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ABSTRACT
In many applications of influence maximization, one is re-
stricted to select influencers from a set of users who engaged
with the topic being promoted, and due to the structure of
social networks, these users often rank low in terms of their
influence potential. To alleviate this issue, one can consider
an adaptive method which selects users in a manner which
targets their influential neighbors. The advantage of such an
approach is that it leverages the friendship paradox in social
networks: while users are often not influential, they often
know someone who is.

Despite the various complexities in such optimization prob-
lems, we show that scalable adaptive seeding is achievable.
To show the effectiveness of our methods we collected data
from various verticals social network users follow, and applied
our methods on it. Our experiments show that adaptive seed-
ing is scalable, and that it obtains dramatic improvements
over standard approaches of information dissemination.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems

1. INTRODUCTION
Influence Maximization [1] is the algorithmic challenge

of selecting a fixed number of individuals who can serve as
early adopters of a new idea, product, or technology in a
manner that will trigger a large cascade in the social network.
In many cases where influence maximization methods are
applied one cannot select any user in the network but is
limited to some subset of users. In general, we will call the
core set the set of users an influence maximization campaign
can access. When the goal is to select influential users from
the core set, the laws governing social networks can lead to
poor outcomes: due to the heavy-tailed degree distribution
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Figure 1: CDF of the degree distribution of users who liked a
post by Kiva on Facebook and that of their friends.

of social networks, high degree nodes are rare, and since
influence maximization techniques often depend on the ability
to select high degree nodes, a naive application of influence
maximization techniques to the core set is ineffective.

An alternative method recently introduced in [5] is a two-
stage approach called adaptive seeding. In the first stage,
one can spend a fraction of the budget on the core users so
that they invite their friends to participate in the campaign,
then in the second stage spend the rest of the budget on
the influential friends who hopefully have arrived. The idea
behind this approach is to leverage a structural phenomenon
in social networks known as the friendship paradox [2]: even
though individuals are not likely to have many friends, they
likely have a friend that does (“your friends have more friends
than you”). Figure 1 illustrates this effect on Facebook.

In this work, we present efficient algorithms for adaptive
seeding achieving an optimal approximation ratio of (1−1/e).
The guarantees of our algorithms hold for linear models of
influence. While this class does not include models such as
the independent cascade and the linear threshold model, it
includes the well-studied voter model [3]. We then use these
algorithms to conduct a series of experiments to show the
potential of adaptive approaches for influence maximization
both on synthetic and real social networks.

2. FRAMEWORK
Model. Given a graph G = (V,E), for S ⊆ V we denote
by N (S) the neighborhood of S. The notion of influence in

the graph is captured by a function f : 2|V | → R+ mapping
a subset of nodes to a non-negative influence value. In
this work, we focus on linear influence functions: f(S) =∑

u∈S wu where (wu)u∈V are non-negative weights capturing
the influence of individual vertices. The input of the adaptive
seeding problem is a core set of nodes X ⊆ V and for any
node u ∈ N (X) a probability pu that u realizes if one of its
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Figure 2: Ratio of the performance of adaptive seeding to IM.
Bars represents the mean improvement across all verticals, and the
“error bars” represents the range of improvement across verticals.

neighbor in X is seeded. The goal is to solve:

max
S⊆X

∑
R⊆N (S)

pR max
T⊆R

|T |≤k−|S|

f(T )

s.t. |S| ≤ k
(1)

where pR is the probability that the set R realizes, pR ≡∏
u∈R pu

∏
u∈N (S)\R(1− pu). Intuitively, we want to select

at most k nodes in the core set X such that the expected
maximum influence which can be derived from the set R
of neighbors realizing using the remaining budget is maximal.

Non-adaptive Optimization. We say that a policy is
non-adaptive if it selects a set of nodes S ⊆ X to be seeded
in the first stage and a vector of probabilities q ∈ [0, 1]n, such
that each neighbor u of S which realizes is included in the
solution independently with probability qu. The constraint
will now be that the budget is only respected in expectation,
i.e. |S|+ pTq ≤ k. Formally the optimization problem for
non-adaptive policies can be written as:

max
S⊆X

q∈[0,1]n

∑
R⊆N (X)

( ∏
u∈R

puqu
∏

u∈N (X)\R

(1− puqu)
)
f(R)

s.t. |S|+ pTq ≤ k, qu ≤ 1{u ∈ N (S)}
(2)

where 1{E} is the indicator variable of the event E. Non-
adaptive policies are related to adaptive policies:

Proposition 1. Let (S, q) be an α-approximate solution
to (2), then S is an α-approximate solution to (1).

3. ALGORITHMS
Proposition 1 allows us to focus on designing non-adaptive

policies for (2) which is easier to solve than (1).
Our first algorithm is obtained by considering a relaxation

of (2) where the binary choices of including vertices in S
are relaxed to fractional values. The solution must then be
rounded using the Pipage Rounding framework.

The second algorithm is combinatorial: first, we note that
for additive influence functions and for fixed S, the maximiza-
tion over q in (2) is a simple fractional knapsack problem
which can be solved efficiently. Furthermore, the optimal
value of this problem is a monotone submodular function
of S. Our algorithm can thus be obtained by applying
the celebrated greedy algorithm for monotone submodular
maximization where we repeatedly solve fractional knapsack
problems when greedily constructing the solution.
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Figure 3: (a) Performance of adaptive seeding for various propa-
gation probabilities. (b) Performance of adaptive seeding when
restricted to the subgraph of users who liked HBO (red line).

Both algorithms achieve an optimal (1 − 1/e) approxi-
mation ratio. The first algorithm is extremely efficient over
instances where there is a large budget. The second algorithm
can be easily parallelized and implemented in MapReduce,
has good theoretical guarantees on its running time and does
well on instances with smaller budgets.

4. EXPERIMENTS
The main component of our experiments involved collecting

publicly available data from Facebook. Despite the extreme
difficulty of collecting such data, we were able to collect large
networks. For 10 several Facebook Pages, each associated
with a commercial entity that uses the Facebook page to
communicate with its followers, we selected a post and then
collected data about the users who expressed interest (“liked”)
the post and their friends. The advantage of this data set
is that it is highly representative of the scenario we study
here. We focused on posts which were liked by about 1,000
users, which when we include their friends, leads to networks
of about 100,000 users.

Figure 2 compares the performance of our approach to run-
ning the standard influence maximization (IM) approach to
the core set. Figure 3a shows the impact of the probability of
neighbors realizing, while Figure 3b shows the performance of
adaptive seeding when restricted to users who previously ex-
pressed interest in the vertical and for which we could expect
the probability of realizing to be close to one. These results
suggest that adaptive seeding can have dramatic improve-
ments over standard IM. [4] contains additional experiments
to analyze the impact of various parameters as well as evalu-
ations on synthetic data.
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