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ABSTRACT 
Protein-protein interaction plays an important role in understanding 
biological processes. In order to resolve the parsing error resulted 
from modal verb phrases and the noise interference brought by 
appositive dependency, an improved tree kernel-based PPI 
extraction method is proposed in this paper. Both modal verbs and 
appositive dependency features are considered to define some 
relevant processing rules which can effectively optimize and expand 
the shortest dependency path between two proteins in the new 
method. On the basis of these rules, the effective optimization and 
expanding path is used to direct the cutting of constituent parse tree, 
which makes the constituent parse tree for protein-protein 
interaction extraction more precise and concise. The experimental 
results show that the new method achieves better results on five 
commonly used corpora. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems –Textual databases; 
H.2.8 [Database Management]: Database Applications –Data 
mining; I.2.6 [Artificial Intelligence]: Learning –Knowledge 
acquisition; I.2.7 [Artificial Intelligence]: Natural Language 
Processing –Language parsing and understanding, Text analysis. 

Keywords 
Protein-protein interaction extraction, Modal verb phrases, 
Appositive dependency features, EOEP-CPT algorithm. 

1. INTRODUCTION 
Protein-protein interaction (PPI) reveals the molecular mechanisms 
of biological processes and is critical for the understanding of vital 
movement. In recent years, various kinds of biomedical research 
papers regarding protein interaction have been rapidly expanding, 
which makes it difficult for researchers to find related PPI 
information from a mass of biomedical literature. Furthermore, most 
of the existing PPI databases are manually crafted, such as BIND 
[1], MINT [2], and IntAct [3]. The rapidly growing number of 
literature brings inconvenience to the update and maintenance of 
these databases. Therefore, automatic extraction of PPI information 
has been a widely researched topic in the biomedical natural 
language processing (BioNLP) field. 

Early studies employed rule-based method in which the system 
performance depended on the quality and size of predefined rules. 
Alert et al. [4] adopted the rule of co-occurrence where two protein 
names and an interaction vocabulary were in one sentence, which 
only achieved 22% P-score. Huang et al. [5] attempted to 
automatically extract PPI patterns from training corpora with part of 
speech tagging and achieved good performance.  

With the advent of more and more sophisticated and powerful NLP 
techniques, machine learning methods have been widely used for 
the task of PPI extraction, which are divided into feature-based 
methods and kernel-based methods. However, feature-based 
methods [6-10] cannot avoid the complex construction and mapping 
process of feature vectors. Therefore, current researches focus on 
kernel methods due to their capability to directly use structured 
information. Several kernels are proposed for PPI extraction, mainly 
including subsequence kernels [11], tree kernels [12], and graph 
kernels [13] etc. 

Bunescu and Mooney [14] first proposed the idea of using kernel 
methods to extract PPI and a kernel based on the shortest 
dependency path was adopted for PPI extraction in their paper. 
Erkan et al. [15] defined cosine similarity and edited distance 
functions over dependency paths between two entities for PPI 
extraction via semi-supervised learning. Airola et al. [13] employed 
an all-dependency-paths graph kernel to comprehensively analyze 
the complex dependency relationships among words and achieved 
great success. However, their system had the problem of high time 
complexity and difficulty in calculation and implementation. Kim et 
al. [16] introduced a walk-weighted subsequence kernel based on 
previous research to explore the effect of various substructures for 
PPI extraction. Miwa et al. [17] proposed a method to combine 
multiple kernels for the purpose of improving performance. 

Most of the above kernels are based on the dependency information 
derived from sentences, which shows that dependency information 
plays a critical role in PPI extraction.  Nevertheless, taking only 
dependency information into consideration is not enough because of 
the complexity of biological information expression. The constituent 
parse tree (CPT) should be considered because it includes rich 
syntactic and structural features which are important for structured 
information representation of PPI extraction. 

In order to solve the aforementioned problems, some researchers 
used tree kernels over CPT for semantic relation extraction in 
newswire domain. After analyzing and comparing five tree setups, 
Zhang et al. [18] concluded that the tree kernel using the shortest 
path-enclosed tree (SPT) as structured information achieved the best 
performance. SPT is a part of CPT enclosed by two entities. 
Although this cutting strategy has certain rationality for PPI 
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extraction, most of the sentences in biomedical literature are too 
long and the entities span a relatively long distance [19], which 
cause some noise information unrelated to PPI extraction or even 
interfering with PPI extraction remain in SPT. 

For making better use of structured information, Zhou et al. [20] 
extended SPT by including some necessary predicate-linked 
information and then proposed the context-sensitive SPT (CS-SPT), 
which further improved the performance of PPI extraction. CS-SPT 
may be effective for sentences in which two entities are closed to 
each other, but it lacks guidance for the extension of complex 
sentences. Furthermore, the extended context information related to 
predicate link may not be associated with PPI extraction. 

For the purpose of overcoming the shortcomings of SPT and CS-
SPT, Qian et al. [21] adopted dependency information to generate a 
dynamic relation tree (DRT). In their method, the dependencies of 
ACE corpus were first divided into five categories. Then some 
hand-crafted rules according to these dependency types were used to 
determine what information should be retained and what 
information should be removed from CPT. However, many 
problems still exist in CPT. Firstly, these rules are manually crafted 
based on news corpora, which may not be applicable to the 
biomedical domain. For example, some dependencies are important 
for semantic relation extraction in newswire domain, but it may be 
useless for PPI extraction. Secondly, it is too coarse to divide the 
dependencies into only five categories, which fails to reflect the 
difference between similar dependency types. 

Introducing CPT into newswire domain has achieved great success 
in the task of semantic relation extraction. However, it fails to reach 
the expected performance in PPI extraction of biomedical researches 
due to the unique writing style of biomedical literature in which 
protein entities span a long distance in the parse tree and the 
relationship between entities even spans several clauses. They may 
cause the obtained structure information to be filled with much 
noise information unassociated with PPI extraction. 

In order to resolve these problems, Qian et al. [22] combined 
dependency information with CPT and proposed to employ the 
shortest dependency path (SDP) for the cutting of CPT to make the 
generated tree structure representation more applicable to PPI 
extraction. The approach was motivated by the following two 
aspects: one was the importance of the SDP to PPI extraction, the 
other was the great success of employing dependency information to 
cut CPT in newswire domain. The main idea of their shortest 
dependency path-directed constituent parse tree (SDP-CPT) 
algorithm was that only the words appearing on the SDP and their 
associated constituents in CPT were kept as the part of final tree 
structure, which achieved significant results over several commonly 
used corpora. Nevertheless, several shortcomings still exist in the 
structured information representation of SDP-CPT algorithm. Some 
noise information still remains in the process of cutting CPT via 
SDP while some critical information expressing PPI was omitted.  

Considering the aforementioned disadvantages, an improved tree 
kernel-based PPI extraction method is proposed in this paper. Some 
relevant processing rules are defined to effectively optimize and 
expand SDP between two proteins in the new method. These 
processing rules are aimed at resolving two problems: (1) The 
missing of key verbs resulted from the parsing error of modal verb 
phrases; (2) The noise interference brought by appositive 
dependency. The proposed processing rules can remove noise 
information while retaining critical information, which makes the 
effective optimization and expanding path-directed constituent parse 
tree (EOEP-CPT) more precise and concise. 

2. EOEP-CPT ALGORITHM DESCRIPTION 
The SDP-CPT algorithm [22] took advantage of SDP between two 
proteins to direct the cutting of CPT, in which only the words 
appearing on SDP and their associated constituents were kept. It 
combined the simplicity of SDP information with rich structural 
features inherent in CPT. Generally speaking the CPT structure 
generated by SDP-CPT algorithm can accurately express PPI. 
However, when there are modal verb phrases (such as “be able to”) 
between two protein entities to represent PPI relationship, the 
shortest dependency path in SDP-CPT may miss the verbs behind 
the modal verb phrases, which tend to be critical for expressing PPI. 
Moreover, SDP fails to remove the noise interference brought by the 
“appos” dependency type. The following example is used to 
illustrate the above limitations of SDP-CPT. 

Example 1: A bacterially expressed 318-amino acid fragment, 
PROT1 (418-736), containing the amphipathic helix region, was 
able to bind PROT2. 

The real names of two proteins are replaced with PROT1 and 
PROT2. Figure 1 depicts the processing results of SDP-CPT 
algorithm on example 1. 

The SDP and shortest constituent path (SCP) generated by the 
Stanford parser are shown in Figure 1 (a) and (b) respectively. 
According to SDP-CPT algorithm, all the words in SDP and their 
associated constituents in CPT should be added to SCP. Apart from 
PROT1 and PROT2, only “fragment” and “able” two words appear 
in SDP of example 1. Thus, the words, “fragment” and “able”, and 
their associated constituents need to be added to SCP. As a result, 
two paths, “fragment→NN→NP→NP→S” and “able→JJ→ADJP
→VP→S”, are linked to SCP. Since the dependency relation type 
between “able” and “PROT2” is “prep_to”, the preposition “to” and 
its associated constituents should also be included in SCP. The final 
step is to merge two consecutive NP/VP nodes along the SDP-CPT 
paths into a single one when the parent node has only one child 
node. In the obtained tree structure, there are two consecutive NP 
nodes on the path from PROT1 to S. The merged SDP-CPT is 
shown in Figure 1 (c). It is easy to see that the SDP-CPT tree 
structure is unable to represent the interaction relationship between 
PROT1 and PROT2 because SDP ignores the key word “bind” 
which can express interaction. Moreover, there is still noise 
information like “fragment” in SDP-CPT. The noise information not 
only is unhelpful for PPI  extraction, but also increases the 
complexity of tree structure for kernels. 

In order to solve the above problems, some improvements are made 
on SDP-CPT. An effective optimization and expanding path-
directed constituent parse tree (EOEP-CPT) is proposed in this 
paper. At first a related definition is given as follows. 

Definition 1: The symbolic words of commonly used modal verb 
phrases are defined as modal-verb-phrase keywords. The set 
composed of these keywords is defined as modal-verb-phrase-
keyword set which is denoted as MVPK. For example, the words 
“able”, “ability” and “necessary” in modal verb phrases “be able 
to”, “ability to” and “be necessary to” are keywords. 

The main idea of EOEP-CPT is described as follows. Firstly, the 
Stanford parser is applied to generate CPT and dependency graph 
(DG). The direct output results from the dependency parser are SD 
CCprocessed relation tuples, which should be further converted into 
DG for later processing. 
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(a) The SDP of example 1 

           

 (b) The SCP of example 1               (c) The SDP-CPT of example 1 

Figure 1. The processing results of SDP-CPT algorithm 

 
On the basis of generating CPT, SCP between two proteins is 
extracted from CPT, where SCP is the path starting from the two 
proteins to find their common ancestor node along CPT. SCP only 
contains two protein nodes and their constituents in CPT and does 
not include any dependency information. It is the simplest tree 
structure and the initial value of EOEP-CPT is set to SCP. Then 
EOEP-CPT finds SDP between two proteins from DG by using the 
shortest path method in graph theory. The path with length 1 will 
not be taken into account since this path cannot provide any 
information about PPI and makes no sense to PPI. Therefore, when 
there is a line connecting two proteins, the line should be deleted. 

From the above discussions we know that there are two limitations 
of SDP-CPT: 1. the appositive dependency relation produces noise 
interference; 2. the parsing error of modal verb phrases leads to the 
missing of key information. For the purpose  

of resolving the two problems, the following processing rules are 
defined in EOEP-CPT to optimize and expand the generated SDP. 

(1) For limitation 1, the algorithm first judges whether an appositive 
dependency relation appears in SDP or not. If it actually appears in 
SDP, this case indicates that the two words connected by the 
dependency relation are the same semantic constituent for the 
sentence. It will produce useless noise interference that the two 
words simultaneously appear in SDP. Thus, one of them should be 
removed from SDP. In EOEP-CPT algorithm, the removing rules 
consist of the following three cases: 

(a) If the appositive dependency relation appears in the form of 
PROT1→appos→word or PROT2→appos→word, the relative 
position of PROT1/PROT2 and the word is generally like “word, 
PROT1/PROT2” in the original sentence. In this case, 
PROT1/PROT2 is the summary of the word and they all refer to the 
same thing. Therefore, the word should be removed from the SDP. 
Accordingly, the “appos” dependency relation should be removed 
from dependency type set (SDT). 

(b) If the appositive dependency relation appears in the form of 
PROT1←appos←word or PROT2←appos←word, the relative 
position of PROT1/PROT2 and the word is generally like 
“PROT1/PROT2, word” in the original sentence. In this case, the 
word is the supplement of PROT1/PROT2 and expresses useful 
information about the proteins. For example, in the sentence “In 
addition, a possible role for PROT1, the product of PROT2”, the 
appositive “product” represents the relationship between PROT1 
and PROT2. Thus, PROT1/PROT2 and the word cannot be deleted. 

(c) If the appositive dependency relation appears in the form of 
PROT1→……word1→appos→word2 or PROT2→……word1→
appos→word2, the effect of deleting word1 or word2 is similar in 
this case. In EOEP-CPT algorithm, the word which is far from 
PROT1/PROT2 will be deleted from the SDP because this kind of 
relationship is weaker. 

(2) For limitation 2, the algorithm first judges whether SDP contains 
some keywords in set MVPK or not. If not, nothing will be done; 
otherwise, some measures will be taken to find the verb behind the 
keyword from the original sentence. Secondly, the algorithm judges 
whether the verb appears in SDP. If it is true, noting will be done; 
otherwise, the verb should be inserted into the back of the keyword. 

The SDP processed through the above rules is denoted as the 
effective optimization and expanding path (EOEP). The set of 
dependency types is denoted as EOET. Then EOEP is used to direct 
the cutting of CPT. For each word in EOEP except PROT1 and 
PROT2, its corresponding node is found from CPT and the path 
from the node to the root of SCP is added to EOEP-CPT. In 
addition, if the dependency relation between two words is 
“prep_xx”, the path from the “xx” to the root of SCP should also be 
added to EOEP-CPT because this kind of dependency relation is 
important for PPI extraction. The final step is to merge two 
consecutive NP/VP nodes along EOEP-CPT paths into a single one 
when the parent node has only one child node. Figure 2 describes 
the specific steps of EOEP-CPT algorithm. 
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Now we still use example 1 to demonstrate the EOEP-CPT 
generating process. From SDP in Figure 1 (a) we can conclude that 
the dependency relation between PROT1 and “fragment” is 
“appos”. According to EOEP-CPT, the word “fragment” and 
dependency relation “appos” should be removed from SDP while 
PROT1 is connected to “able”. Furthermore, because the keyword 
“able” appears in SDP while the verb “bind” behind it doesn’t 
appear in SDP, the verb “bind” needs to be inserted into the back of 
“able”. Meanwhile, the dependency relation between “able” and 
“bind” is replaced with “xcomp” and that between “bind” and 
“PROT2” is replaced with “dobj”. The processing results are shown 
in Figure 3. Compared with SDP in Figure 1 (a), EOEP in Figure 3 
(a) retains the key information “bind” while it removes the noise 
interference “fragment”. Compared with SDP-CPT in Figure 1 (c), 
it is more accurate and concise to use the EOEP-CPT structure (in 
Figure 3 (c)) representing the PPI information. 

3. EXPERIMENTS 
In this paper, we select five widely used corpora in related work as 
the experimental data sets: AIMed [19], BioInfer [23], HPRD50 
[24], IEPA [25] and LLL [26]. These PPI corpora lack unified 
annotation standard, which will lead to the large difference and 
incompatibility of the corpora format. For the convenience of 
comparison, we use the conversion system [27] to convert all the 
corpora into the unified XML format.  

For the preprocessing of corpora, the paper adopts the same 
strategies [22] as most related work, in which all self-interaction 
instances are removed and nest protein names are retained in all 
corpora. For a sentence with multiple protein entities, the involved 

two proteins are replaced with PROT1 and PROT2 respectively to 
hide protein entities and facilitate machine learning. 

The Stanford parser is used to generate CPT and SD CCprocessed 
dependency relation tuples for sentences in the above corpora. Qian 
et al. [22] demonstrated that SDP in the form of SD CCprocessed 
had the best performance for PPI extraction among the four Stanford 
dependency schemes. Furthermore, this paper employs the latest 
version of Stanford parser whose performance is different from that 
of the old version used in [22]. All the following experimental 
results are conducted on the new version. In this paper, we choose 
SVMLight [28] classifier with convolution tree kernel functions as 
the classifier. 

In order to make full use of the data set, we adopt the widely used 
10-fold document-level cross-validation. For the problem of 
considering the multiple occurrences of a PPI as one relation pair or 
multiple pairs, we employ OAOD (One Answer per Occurrence in a 
Document) strategy, which means that each occurrence is taken as a 
PPI instance. The commonly used evaluation metrics for PPI 
extraction are Precision (P), Recall (R) and their harmonic mean F-
score (F). However, according to [13], F-score has a critical 
weakness that it’s sensitive to the distribution of positive instances 
and negative instances in corpora. Even for the same PPI extraction 
system, F-score on various corpora is of great difference. As a 
substitute of F-score, AUC [29] (area under the receiver operating 
characteristics curve), which is invariant to the different distribution 
of corpora and recommended to evaluate the performance of PPI 
extraction, is provided in this paper. 

 
Figure 2. EOEP-CPT algorithm 

658



 

(a) The EOEP of example 1 

          

(b) The SCP of example 1                           (c) The EOEP-CPT of example 1 

Figure 3. The processing results of EOEP-CPT algorithm 
 

We compare the results obtained by EOEP-CPT with those of using 
other state-of-the-art PPI extraction systems on the AIMed corpus. 
Specially, the experimental results of EOEP-CPT and SDP-CPT are 
conducted on the Stanford parser v2.0.4. The new version of 
Stanford parser improves the overall performance but decreases the 
parsing precision, which affects the experimental results of PPI 
extraction systems. Even so, the PPI extraction system in this paper 
outperforms systems in [6, 12, 22, 30] which are shown in table 1. 
Compared with SDP-CPT, P, R and F-score of our method are 
increased by 1.4%, 1.1% and 1.1% respectively. 

The performance comparison of our system and other PPI extraction 
systems over five corpora is shown in table 2. It indicates that 
EOEP-CPT achieves better results than SDP-CPT [22] and Tikk 
[30] on four corpora except HPRD50. Furthermore, the results of 
EOEP-CPT are better than Airola [13] on three of five corpora 
although an all-paths graph kernel was applied in [13] with high 
complexity. It demonstrates that EOEP-CPT algorithm is effective 
in removing noise interference caused by appositive dependency 
relation and retaining critical information for improvement of PPI 
extraction. There is a gap between our method and system of Miwa 
et al. [31]. However, their system combined multiple parsers and 
kernels, which had high computation complexity and difficulty in 
implementation. 

Table 1. Performance comparison on the AIMed corpus. 

PPI extraction systems P(%) R(%) F 

EOEP-CPT 58.2 46.4 51.4 

SDP-CPT[22] 56.8 45.3 50.3 

Dependency tree[12] 56.9 39.0 46.3 

Constituent parse tree[30] 39.2 31.9 34.6 

Mitsumori et al. [6] 54.2 42.6 47.7 

In order to evaluate the performance of the learning model on other 
corpora, experiments for cross-corpus are also conducted in this 
paper. We first train a model on one corpus and then use the trained 
model to test on the other four corpora. F-score for cross-corpus is 
shown in table 3 and AUC in table 4. It is obvious that F-score 
tested on larger corpus (AIMed and BioInfer) are lower than that of 
other corpora in table 3. 

This is because that the model trained on smaller corpus cannot 
make up for the difference with large corpus. In addition, each 
corpus has different tagging strategy and is incompatible with each 
other.

Table 2. Performance comparison on multiple corpora. 
  
 

EOEP-CPT SDP-CPT Airola Tikk Miwa 

F AUC F AUC F AUC F AUC F AUC 
AIMed 51.4 79.4 50.3 79.6 56.4 84.8 34.6 77.6 64.2 89.1 

BioInfer 62.8 80.9 60.9 80.4 61.3 81.9 47.6 73.3 67.6 86.1 

HPRD50 65.1 81.9 65.3 81.7 63.4 79.7 69.7 84.0 69.7 82.8 

IEPA 68.7 81.6 68.1 80.3 75.1 85.1 70.7 81.0 74.4 85.6 

LLL 82.3 87.2 79.8 85.2 76.8 83.4 79.1 86.8 80.5 86.0 
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Except HPRD50, the testing results using the models of other 
corpora are lower than the internal 10-fold cross-validation of the 
same corpus. This is not surprising because using the trained model 
to test on the same corpus will certainly achieve better results. The 
same conclusion can be drawn from table 4. 
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Table 3. F-score for cross-corpus evaluation. 
 AIMed BioInfer HPRD50 IEPA LLL 

AIMed 51.4 47.3 48.0 41.6 45.6 

BioInfer 46.2 62.8 62.1 61.4 62.7 

HPRD50 40.4 47.6 64.7 54.2 54.2 

IEPA 38.1 53.4 66.3 68.5 67.8 

LLL 34.9 47.9 64.2 68.1 82.3 

（Row: the training corpus. Column:  the testing corpus） 
 

Table 4. AUC for cross-corpus evaluation. 
 AIMed BioInfer HPRD50 IEPA LLL 

AIMed 79.4 75.8 78.2 67.1 71.8 

BioInfer 73.6 80.9 79.3 78.5 80.2 

HPRD50 70.5 71.4 81.9 65.0 67.7 

IEPA 67.9 72.6 74.3 81.5 77.2 

LLL 65.2 71.9 73.4 74.0 87.2 

（Row: the training corpus. Column:  the testing corpus） 
 

5. REFERENCES 
[1] Mathivanan, S., Periaswamy, B., Gandhi, T., Kandasamy, K., Suresh, 

S., Mohmood, R., Ramachandra,Y., and Pandey, A. 2006. An 
evaluation of human protein–protein interaction data in the public 
domain. BMC Bioinformatics. 7, 19, Suppl. 5 (2006).  

[2] Ceol, A. and Aryamontri C. 2010. MINT, the molecular interaction 
database: 2009 update. Nucl Acids Res. 38, D532 (2010). 

[3] Aranda, B., Achuthan, P., and Alam-Faruque, Y. 2010. The IntAct 
molecular interaction database in 2010. Nucl Acids Res. 38, D525 
(2010).  

[4] Albert, S., Gaudan, S., and Knigge, H. 2003. Computer-assisted 
generation of a protein-interaction database for nuclear receptors. Mol 
Endocrinol. 17 ( 2003), 1555-1567. 

[5] Huang, M., Zhu, X., and Hao, Y. 2004. Discovering patterns to extract 
protein-protein interactions from full texts. Bioinformatics. 20 (2004), 
3604-3612. 

[6] Mitsumori, T., Murata, M., Fukuda, Y., Doi, K., and Doi, H. 2006. 
Extracting protein–protein interaction information from biomedical text 
with SVM. IEICE Transactions on Information and Systems. E89, 8 
(2006), 2464-2466. 

[7] Giuliano, C., Lavelli, A., and Romano, L. 2006. Exploiting shallow 
linguistic information for relation extraction from biomedical literature. 
In Proceedings of EACL’2006. (2006), 401-408. 

[8] Niu, Y., Otasek, D., and Jurisica, I. 2010. Evaluation of linguistic 
features useful in extraction of interactions from PubMed: application 
to annotating known, high-throughput and predicted interactions in I2 
D. Bioinformatics. 26, 1 (2010), 111-119. 

[9] Liu, B., Qian, L. H., Wang, H. L., and Zhou, G.D. 2010. Dependency-
driven feature-based learning for extracting protein–protein interactions 
from biomedical Text. In Proceedings of COLING’2010. (2010), 757-
765. 

[10] Bui, Q. C., Katrenko, S., and Sloot, P. M. 2011. A hybrid approach to 
extract protein–protein interactions. Bioinformatics. 27, 2 (2011), 259-
265. 

[11] Bunescu, R. and Mooney, R. 2005. Subsequence kernels for relation 
extraction. In Proceedings of NIPS’2005. (2005), 171-178. 

[12] Chowdhury, F. M., Lavelli, A., and Moschitti, A. 2011. A study on 
dependency tree kernels for automatic extraction of protein–protein 
interaction. In Proceedings of BioNLP’2011. (2011), 124-133. 

[13] Airola, A., Pyysalo, S., Björne, J., Pahikkala, T., Ginter, F, and 
Salakoski, T. 2008. All-paths graph kernel for protein–protein 
interaction extraction with evaluation of cross corpus learning. BMC 
Bioinformatics. 9, Suppl. 1 (2008). 

[14] Bunescu, R. and Mooney, R. 2005. A shortest path dependency kernel 
for relation extraction. In Proceedings of EMNLP’2005. (2005), 724-
731. 

[15] Erkan, G., Özgür, A., and Radev, D. R. 2007. Semi-supervised 
classification for extracting protein interaction sentences using 
dependency parsing. In Proceedings of EMNLP-CoNLL’2007. (2007), 
228-237. 

[16] Kim, S., Yoon, J., Yang, J., and Park, S. 2010. Walk-weighted 
subsequence kernels for protein–protein interaction extraction. BMC 
Bioinformatics. 11 (2010), 107. 

[17] Miwa, M., Sætre, R., Miyao, Y., and Tsujii, J. 2009. Protein–protein 
interaction extraction by leveraging multiple kernels and parsers. Int J 
Med Inform 2009. 78 (2009), 39-46. 

[18] Zhang, M., Zhang, J., Su, J., and Zhou, G. D. 2006. A composite kernel 
to extract relations between entities with both flat and structured 
features. In Proceedings of ACL-COLING’2006. (2006), 825-832. 

[19] Bunescu, R., Ge, R., Kate, R., Marcotte, E., Mooney, R., and Ramani, 
A. 2005. Comparative experiments on learning information extractors 
for proteins and their interactions. J Artif Intell Med. 33, 2 (2005), 139-
155. 

[20] Zhou, G. D., Zhang, M., Ji, D. H., and Zhu, Q. M. 2007. Tree kernel-
based relation extraction with context-sensitive structured parse tree 
information. In Proceedings of EMNLP/CoNLL’2007. (2007), 728-736. 

[21] Qian, L. H, Zhou, G. D., Zhu, Q. M., and Qian, P. D. 2008. Exploiting 
constituent dependencies for tree kernel-based semantic relation 
extraction. In Proceedings of COLING’2008. (2008), 697-704. 

[22] Qian, L. H. and Zhou, G. D. 2012. Tree kernel-based protein-protein 
interaction extraction from biomedical literature. Journal of Biomedical 
Informatics. 45 (2012), 535-543. 

[23] Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., and 
Jarvinen, J. 2007. BioInfer: a corpus for information extraction in the 
biomedical domain. BMC Bioinformatics. 8, 50 (2007). 

[24] Fundel, K., Küffer, and R., Zimmer, R. 2007. RelEx—relation 
extraction using dependency parse trees. Bioinformatics. 23, 3 (2007), 
365-371. 

[25] Ding, J., Berleant, D., Nettleton, D., and Wurtele, E. 2002. 
Miningmedline: abstracts, sentences, or phrases?.  In Pacific 
Symposium on Biocomputing. (2002), 326-337. 

[26] Nédellec, C. 2005. Learning language in logic-genic interaction 
extraction challenge. In Proceedings of the LLL’05 Workshop. (2005), 
97-99. 

[27] Pyysalo, S., Airola, A., Heimonen, J., Björne, J., Ginter, F., and 
Salakoski, T. 2008. Comparative analysis of five protein–protein 
interaction corpora. BMC Informatics. 9, Suppl. 3, S6 (2008). 

[28] Joachims, T. 1998. Text categorization with support vector machine: 
learning with many relevant features. In Proceedings of ECML’1998. 
(1998), 137-142. 

[29] Bradley, A. P. 1997. The use of the area under the ROC curve in the 
evaluation of machine learning algorithms. Pattern Recognition. 30, 7 
(1997), 1145-1159. 

[30] Tikk, D., Thomas, P., Palaga, P., Hakenberg, J., and Leser, U. 2010. A 
comprehensive benchmark of kernel methods to extract protein–protein 
interactions from literature. PLoS Computational Biology. 6, 7 (2010). 

[31] Miwa, M., Sætre, R., Miyao, Y., and Tsujii, J. 2009. A rich feature 
vector for protein–protein interaction extraction from multiple corpora. 
In Proceedings of EMNLP’2009. (2009), 121-130. 

 

660




