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ABSTRACT
Scientific literature till date can be thought of as a par-
tially revealed landscape, where scholars continue to unveil
hidden knowledge by exploring novel research topics. How
do scholars explore the scientific landscape, i.e., choose re-
search topics to work on? We propose an agent-based model
of topic mobility behavior where scholars migrate across
research topics on the space of science following different
strategies, seeking different utilities. We use this model to
study whether strategies widely used in current scientific
community can provide a balance between individual sci-
entific success and the efficiency and diversity of the whole
academic society. Through extensive simulations, we pro-
vide insights into the roles of different strategies, such as
choosing topics according to research potential or the pop-
ularity. Our model provides a conceptual framework and a
computational approach to analyze scholars’ behavior and
its impact on scientific production. We also discuss how
such an agent-based modeling approach can be integrated
with big real-world scholarly data.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles; J.4
[Computer Applications]: Social and Behavior Sciences
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1. INTRODUCTION
An important aspect of scholarly life is to do research

and generate knowledge. The scholarly world can be viewed
as a community effort in exploring the space of knowledge.
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A well-established approach for analyzing research activi-
ties is to study the networks arising out of the research
process; more specifically, the (author-author) collaboration
networks [8], and the (paper-paper) citation networks [14].
These studies let us see how researchers collaborate, and
how new knowledge discovery is built on past discoveries,
and even how collaborations help knowledge discovery. But
these research output based studies do not focus on motives
for how researchers choose what to work on. In this work,
we hypothesize that how researchers choose topics is the
key hidden variable that drives the research process of the
community as a whole. An author chooses his collaborators
based on similarity of topics, and a paper cites other papers
on related topics. Through researchers’ strategic behavior
in choosing topics to work on, the authors cause topics to
emerge, grow, sustain or decay. Thus, by understanding
scholars’ behavior of choosing topics, we can better charac-
terize the evolution of scientific research.

We take inspiration from two existing streams in the lit-
erature. First, Map of Science [1, 3] is a well-known effort
towards characterizing the relationships between different
topics, using textual and citation information in the litera-
ture. By classifying and visualizing the existing papers as
objects in an abstract 2-D space, they provide an atlas of
science [1]. If research topics and knowledge can be rep-
resented as a terrain, then researchers’ choice of research
topics over time can be considered as navigating through
this space. The other inspiration comes from the spatial-
temporal models in evolutionary biology [5], where species
occupy a fitness landscape that evolves subject to environ-
mental changes. Could knowledge exploration by scholars
be understood in terms of similar kind of processes, with
strategic choices and motives? In the research context, the
fitness landscape ideally represents the potential knowledge
to be gained from different topics, which in turn drives the
occupancy distribution [2]. Scholars may choose their fu-
ture topics in their current neighborhood through random
search (mutation), based on their potential (selection) or by
observing other scholars’ behavior (imitation), and through
their activities alter the fitness landscape [11].

The underlying framework is essentially game-theory, where
scholars are assumed to be rational decision makers follow-
ing different strategies driven by certain professional or per-
sonal reward system. However, in order to derive analyti-
cally tractable solutions for the equilibrium reached by these
games, it is necessary to make strong simplifying assump-
tions on the models. An alternative approach is to build
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a computational agent-based model (ABM), where agents
act according to a local set of rules, and the system’s evo-
lution and equilibrium can be simulated. ABMs have been
proposed for studying various phenomena in the scientific
domain such as division of labor, co-evolution of citation
and collaboration networks [13]. Furthermore, ABMs can
naturally include a spatial component, thus enabling us to
verify the model via a visual representation.
There are several existing ABMs that can be adapted to

describe scholar mobility. For instance, in the Sugarscape
model (originally proposed to study wealth distribution) [4],
agents move randomly around the grid, collecting “sugar”
and“spice”(resources that agents need to survive). Similarly
in the scientific context, scholars work on different topics and
gain scientific achievements, which support them to survive
in academic community. However, this model only considers
the simple case of random walk, and the setting of renewable
resource is not suitable for our purposes. Another model
by Weisberg and Muldoon [13] describes scholars’ activity
as a hill climbing process to find peaks, which investigate
the efficiency of three widely used searching strategies of
scholars: controls, set a direction leading to a larger height;
followers, only choose from patches visited by others; and
mavericks, only choose unvisited patches. Since there is no
resource collecting in this model, agents don’t have states
of “birth”, “death”, and “survival”. A more realistic model
should incorporate both concept of resource collecting and
consumption, as well as a mixture of strategies. Thus, we
propose the Research Topic Selection model (RTS). We also
discuss how our study can be validated against observed
scholar mobility of topics derived from real-world data.

2. THE RTS MODEL
A typical ABM consists of dynamically interacting rule-

based agents. The systems within which agents interact can
represent complex real-world-like scenarios. We first give
definitions of the Research Topic Selection (RTS) model in
terms of elements: space, agents and rules, and then present
simulation results.

2.1 Scientific Landscape
In our model, we consider the whole corpus of knowledge

to as a map. A specific research topic is represented as an
m-dimension point on the map, in which the spatial distance
between any two topics indicates their semantic correlation.
Although such a map could potentially be embedded in a
high-dimensional space, we use a 2-D space in our study, in
order to simplify the simulation and facilitate visualization.
In such a map, each point (xi, yi) has another dimension

“height”h(xi, yi), used to represent the scientific significance
of the corresponding topic. We call this kind of scientific
map the scientific landscape [2]. In our model, we assume
that each topic has an intrinsic scientific value before being
explored, which will be revealed by scholars’ research activ-
ity. In the real scientific community, the scientific value may
be inferred via surrogate metrics, e.g., citation counts, re-
search grants, etc. The problem of how to precisely measure
the significance needs further study, but here we assume a
scientific landscape with virtual significance.

2.2 Scholar Agents
In the ABM, scholars are represented as individual agents.

An initial position is assigned to each agent on the scien-

tific landscape. At each cycle of time during the simulation,
agents choose a topic in the neighbourhood following cer-
tain local strategies. Upon arriving at a new research topic,
agents collect a certain amount of scientific significance on it.
In the scientific context, “movement” corresponds to schol-
ars changing research topics; “collected significance” corre-
sponds to scientific production, such as publishing papers or
making breakthrough discoveries. Since a scholar leaves the
community if he fails to produce research achievements for
a long time, we assume there is a “metabolism” rate which
causes each agent’s collected significance to decay over time.
Therefore, agents need to collect significance sufficiently to
sustain in the community. In order to make the model more
realistic, we set several variables for each agent:

Vision: A scholar doesn’t know the whole landscape, but
can only “see” within a limited scope. Vision limits agents’
scope of cognition hence neighbourhood to choose from. We
believe that most scholars change topics over time with some
continuity, since it is risky to step into a domain far away
from his expertise and background. But the vision size can
have a large variance among different scholars.

Academic Age: It’s not the physiological age of scholars,
but the academic career length. In the real-life academic
community, a scholar sooner or later retires and stops pub-
lishing papers. We can thus set“retirement age” for scholars.
Though we set a constant retirement age for this study, it
can be easily extended to a random one in the future work.

Metabolism Rate: the decay rate of agents’ collected sig-
nificance in each time cycle. The terminology is adopted
from Sugarscape [4]. One can also find supporting evidence
from bibliometrics, where it is a common phenomenon for
a paper’s citation count to reach its peak soon after publi-
cation, and then decline steadily [12]. In our model, we as-
sume an author’s significance declines exponentially, where
λ is the metabolism rate:

S(t) = S0.e
(−λt), ∆S(t) = −λ.S(t)

Knowledge Discovery Rate (KDR): we assume the free sig-
nificance ∆hi an agent can collect from topic i at time t
depends on its remaining significance, where α is the KDR:

∆hi = α.hi(t)

One advantage of the RTS model is that it is flexible to
add or modify variables. However, it is to be noted that a
small change in a variable may lead to significantly different
behaviors.

2.3 Strategies
The Weisberg and Muldoon model [13] categories search-

ing strategies by how agents consider topics’ intrinsic re-
search value and popularity to make decisions. We agree
that intrinsic research value and popularity are two major
factors influencing scholars’ choices. But scholars in our
model have varing goals, e.g., to survive long in the aca-
demic community or achieve greater scientific significance,
not just finding the most important topics. Thus we define
four types of strategy by different criteria:

Experts: research value - prefer topics with high scientific
value. They are scholars who have capability to recognize
topics’ intrinsic value and make decisions independently.

Followers: hotness - prefer currently hot topics. They
follow trends because they lack ability to estimate the value
of topics as experts, or are interested in immediate rewards.
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Mavericks: novelty - prefer unexplored topics. These au-
thors are often pioneers discovering the “new world”, though
the strategy is potentially risky.
Conservatives: maturity - prefer well established re-

search areas (not necessarily trending).

Agents employ the following movement rules at each cycle:
Experts:
Check : Any patch in my vision has higher significance than
my current patch?
If yes, move to the patch of highest significance; If no, stay.
Mavericks:
Check : Any patch in my vision hasn’t been visited yet?
If yes, randomly move to one of the candidate patches.
If no, check : any patch has higher significance?
If yes, move to one of those patches; If no, stay.

Followers:
Check : Any patch in my vision has other visitors currently?
If yes, check: any of them has higher significance?
If yes, randomly move to one of those patches;
If no, check : any other patch is currently unoccupied?

If yes, randomly move to one of patches; If no, stay.
If no, randomly move to one of patches.
Conservatives:
Check : Any patch in my vision has ever been visited?
If yes, check : any of them has higher significance?
If yes, randomly move to one of the patches;
If no, check : any other patch hasn’t been visited?

If yes, randomly move to one of patches; If no, stay.
If no, randomly move to one the patches.

We don’t claim that they are only strategies for scholars
and our model is flexible to include other strategies.

3. SIMULATIONS
We conduct simulations of RTS model using the tool Net-

Logo. In our simulations, the scientific landscape is built
on a 50 patch by 50 patch grid. we use two Gaussian func-
tions to define the significance [13] with added noise, as in
Fig. 1. In the beginning, each scholar agent ak is assigned
to a patch (xak , yak ) , with initial collected significance (or
wealth) ro(ak), academic age go(ak), and vision v(ak). Then
in each cycle time, agents move to one patch and collect sig-
nificance on the patch. Before we discuss the simulation
results, we first define several metrics for the performance
evaluation of strategies.

3.1 Evaluation Matrices
In our model, science significance is a non-increasing re-

source which will be consumed by scholar agents. On the
other hand, agents will depart the community if they deplete
their wealth or reach the retire time. Thus, we are most in-
terested in questions: a) What type of scholars can survive
the longest? b) What type of scholars can achieve the most
success? c) Which strategy is the most social efficient? We
design the following three evaluation metrics:

1. Individual Cumulative Achievements (ICA): sum-
mation of achievements an agent collected during the
whole academic life.

2. Progress: ratio of consumed significance by all agents
compared to the landscape’s initial significance.

3. Coverage: ratio of patches visited as least once by all
agents.

Agents ICA evaluates strategies by the efficiency for indi-
vidual, progress and coverage evaluate the social efficiency
for the entire community.

Figure 1: 2D representation of scientific landscape
with four types of agents randomly located.

3.2 Single Strategy Scenarios
We first ran simulations involving single type of strategy

in the population. As can be seen in Fig. 2, mavericks lead
largest coverage, experts produce lest coverage. The cause is
that experts tend to congregate on high topics, while other
three types of agents are flexible to choose diverse topics, es-
pecially mavericks. From Fig. 3, we find experts has largest
progress when the population contains less than 150 agents.
But when the population increases, since all experts still
choose topics of highest significant, they have intense com-
petition, resulting in low Progress.

Fig. 4 show the personal ICA distribution, we can see that
experts have skewed ICA, while mavericks have balanced
ICA. It gives an interesting implication: in a community
of mavericks, agents tend to study diverse topics and have
balanced personal achievements; however, in a community
of experts, since each agent are able to identify the highest
significant topics, there are fierce competition among them
which leads to skewed individual ICA.
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Figure 2: Coverage of single strategy at t = 100.

3.3 Multiple Strategies Co-existing Scenarios
We then conduct simulations with a mixed population of

four types of agents. An interesting question is which type
will win? Will the four types of agents collaborate or com-
pete with each other? A population of 200 agents are initial-
ized in the system, equally assigned to the four types. We
study the influence of three parameters: vision, metabolism
rate and KDR on the performance of four strategies.
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Figure 3: Progress of single strategy at t = 100.
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Figure 4: ICA distribution of single strategy at t =
100.

3.3.1 Vision
Vision defines the size of neighborhood an agent can see

when making decisions. From Fig. 5, Fig. 6 and Fig. 7, we
find a counterintuitive phenomenon that with large size of
vision, experts become less suited for survival than in case
with small size of vision. The reason lies on the social impact
of the crowd. If the source of information is large enough,
followers, conservatives and mavericks can utilize the wis-
dom of crowd to make good decisions. On the contrary, the
larger space experts can see, the higher possibility that all
of them aggregate to the high positions, which results in in-
tense competition. This phenomenon proves the importance
of utilizing wisdom of crowd in a social community.

Figure 5: life course of agents in mixed population
with vision=1 and vision=10.

3.3.2 Metabolism Rate
Metabolism Rate λ determines how quickly agents’ achieve-

ments decay over time. From Fig. 8, Fig. 9 and Fig. 10,
first we find that when the metabolism rate becomes larger,
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Figure 6: ICA distribution of mixed strategies with
vision=1.

0 1 2 3
x 104

0

0.2

0.4

0.6

0.8

1

ICA

C
D

F

Empirical CDF

 

 

Expert
Maverick
Follower
Conservative

Figure 7: ICA distribution of mixed strategies with
vision=10.

the probability of agents departing the system at early age
also increases, leading to skewed ICA distributions. More-
over, we find that the influence of metabolism rate is most
severe on mavericks. Mavericks have small number of de-
partures in case of λ = 0.2, but the early departure increase
dramatically when λ = 0.8, much worse than other three.
Therefore, mavericks prefer low metabolism rate, which in
reality corresponds to a relaxed research environment, e.g,
adequate faculty positions, sufficient research resource and
funding, no demanding requirement of yearly publications.
Historically, one can see that several breakthrough discover-
ies were made in such less demanding environments, which
foster innovation.

Figure 8: life course of agents in mixed population
with metabolism rate λ = 0.2 and λ = 0.8.

3.3.3 Knowledge Discovery Rate
As we can see from Fig. 11, Fig. 12 and Fig. 13, mav-

ericks are most sensitive to the change of Knowledge Dis-
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Figure 9: ICA distribution of mixed strategies with
metabolism rate λ = 0.2.
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Figure 10: ICA distribution of mixed strategies with
metabolism rate λ = 0.8.

covery Rate λ. A large λ means that the significance of a
topic will be quickly consumed, thus the early arrivals to an
unexplored area can have a big advantage. Since mavericks
always seek novel and less visited topics, they are more likely
to take the advantage of being pioneers.

From above analysis, we can have an insight of what roles
the four types of agents play in the scientific community.
From the perspective of personal success, the four types of
agents have different sensitivity of the parameters in research
circumstance. From the view of social efficiency, both mav-
ericks and experts make essential contributions: experts act
as leaders to rich areas around their expertise, and maver-
icks explore innovative areas to maximize the system’s di-
versity. Followers and conservatives sustain and build on
the research efforts of mavericks and experts, collectively in-
creasing the community’s knowledge base. This inspire us
to do further investigation of the structure and component
of the community, by analysis on big scholarly data.

4. DISCUSSION & FUTURE WORK
Model Extension: In our RTS model, we study a sce-

nario that each scholar agent adopts a fixed type of strategy
during the simulation. But in real academic community,
a researcher might change strategies in different stages of
her career, e.g., being a follower as a fresh graduate, and
switching to be an expert after accumulating enough knowl-
edge and expertise. In other words, a scholar chooses the
best strategy, whose utility changes with his academic age,
vision, and also the strategies by other scholars. The cur-

Figure 11: life course of agents in mixed population
with KDR α = 0.05 and α = 0.5.
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Figure 12: ICA distribution of mixed strategies with
KDR α = 0.05.

rent RTS model can be considered as an abstraction of how
things play out given a particular mix of strategies in a cer-
tain equilibrium. Extending our model to allow changing
strategies will be an interesting future work. Furthermore,
one can also introduce arrivals and departures for agents in
this dynamic process. Another key component missing in
this work, is that of collaborative efforts. Since the model
requires extensive modifications to accommodate collabora-
tion, we do not discuss it in this paper.

Topic Mapping and Visualization: We assume a 2D
scientific landscape of multiple Gaussian functions in the
simulation, but what is the real scientific landscape? Build-
ing the map of scientific landscape from real scholarly data
is a big challenge.

Significant efforts build the map of science by using the
textual and citation information in the literature. Top-
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Figure 13: ICA distribution of mixed strategies with
KDR α = 0.5.
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ics model [6], e.g., LDA , dimensionality-reduction tech-
niques [1, 2, 3], e.g., PCA and LSA are used to derive a low-
dimensional representation of publications. More recently,
there is renewed interest in using non-linear dimensionality
reduction (NLDR) techniques such as Deep Learning [10]
to improve the accuracy of visual representation.
To have a qualitative evaluation whether the neural net-

work method works, we conduct an simple experiment by
implementing both PCA and autoencoder algorithms [7] on
a sample data from Microsoft academic Libra dataset.The
data consists of 15606 papers from five conferences in the
computer science domain, as listed in Table 1. Using ti-
tles and keywords of the papers, we built a corpus of 3857
words. To facilitate visualization, the output data is re-
duced to 2 dimensions. Fig. 14 shows the resulting 2D map
of papers using the autoencoder algorithm. What is a good
map of science? Minimally, the structure of the map must
show strong clustering of papers from known scientific sub-
domains. From Fig. 14, we find the map produced by au-
toencoder does show a clear division of the three subdomains
we picked, and even distinguishes the different conferences
inside the same subdomain. By comparison, our attempt
with the PCA algorithm had a more ambiguous partition
(not shown due to lack of space). Thus, the neural network
approach seems promising. In the future work, we plan to
study how to train neural networks using complete Libra
dataset to build the scientific landscape.
Validation model with big scholarly data: While most

spatial ABMs [9] are used for modeling only, we hope to
achieve some level of validation of the RTS model with real
big scholarly data, by visualizing the research topic trajec-
tories of different scholars, and analyzing the same authors
using traditional methods to assess their performance, in
terms of activity, productivity, and life time.

Table 1: Information of 5 conferences in CS
Venue Domain #papers
KDD Data Ming(DM) 2038
ICDM Data Ming(DM) 2166

INFOCOM Network & Communication(NC) 6027
SIGCOMM Network & Communication(NC) 1223
SIGGRAPH Graphics(GR) 4152

Figure 14: visualization of papers using 2D code by
a 3857-100-10-5-2 autoencoder.

5. CONCLUSIONS
We proposed a computation model to study the behav-

ior of individual scholars on how they choose research top-
ics in their research career. From preliminary simulation
results, we find even simple models can reflect interesting
phenomena of research practices in scholarly communities.
We created four types of scholars who play different roles:
experts lead scholars to topics with high research potentials,
mavericks are the pioneers of novel topics, followers and con-
servatives utilize the wisdom of crowds. The ratio of schol-
ars adopting certain strategies has significant impact on the
health and progress of our scientific community. Validating
our model with big scholarly data is a challenging direction
in our future study.
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