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ABSTRACT
Information diffusion in online social networks is obviously af-
fected by the underlying network topology, but it also has the power
to change that topology. Online users are constantly creating new
links when exposed to new information sources, and in turn these
links are alternating the route of information spread. However,
these two highly intertwined stochastic processes, information dif-
fusion and network evolution, have been predominantly studied
separately, ignoring their co-evolutionary dynamics.

In this project, we propose a probabilistic generative model, CO-
EVOLVE, for the joint dynamics of these two processes, allow-
ing the intensity of one process to be modulated by that of the
other. This model allows us to efficiently simulate diffusion and
network events from the co-evolutionary dynamics, and generate
traces obeying common diffusion and network patterns observed
in real-world networks. Furthermore, we also develop a convex
optimization framework to learn the parameters of the model from
historical diffusion and network evolution traces. We experimented
with both synthetic data and data gathered from Twitter, and show
that our model provides a good fit to the data as well as more accu-
rate predictions than alternatives.
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1. INTRODUCTION
Users in social networks often forward to their followers infor-

mation they are exposed to via their followees, triggering the emer-
gence of information cascades that travel through the network. Be-
sides these dynamic processes on the network, the network topol-
ogy itself often undergoes dynamic changes, since online users are
constantly creating new links to information sources.

Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2744105.

A  

B  
C  

F  

E  

D  

G  
I  

J   K  

H  

(a) Information diffusion cre-
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(b) New links create new paths
for information diffusion

Figure 1: Joint Dynamics. Blue links form the diffusion paths.
Green and blue circles are nodes which see the information.
Green circles are those who re-share and propagate the infor-
mation. Red circles are nodes unaware of A’s post.

While there have been many recent works on modeling informa-
tion diffusion and network evolution, most of them treat these two
stochastic processes independently and separately, ignoring the in-
fluence one may have on the other over time. However, recent
empirical studies have been able to overlay these two sources of
data, and show that both processes are indeed coupled and network
changes are often triggered by information diffusion [5, 1, 4].

We propose a probabilistic generative model for the joint dy-
namics of information diffusion and network evolution. The model
consists of two interwoven components, illustrated in Figure 1.

I. Information diffusion model. We design an “identity re-
vealing” multivariate Hawkes process [3] to capture the mu-
tual excitation behavior of retweeting events, where the in-
tensity of such event in a user is boosted by an aggregation
of events from her followees. Although Hawkes processes
have been used for information diffusion before [2], a major
improvement of our approach is that we explicitly model the
excitation due to a particular source node.

II. Network evolution model. We model link creation as an
“information driven” survival process, and couple the inten-
sity of this process with retweeting events.

2. MODEL
We will model the generation of two types of events: tweet/retweet

events, er , and link creation events, el. We represent the events as

er or el := ( u
↑

destination

,
source

↓
s, t

↑
time

). (1)

For retweet event, the triplet means that the destination node
u retweets at time t a tweet originally posted by source node s.
This event can happen when u is retweeting a message by another
node u′ where the original information source s is acknowledged.
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(a) β = 0 (b) β = 0.001
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(c) β = 0.1 (d) β = 0.8

Figure 2: Degree distributions when for different β.

Given a list of retweet events {er1 = (u1, s1, t1), . . .} up to time t,
the history Hr

us(t) of retweets by u due to source s is Hr
us(t) =

{eri = (ui, si, ti)|ui = u and si = s} .
For link creation event, the triplet means that destination node

u creates at time t a link to source node s, i.e., from time t on,
node u starts following node s. We restrict ourselves to the case
where each (directed) link is created only once. We denote the link
creation history as Hl(t). Given m users, we will use two sets of
counting processes to record the generated events.

• Counting processes for retweets are denoted as a matrix
N(t) of size m×m for each fixed time point t. The (u, s)-
th entry in the matrix, Nus(t) ∈ {0}∪Z+, counts the number
of retweets of u due to source s up to time t. These counting
processes are “identity revealing".

• Survival processes for links are denoted also as a matrix
A(t) of size m×m for each fixed time point t. The (u, s)-th
entry in the matrix, Aus(t) ∈ {0, 1}, indicates whether u is
directly following s. That is Aus(t) = 1 means the directed
link has been created before t. We do not allow self-links.

We will denote matrices dN(t) := ( dNus(t) )u,s∈[m] and sim-
ilarly dA(t) := ( dAus(t) )u,s∈[m].

κω(t) ⋆ dN(t) := ( κω(t) ⋆ dNus(t) )u,s∈[m]

A(t) ◦ dN(t) := ( Aus(t) dNus(t) )u,s∈[m]

These operate elementwisely. Furthermore, we can also carry out
matrix multiplication operation on A(t) and dN(t). For instance,

A(t) dN(t) :=
( ∑

w∈[m] Auw(t) dNws(t)
)
u,s∈[m]

. Then the

interwoven information diffusion and network evolution processes
can be characterized using their respective intensities

E[dN(t) |Hr(t) ∪Hl(t)] = Γ∗(t) dt, and (2)

E[dA(t) |Hr(t) ∪Hl(t)] = Λ∗(t) dt, (3)

where Γ∗(t) = ( γ∗
us(t) )u,s∈[m] and Λ∗(t) = ( λ∗

us(t) )u,s∈[m].
We model the intensities, Γ∗(t), for retweeting events and Λ∗(t),
for link creation as

Γ∗(t) :=
(
η + β

∑
w∈[m]

Auw(t) (κω(t) ⋆ dNws(t))
)
u,s∈[m]

= η + βA(t) (κω(t) ⋆ dN(t)) . (4)

Λ∗(t) :=
(
(1−Aus(t))(µ+ ακω(t) ⋆ dNus(t))

)
u,s∈[m]

= (1−A(t)) ◦ (µ+ ακω(t) ⋆ dN(t)). (5)
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Figure 3: Cascade size and depth distributions for different α
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Figure 4: Prediction performance in the Twitter dataset by
means of average rank (AR) and success probability that the
true (test) events rank among the top-1 events (Top-1).

3. EXPERIMENTS
Degree Distribution. Empirical studies have shown that the de-
gree distribution of social networks and microblogging sites follow
a power law, and argued that it is a consequence of the rich get
richer phenomena. Intuitively, the higher the values of the param-
eters α and β, the closer the resulting degree distribution follows a
power-law; the lower their values, the closer the distribution to an
Erdos-Renyi graph. Figure 2 confirms this intuition via the degree
distribution for different values of β.

Cascade Patterns. Figure 3 summarize the cascade size and depth
with varying α. The higher the α value, the shallower and wider
the cascades.

Link and Activity Prediction. We summarize the results in Fig. 4,
where we consider an increasing number of training retweet/tweet
for training. Our model outperforms all other link prediction and
activity prediction methods consistently.
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