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ABSTRACT
In the Graph Inference problem, one seeks to recover the
edges of an unknown graph from the observations of cas-
cades propagating over this graph. We approach this prob-
lem from the sparse recovery perspective. We introduce a
general model of cascades, including the voter model and the
independent cascade model, for which we provide the first
algorithm which recovers the graph’s edges with high prob-
ability and O(s logm) measurements where s is the maxi-
mum degree of the graph and m is the number of nodes.
Furthermore, we show that our algorithm also recovers the
edge weights (the parameters of the diffusion process) and
is robust in the context of approximate sparsity. Finally we
validate our approach empirically on synthetic graphs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter Learn-
ing

1. INTRODUCTION
A recent line of research has focused on the Graph Infer-

ence Problem: recovering the directed edges of an unknown
graph from the observations of a diffusion process propagat-
ing on this graph [1, 2, 5]. For example, the Independent
Cascade Model, formalised in [3], is a famous diffusion pro-
cess where each “infected” node has a weighted probability
to “infect” its neighbors in the graph. If we are only able
to observe the time step at which nodes are infected over
several diffusion processes, can we recover the edges and the
edge weights of the graph?

Here, we propose a sparse recovery framework to not only
solve the Graph Inference Problem, but also recover the un-
known weights of the diffusion process, for a large class of
discrete time diffusion processes. Recall that for every in-
stance of the diffusion process, the only thing known to the
observer are the time steps at which the vertices in the graph
become“infected”by the diffusion process. The parallel with
sparse recovery problems is as follows: for a given vertex, the
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Figure 1: Illustration of the sparse recovery frame-
work. θj is the unknown weight vector, bj is the
result of the sparse product θj · Xt. We observe
bernoulli variables B(f(b)).

(unknown) “influence” of its parents in the graph is a signal,
that we observe through a series of measurements, which are
the instances of the diffusion process. The two main chal-
lenges to apply sparse recovery tools to this problem are: (1)
contrary to a very common assumption, the measurements
given by a diffusion process are correlated (2) most diffusion
processes lead to non-linear sparse recovery problems.

In what follows, we first present a general class of discrete-
time diffusion processes which encompasses the famous In-
fluence Cascade Model and the Voter Model. For this class
of diffusion processes, despite the aforementioned challenges,
we show how to recover the unknown parameters with a con-
vergence rate on par with rates observed in the sparse re-
covery literature. Finally, we validate our approach experi-
mentally, by comparing its performance to prior algorithms
on synthetic data.

2. MODEL
Let consider a graph G = (V,E) with |V | = m and where

the set of edges E is unknown. For a given vertex j, the
cascade model is parameterized by a vector θj ∈ Rm where
the i-th coordinate of θj captures the “influence” of vertex i
on j. This influence is 0 if i is not a parent of j.

A cascade is characterized by the propagation of a “con-
tagious” state in discrete time steps. Initially, each vertex is
contagious with probability pinit. Let us denote by X0 the
indicator vector of the initially contagious vertices. Denot-
ing by Xt the indicator vector of the set of vertices which
are contagious at time step t, the probability that j will be
contagious at time t+ 1 is given by:

P(Xt+1
j = 1|Xt) = f(θj ·Xt) (1)

where f : R → [0, 1]. Conditioned on Xt, this evolution
happens independently for each vertex at time t + 1. We
show below that both the independent cascade model and
the voter model can be cast in this framework.
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Independent Cascade Model Considering the discrete-
time IC model, the probability that a susceptible node j
becomes infected at the next time step is given by:

P
[
Xt+1
j = 1 |Xt] = 1−

m∏
i=1

(1− pi,j)X
t
i .

Defining Θi,j ≡ log(1− pi,j), this can be rewritten as:

P
[
Xt+1
j = 1 |Xt] = 1−

m∏
i=1

eΘi,jX
t
i = 1− eθj ·X

t

(IC)

Therefore, the independent cascade model fits into the pre-
vious framework with f : z 7→ 1− ez.

Voter Model Here, nodes can be either red or blue. Each
round, every node j independently chooses one of its neigh-
bors with probability Θi,j and adopts their color. Without
loss of generality, we can suppose that being blue is the con-
tagious state. The cascades stops at a fixed horizon time T
or if all nodes are of the same color. If we denote by Xt

the indicator variable of the set of blue nodes at time step
t, then we have:

P
[
Xt+1
j = 1|Xt] =

m∑
i=1

Θi,jX
t
i = Θj ·Xt (V)

Thus, the linear voter model fits into the previous frame-
work with f : z 7→ z.

3. RESULTS
For a given vertex i, we are given a set of measurements,

(Xt, Xt+1
i )t∈Ti generated from (1). We estimate θi via `1-

regularized maximum likelihood estimation:

θ̂i ∈ argmax
θ
Li(θi |x1, . . . , xn)− λ‖θi‖1 (2)

where Li is the log-likelihood of θi given the observations.
We will need the following assumptions:

1. log f and log(1− f) are concave functions.

2. log f and log(1− f) have derivatives bounded in abso-
lute value by 1

α
for some α > 0.

3. denoting by S the support of the true vector of pa-
rameters θ∗i , define C(S) ≡ {X ∈ Rm : ‖X‖1 ≤
1 and ‖XSc‖1 ≤ 3‖XS‖1}. We assume that:

∀X ∈ C(S), XT∇2Li(θ∗i )X ≥ γ‖X‖22
for some γ > 0. γ is called the restricted eigenvalue.

Adapting a result from [4], we obtain the following finite-
sample guarantee:

Theorem 1. Assume 1. to 3. above and define n ≡ |Ti|.
For any δ ∈ (0, 1), let θ̂i be the solution of (2) with λ ≡
2
√

logm

αn1−δ , then:

‖θ̂i − θ∗i ‖2 ≤
6

γ

√
s logm

αn1−δ w.p. 1− 1

enδ logm
(3)

Assumption 3. above can be replaced by the following
data-independent assumption:

Figure 2: F1 score as a function of the number of
observed cascades for a Watts-Strogatz graph, for
the Greedy and MLE algorithm from [5], a Lasso
algorithm which approximates (2), and the penalized
log-likelihood program (2).

3. log f and log(1 − f) are ε-concave and the expected
gram matrix limn→∞

1
n
XTX has a smallest“restricted”

eigenvalue bounded from below by γ > 0, where X is
the n×m design matrix whose k-th row is Xk.

provided that either Ω(s2 logm) cumulative time steps are
observed or Ω(s logm log3(s logm)) distinct instances of the
diffusion process (cascades) are observed.

4. EXPERIMENTS
We compared the performance of Algorithm (2) to prior

algorithms for the Graph Inference problem. Given our es-
timate Θ̃ of the edge weights, we recover the edges of the
graph by simple thresholding: E = ∪j∈V {(i, j) : Θ̃ij > η},
for varying values of η. We used the F1-score as a measure
of performance: F1 = 2precision · recall/(precision + recall).

The algorithms were tested on several synthetic networks
generated from standard social networks model. The results
are shown in Figure 4 for the Watts-Strogatz model. The
full version of the paper contains more comprehensive ex-
periments.
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