| eptverbsiompleed
:display
“completed” @en
:display
“afgewerkt” @nl
rdf:type

ex:exercisel

:object

rdf:type

:ActivityDefinition
“Example Activity” @en

Figure 2: Example of a simple statement in the
xAPI ontology.

:definition

In a number of cases, an extra class was created to sup-
port the modeling of more complex objects that aren’t sup-
ported by default in OWL or RDF Schema. For example,
the range of the :display, :name and :description proper-
ties includes a :LanguageMap. A similar approach was used
to model :extensions.

A full description of the ontology is available at http://
semweb.mmlab.be/ns/tincan2prov/, which is abbreviated
using the prefix xapi: throughout the rest of this paper.
When navigated to this ontology with a browser, an HTML
representation of the ontology will be shown. However, when
an RDF media type? is specified in the Accept header of the

“http://www.w3.org/2008/01/rdf-media-types

691

HTTP request for the same IRI, an RDF (OWL) description
will be returned. Ideally, such an ontology should be hosted
at the ADL organization itself in the future, for example at
http://www.adlnet.gov/expapi/.

S. ADDING JSON-LD CONTEXT

In order to convert a JSON document to JSON-LD, we
have to design and specify a JSON-LD context (@context).
Such a context document maps all terms that may occur in
a document to their corresponding IRIs in the ontology. Our
JSON-LD context document is available at http://semweb.
mmlab.be/ns/tincan2prov/tincan2prov. jsonld. To con-
vert a Tin Can JSON statement to Linked Data, a @context
entry referencing this document is added to the root of the
JSON, an @type entry with value xapi:Statement, as well
as the following snippet to every :verb and :object prop-
erty: "@context": { "id": "@id"}. This is illustrated in
Example 1.

A few additional conventions are necessary to ensure a
smooth conversion, the first of which regarding language.
The xAPI conforms to RFC 5646 [17] language tags for inter-
nationalization, while JSON-LD conforms to the older RFC
4646 [16]. In other words, upon conversion all language tags
must be changed (if necessary) to comply with RFC 4646.
The default language in our context document is set to “en”.

The second convention concerns extensions and attach-
ments. The xAPI allows the addition of extra JSON maps
as extension to the vocabulary. However, since the keys of
these maps are unknown, it is impossible for us to define
a proper JSON-LD context for them. Therefore, when ex-
tensions are used, developers wishing to convert their xAPI
statements to JSON-LD must provide this context them-
selves. In our ontology, we provided the generic :Extension
class, described by the properties :key and :value, which
could be used in such a context document.

Example 1: xAPI Statement in JSON-LD.

{ "@context": "http://semweb.mmlab.be/ns/
tincan2prov/tincan2prov. jsonld",
"Q@type": "http://semweb.mmlab.be/ns/
tincan2prov/Statement",
"actor": {
"mbox": "mailto:tom.denies@ugent.be",
"name": "Tom De Nies",
"objectType": "Agent"
1,
"verb": {
"@context": { "id" "@id" 1},
"id": "xapi-verbs:completed",
"display": { "en": "completed",
"nl": "afgewerkt"
}
} b
"object": {
"Q@context": { "id" "@id" },
"id": "http://www.example.org/exercisel",
"objectType": "Activity",
"definition": {
"name": { "en": "Example Activity" }
}

Example 2 shows what happens when this statement is con-
verted to an RDF notation such as Turtle®.

Example 2: the same xAPI Statement in Turtle.

[1 xzapi:actor [
a xapi:Agent;
xapi:name "Tom De Nies"Qen;
foaf:mbox <mailto:tom.denies@ugent.be>
1;
xapi:verb <xapi-verbs:completed ;
xapi:object
<http://wuw.example.org/exercisel> .

xapi-verbs:completed
xapi:display "completed"@en ,
"afgewerkt"@nl .
<http://www.example.org/exercisel>
a xapi:Activity ;
xapi:definition [
xapi:name
"Example Activity'"G@en

6. MAPPING XAPI TO PROV

In this section, we describe a mapping between our for-
mal instance of the xAPI ontology, and the PROV Ontology
(PROV-O) [10]. By doing this, we are effectively mapping
every Tin Can concept to a PROV concept.

We start from an RDF representation of an xAPI state-
ment, obtained by following the steps described in Section 5.
For each :Statement, a bundle is created using TriG nota-
tion, as specified in PROV-Links [13]. This bundle will con-
tain all triples for this statement, including those created
during the JSON-LD conversion.

Then, PROV concepts are inferred and asserted for each
property of the statement. The details of all the inferred
PROV concepts are listed in Table 1. Note that during
the JSON-LD conversion, class instances® are created as the
values for the properties :actor, :verb, :object, :result,
:context, :attachments, and :contextActivities, respec-
tively. The remaining properties that don’t map to any
PROV concepts are kept as they are, and will be asserted
as attribute-value pairs in serializations other than RDF.

The result is an RDF document of mixed PROV-O and
xAPI ontology concepts, which conforms to the PROV Data
model. As explained in Section 7, it is now possible to
translate this document into one of the other PROV seri-
alizations. Figure 3 shows a simplified version of such a
provenance graph, representing the same xAPI statement
as in Figure 2.

7. SERIALIZATION

There are 3 official W3C PROV serializations: PROV-
N [15] and PROV-O were published as recommendations,
and PROV-XML [6] was published as a note. Others have
created their own serializations, such as PROV-JSON [7]
and SVG.

5Prefixes omitted for clarity.

6:Actor, :Verb, :Activity or :(Sub)Statement, :Result,
:Context, :Attachment, and :ContextActivitiesObject

692

prov:Agent
xapi:Agent

DR :
| prov:label

prov:wasAssociatedWith

rov:Activit : .
P . y R xapi-verbs:completed
xapi:Verb ! provitype
””” Completedi@en 1 provused
,,,,,,, “afgewerkt’@n| i Proviabel
rov:Entit .
P . R .y [Com e ex:exercisel
xapi:Activity prov:type
i “Example Activity” @en j«--------oeoeesne oo
L prov:label

Figure 3: Example of an xAPI statement converted
to PROV

As described in Section 6, we restrict our implementation
of the mapping to the RDF (PROV-O) serialization. For
the other serializations, we refer to the excellent ProvTrans-
lator” by the University of Southampton, which — at the time
of this paper — supports PROV-N, PROV-O, PROV-JSON,
PROV-XML, Turtle, TriG, and SVG.

e
TinCan2PROV

Easily convert a Tin Can Statement to JSON-LD, N3, and W3C PROV, by pasting its JSON

tation in the box below and clicking convert

Example Tin Can statements can be copied from the Statemen

JSON-LD

N3 PROV-O

Figure 4: The demonstrator’s user interface.

8. TRY IT YOURSELF

An online demonstrator of the workflow described above
is available at http://tincan2prov.org. The demonstra-
tor, as illustrated in Figure 4, provides a form where a user
can enter a Tin Can statement in JSON format, which —
upon submission — is then converted to JSON-LD, RDF,

"https:/ /provenance.ecs.soton.ac.uk/

Table 1: Actions taken and PROV concepts asserted for each observed property of a xAPI statement. In all

cases, any remaining properties are kept as

attribute-value pairs to the corresponding PROV concept.

Statement property | condition/property

Action taken | PROV concept asserted

actor

:name
:member

prov:Agent
<value of :verb> prov:wasAssociatedWith <this prov:Agent>
prov:label
prov:hadMember

:verb

:display

prov:Activity
<this prov:Activity> prov:used <value of :object>
prov:label with value for every language

:object
‘name

:type rdf :type

prov:Entity
prov:label with value for every language

:result

prov:Entity
<this prov:Entity> prov:wasGeneratedBy <value of :verb>

:score

prov:Entity

:context

:statement

prov:Entity
<value of :verb> prov:used <this :Context>
<root statement id> prov:wasInfluencedBy <this :Statement>

:contextActivities

:parent <value of

:grouping <value of
:category <value of

:other

with prov:
with prov:
with prov:

<value of :
with prov:

prov:Collection with all :Activity objects below as prov:hadMember.
:context> prov:wasInfluencedBy <this :Activity>,
label="Parent”

:context> prov:wasInfluencedBy <this :Activity>,
label=“Grouping”

:context> prov:wasInfluencedBy <this :Activity>,
label=“Category”

context> prov:wasInfluencedBy <this :Activity>,
label="Other”

:timestamp <value of

:verb> prov:qualifiedStart <prov:Start with same time>

:stored

prov:wasGeneratedBy

rauthority

<this value> rdf :type prov:Agent
<statement id> prov:wasAttributedTo <this prov:Agent>

for each :Attachment
:display

rattachments

prov:Entity
prov:label with value for every language

and PROV-0O. As the JSON-LD to RDF conversion process
was not our primary focus, we relied on the jsonld® and n3°
libraries for Node JS for this step. At the time of writing,
advanced features such as extensions and attachments are
not yet fully supported due to the arbitrary nature of their
properties. This remains as a challenge for future work. All
updates regarding the ongoing development and improve-
ments are published at the same URIL.

9. EVALUATION

A mapping can be deemed successful if it converts data
from one representation to another, without losing any in-
formation. In this paper, we introduced two separate map-
pings. On the one hand, we introduced a workflow to convert
Tin Can statements to Linked Data using the xAPI ontol-
ogy. On the other hand, we created a mapping between this
xAPI ontology and W3C PROV. It’s important to keep this
distinction in mind when interpreting the evaluation results.

A formal proof of completeness between either of these
representations is beyond the scope of this workshop pa-
per. However, we do evaluate the mapping demonstrator
by performing a limited empirical evaluation. We copied 20

8https://www.npmjs.com/package/jsonld
‘https://www.npmjs.com/package/n3

693

diverse statements'® from the Tin Can Public LRS!, and
converted them first to JSON-LD, and then to PROV using
the online demonstrator provided. Upon successful conver-
sion, we then manually inspected each of the representations
for loss of information. By ‘loss of information’, we mean
that data present in one representation, can no longer be
found in another representation.

The detailed evaluation is provided at the following URL:
http://tincan2prov.org/evaluation.html. On this page,
the original Tin Can statements are listed as they were
copied from the public LRS, as well as their JSON-LD form
and their PROV-O form. Additionally, the PROV graph
of successful results can be viewed, courtesy of the Prov-
Translator. We provide a summary of the most important
observations here.

During this preliminary evaluation, we discovered a num-
ber of technical challenges with regard to robustness to user
error. For example, one statement did not convert from
JSON to RDF, due to incorrect URL-encoding of an identi-
fier in the original JSON statement, which means the map-
ping tool was not at fault. In another statement, the key
"ar-SA@calendar=gregorian" was used in an attempt for
internationalization. However, this does not result in a valid

10 After 20 statements, it became increasingly difficult to find
more statements with enough diversity on the public LRS.
"http://tincanapi.com/public-lrs/

Language Map when converted to RDF. Therefore, these
keys were filtered out during conversion to JSON-LD.

Converting the Tin Can RDF representation to PROV
went smoothly. For the 19 statements that did successfully
convert to N3, we observed no loss of valid information
in the PROV-O representation. This suggests that the map-
ping in these cases is fully reversible, with the exception
of invalid elements such as the aforementioned internation-
alization tags.

10. DISCUSSION & FUTURE WORK

By providing a reversible mapping workflow, we have in-
creased the interoperability of Tin Can, without sacrific-
ing its information content. Even apart from the inferred
PROV, the JSON-LD conversion step had merit on its own:
after this step, Tin Can data can now be (anonymized and)
exposed as Linked Data. Adaptation by the ADL organiza-
tion of a formal ontology such as ours in the future would
improve the situation even better.

As for our own future work, we will continue the evalua-
tion and development of the mapping tool to increase robust-
ness. Currently, extensions and attachments are not fully
supported. We mean to improve this by providing a JSON-
LD context for commonly used extensions and attachments,
allowing them to fit into our proposed workflow. Further-
more, our proposed workflow will be adopted in the context
of the Flemish project EduTablet'?, furthering innovation
in digital learning with mobile devices. This will result in
a large corpus of learning log data, which will allow us to
perform an evaluation in terms of new knowledge learned by
exposing the learning logs as PROV.

Acknowledgments

The research activities in this paper were funded by Ghent
University, iMinds (a research institute founded by the Flem-
ish Government), the Institute for Promotion of Innovation
by Science and Technology in Flanders (IWT), the FWO-
Flanders, and the European Union, in the context of the
EduTablet project.

11. REFERENCES

[1] A. Corbi and D. Burgos. Review of current
student-monitoring techniques used in
elearning-focused recommender systems and learning
analytics. the Experience API & LIME model case
study. International Journal of Artificial Intelligence
and Interactive Multimedia, 2(7):44-52, 2014.

S. B. Davidson and J. Freire. Provenance and
scientific workflows: challenges and opportunities. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1345-1350.
ACM, 2008.

T. De Nies, S. Magliacane, R. Verborgh, S. Coppens,
P. T. Groth, E. Mannens, and R. Van de Walle.
Git2prov: Exposing version control system content as
W3C PROV. In International Semantic Web
Conference (Posters & Demos), pages 125-128, 2013.
D. Garijo, K. Eckert, S. Miles, C. M. Trim, and

M. Panzer. Dublin Core to PROV Mapping. W&C
Note. Awvailable online: hitp://www. w3.

Lhttp://www.iminds.be/en/projects/2014,/03/20/edutab

[4]

694

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

org/TR/2018/NOTE-prov-dc-20130430/(accessed on
30 April 2013), 2012.

R. Hij6n-Neira and A. Velazquez-Iturbide. From the
discovery of students access patterns in e-learning
including web 2.0 resources to the prediction and
enhacements of students outcome. E-learning,
experiences and future, pages 275294, 2010.

H. Hua, C. Tilmes, S. Zednik (Eds.), and W3C
Provenance Working Group. PROV-XML: The PROV
XML Schema. W3C Note 30 April, 2013.

T. D. Huynh, M. O. Jewell, A. Sezavar Keshavarz,
D. T. Michaelides, H. Yang, and L. Moreau. The
PROV-JSON serialization, 2013.

IEEE. Data model for content to learning
management system communication, IEEE Std
1484.11.1-2004, 2005.

IMS Global Learning Consortium et al. Learning
measurement for analytics whitepaper, 2013.

T. Lebo, S. Sahoo, D. McGuinness (Eds.), and W3C
Provenance Working Group. PROV-O: The PROV
Ontology. W3C Recommendation 30 April, 2013.

R. Mazza, M. Bettoni, M. Faré, and L. Mazzola.
Moclog—monitoring online courses with log data. In
Proceedings of the 1st Moodle Research Conference,
pages 14-15, 2012.

P. Missier and K. Belhajjame. A PROV encoding for
provenance analysis using deductive rules. Springer,
2012.

L. Moreau, T. Lebo (Eds.), and W3C Provenance
Working Group. Linking Across Provenance Bundles.
W3C Note 30 April, 2013.

L. Moreau, P. Missier (Eds.), and W3C Provenance
Working Group. PROV-DM: The PROV Data Model.
W3C Recommendation 30 April, 2013.

L. Moreau, P. Missier (Eds.), and W3C Provenance
Working Group. PROV-N: The Provenance Notation.
W3C Recommendation 30 April, 2013.

A. Phillips and M. Davis. Tags for identifying
languages. Technical report, BCP 47, RFC 4646,
September, 2006.

A. Phillips and M. Davis. Tags for identifying
languages. Technical report, BCP 47, RFC 5646,
September, 2009.

J. Snell, M. Atkins, W. Norris, C. Messina,

M. Wilkinson, and R. Dolin. JSON Activity Streams
1.0, 2011.

M. Sporny, G. Kellogg, M. Lanthaler (Eds.), and W3C
RDF Working Group. JSON-LD 1.0: A JSON-based
Serialization for Linked Data. W3C Recommendation
16 January, 2014.

The Advanced Distributed Learning (ADL) Initiative.
Experience API, Version 1.0.1.
http://www.adlnet.gov/wp-content/uploads/2013/
10/xAPI_v1.0.1-2013-10-01.pdf, October 2013.

D. Yeh, C.-H. Lee, P.-C. Sun, et al. The analysis of
learning records and learning effect in blended
e-learning. Journal of information science and
engineering, 21(5):973-984, 2005.

