
A Hybrid Framework for Online Execution
of Linked Data Queries

Mohamed M. Sabri
Supervised by: Prof. David Toman and Prof. Grant Weddell

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
mmsabri@uwaterloo.ca

ABSTRACT
Linked Data has been widely adopted over the last few years,
with the size of the Linked Data cloud almost doubling ev-
ery year. However, there is still no well-defined, efficient
mechanism for querying such a Web of Data. We propose a
framework that incorporates a set of optimizations to tackle
various limitations in the state-of-the-art. The framework
aims at combining the centralized query optimization ca-
pabilities of the data warehouse-based approaches with the
result freshness and explorative data source discovery ca-
pabilities of link-traversal approaches. This is achieved by
augmenting base-line link-traversal query execution with a
set of optimization techniques. The proposed optimizations
fall under two categories: metadata-based optimizations and
semantics-based optimizations.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Miscellaneous

Keywords
Linked Data; Semantic Web; Query Execution

1. PROBLEM INTRODUCTION
The World Wide Web is transforming from a medium of

interlinked documents to a medium of interlinked knowledge,
where the sum of human knowledge will eventually be avail-
able in a machine-readable and semantic-rich form. This
form of an interlinked, globally-distributed knowledge net-
work is becoming known as Linked Data. Linked Data has
been widely adopted over the last few years, with the size
of the Linked Data cloud almost doubling every year1. This
fast adoption is realizing the vision of transforming the Web
into a globally connected knowledge network, which we can
access as a huge, distributed database. However, one of

1http://lod-cloud.net

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741751.

the key challenges to enable this vision is the unavailabil-
ity of efficient query mechanisms. There is still no well-
defined, efficient mechanism to query such a Web of Data.
Most previous research efforts tried to reduce the problem
to centralized, data warehouse-based, query processing by
requiring that all available Linked Data be pre-crawled and
indexed in a local data store to allow user queries to be
run later against this local copy of online Linked Data. In
this research, we focus on the original problem of executing
queries against the online Linked Data graph. This style of
Linked Data query execution is sometimes referred to in the
literature as link-traversal query execution. Contrary to the
centralized approaches, link-traversal query execution exe-
cutes the queries against the live Linked Data copy and is
able to dynamically discover new data sources and always
provide up-to-date answers. However, current proposals for
link-traversal query execution suffers from poor query execu-
tion performance, incomplete query answers, and redundant
data-retrieval. The target of this research is to design and
evaluate a hybrid framework that overcomes the current lim-
itations of link-traversal query execution, without sacrificing
any of its benefits.

2. STATE OF THE ART
Most of current Linked Data query processing engines fol-

low a centralized approach (usually referred to as: search
engine-style, data warehouse-based, or materialization-based
approaches). The process starts by crawling all available
Linked Data and indexing a local copy in one of the avail-
able RDF stores. The query engine then uses this local copy
to answer user queries. Examples of such systems are: Fact-
Forge [1], LOD Cache 2, Sindice[2], YARS2 [3], and SWSE
[4]. Centralized approaches can provide fast query answer-
ing; however, they suffer from severe limitations: 1. Query
answers do not reflect the current status of the web of Linked
Data. 2. Extensive preprocessing is required. 3. New data
sources cannot be discovered at query execution time. 4. It
may not be feasible to store a local copy of all available
Linked Data in the future. 5. Data providers have to give
up (or delegate) access control over their data. 6. There may
be legal issues that prevent the engine from storing third–
party data locally.

In contrast, online link-traversal query execution [5, 6,
7] emerged to provide a remedy for most of the above. It
relies only on the Linked Data Principles [8]. The process
starts by dereferencing a set of URIs, called the seed URIs

2http://lod.openlinksw.com/sparql/

515

(usually comes from the query itself); it then retrieves rel-
evant sources, and recursively follows new URIs in the re-
trieved data. There is no need for preprocessing and results
are always up-to-date. Link-traversal query execution does
not assume initial complete knowledge of a fixed set of data
sources; the execution process integrates data retrieval with
the discovery of new relevant sources on-the-fly. That is why
it can answer queries based on data from newly-discovered
data sources. Furthermore, it does not require the data
sources to provide any query processing capabilities.

However, this is achieved at the expense of slower query
execution and exhaustive data retrieval. The current limi-
tations of link-traversal query execution approaches can be
attributed to one or more of the following points:

1. The lack of query execution optimization: Since
the query engine learns about data sources at runtime,
it cannot perform more elaborate query optimization.

2. Result incompleteness: An important source for
incompleteness is the lack of support for more expres-
sive entailment regimes [9]. Another source of incom-
pleteness is reachability limitations of the initial set of
source (seed) URIs. The literature offers several pro-
posals for what can be called index-based source selec-
tion [10, 11, 12, 13]. However, the way these indexes
are structured does not allow reasoning over indexed
data.

3. Redundant data retrieval: The query execution
follows an uninformed, exhaustive, data retrieval pro-
cess, due to the lack of reasoning about RDFS and
OWL semantics and what this might entail about the
availability , or the unavailability, of additional query
answers.

Hybrid Query Execution: Our proposed framework
falls under this category. A hybrid query execution engine
will not assume full knowledge about available data sources.
It can maintain local information about some of the data
sources; however, it still follows an explorative, link-traversal
approach to compliment this knowledge. Previous work has
discussed the potential for such a strategy at a variety of
levels [14, 15, 16, 17]. However, to the best of our knowledge,
there is no previous work that provides a comprehensive
proposal and realization for such a framework.

3. APPROACH AND METHODOLOGY
The ultimate goal of this research is to provide a de-

sign, and a reference implementation, for a hybrid frame-
work for online execution of Linked Data queries; a frame-
work that combines the centralized query optimization ca-
pabilities of the data warehouse-based approaches with the
result freshness and explorative data source discovery capa-
bilities of link-traversal approaches. What we envision can
be described as: a query engine that remembers how to an-
swer user queries, instead of the answers to user queries. To
achieve this we will augment base-line link-traversal query
execution with two sets of optimizations: 1. Optimizations
derived from caching and utilizing statistical metadata about
Linked Data, referred to below as metadata-based Query
Optimizations. 2. Optimizations derived from reasoning
about Linked Data semantics, referred to below as seman-
tics-based Query Optimizations.

3.1 Query Syntax and Semantics
In previous formal models of link-traversal query execu-

tion, queries are evaluated against a Web of Linked Data
W , defined as a 3-tuple W = (D, data, adoc), such that: D
is a (potentially infinite) set {d1, d2, ...} of Linked Data doc-
uments, data is a total mapping that associates each docu-
ment with a finite subset of RDF triples, and adoc is a par-
tial, surjective, mapping between a URI and the correspond-
ing LD document [5]. Given the reachability limitations of
the Web of Linked Data, link-traversal query approaches fol-
low reachability-based query semantics [5], where the query
is evaluated against the subweb of the Web of Linked Data
that is recursively reachable from the initial set of URIs.

Support for SPARQL limit clause: However, given
the unbounded nature of the Web of Linked Data, exhaus-
tively complete query answers are not always feasible, nor
desirable. In many cases, the user is only interested in a
small (limited) number of query results. SPARQL offers
a solution modifier for these query cases: the limit clause.
Nevertheless, to the best of our knowledge, the limit clause
has not been studied in the context of live, link-traversal
query execution.

Definition 3.1. Query syntax:
The syntax of an LD query Q is given by: B | Q limit k,
where B is a BGP and k is a positive integer.

We note here that an unlimited Linked Data query (i.e.,
a query without a limit clause) is equivalent to a query with
a limit clause of an infinite k. To define the query semantics
of queries with limit clause, we need to adopt a possible re-
sults semantics[18], defined as follows (where Eval(Q,W,S)
abstracts the standard evaluation of a BGP Q over the S-
reachable subweb of W).

Definition 3.2. Query semantics:
Given a query Q, a Web of Linked Data W , and a set S of
URIs, we write Den(Q,W,S) to denote the set of all possible
results {Ri} of evaluating Q over the S-reachable subweb of
W , defined as follows:

1. Where (Q = “B”): Den(Q,W,S) = {Eval(Q,W,S)},

2. Where (Q = “Q′ limit k”):

Den(Q,W,S) = {R|R ∈ Den(Q′,W, S) and |R| < k}
∪{R|∃R′ ∈ Den(Q′,W, S) : R ⊆ R′, |R| = k and |R′| ≥ k}

If a query execution engine computes any element of
Den(Q,W,S), we say that the engine is correct.

3.2 LD Oracle-based Query Execution
By Linked Data Oracle, LD Oracle for short, we refer to

a hypothetically perfect oracle that guides the link-traversal
process during query execution by continuously prioritizing
and revising the list of URIs to be retrieved next (the re-
trieval queue). Algorithm 1 provides a skeleton for evalu-
ating a query Q, assuming an implementation of LD Or-
acle which can answer the calls for the updateAndRevise()
method. The purpose of this method call is to provide a
point of entry for the LD Oracle to guide the link-traversal
query execution process, and to allow the LD Oracle to in-
crementally update its understanding (statistics) of the Web
of Linked Data. The purpose of the subsequent stages of this
research is to envision an implementation of such an LD Or-
acle and to investigate a set of candidate optimizations that
could be employed by it.

516

input : Q: a Linked Data query,
W: a reference to the Web of Linked Data,
S: a set of seed URIs,
LDOracle: an implementation of LD Oracle.

output: Sol a set of solution mappings for evaluating
Q over W.

D:= ∅ ; /* local storage for intermediate data */

visitedURIs, Sol:= ∅
Ret:= S ; /* the retrieval queue ; a priority

queue of URIs to be retrieved next, initialized

here to S. */

while Ret.size() > 0 do
Ret:= LDOracle.updateAndRevise(Ret,Q,Sol) ;
/* to get the LDOracle’s revision of the

retrieval queue. */

uri:= poll(Ret);
d:=data(adoc(uri)) ; /* see section 3.1 */

visitedURIs:= visitedURIs ∪ uri;
newURIs:= uris(d) - (visitedURIs ∪ Ret);
Ret:= Ret ∪ newURIs;
foreach t ∈ d do

D:=D ∪ t;
Sol:= Eval(Q.B,D) ; /* abstracts the

incremental evaluation of the query BGP

over the intermediate data. */

if |Sol| ≥ Q.k then
return Sol;

end

end

end
return Sol;

Algorithm 1: Query Execution Algorithm

4. METADATA-BASED QUERY OPTIMIZA-
TIONS

The intuition here is that, even if the published Linked
Data triples change frequently, certain characteristics (statis-
tics) of the data source will remain valid for a period of time
that exceeds the validity period of the individual data items.
For example, if a university has a Linked Data page which
lists the graduate courses it currently offers, and even if the
listed courses change frequently, the facts that this Linked
Data page has data about graduate courses and that it has
multiple such data items will remain valid for a period of
time that far exceeds the validity of the individual course
data. The goal is to cache such statistical metadata and to
use it later to optimize query execution. This is unlike pre-
vious efforts that tried to cache data [1, 2, 3] and use it to
answer Linked Data queries. The cached metadata will be
used for the sole purpose of query optimization; out-of-date
metadata may result in sub-optimal query execution, but
results will always be fresh.

4.1 Candidate Metadata for Query Optimiza-
tion

In the following, we elaborate on some candidate meta-
data items and provide few examples of how they can be
used to optimize query execution (the examples, however,
are not meant to provide a detailed, step-by-step descrip-
tion of the query execution process). Also, we note here

that these metadata items capture the status of the explicitly
mentioned RDF triples in each Linked Data document; the
effect of reasoning (i.e., the implicitly entailed RDF triples)
will be discussed in Section 5:

1. List of classes used.

2. Total number of instances of each class.

Example 4.1. Consider the following query, which
asks for the names of all students (i.e., instances of
class ex:student):

SELECT ?n WHERE {

?s a ex:student.

?s foaf:name ?n.}

Listing 1: SPARQL Example

Suppose that the current retrieval queue has three
URIs in the following order (uri1, uri2, uri3) and the
metadata cache has information that only uri2 and
uri3 have instances of ex:student class. The query ex-
ecution engine can use this information to give higher
retrieval priority to uri2 and uri3. Furthermore, if
the cache contains information that uri3 has more in-
stances of ex:student than uri2, the engine should give
uri3 higher retrieval priority than uri2.

3. List of predicates used.

Example 4.2. Consider the query of Example 4.1
and assume that the intermediate solutions have 10
URIs bound to “?s” (i.e., the query execution engine
has found 10 URIs that match the first triple pat-
tern). The engine can now use the cached metadata
about which of these URIs have RDF triples with pred-
icate foaf:name to give higher retrieval priority to those
URIs which are known to have higher potential for
matching the second triple pattern.

4. List of distinct URIs mentioned: This list can be
used to give a higher retrieval priority for the docu-
ments which have something to say about the query-
relevant URIs (these are URIs which are mentioned in
the query or which appear in the intermediate partial
solution mappings).

A more comprehensive list of metadata items is expected
to be compiled after completing this phase of the proposed
research. Then, we plan to propose an alternative to caching,
in the form of an extension to the current proposals for
linked dataset descriptions[19, 20], where Linked Data pub-
lishers can automatically extract query optimization-targeted
metadata from their datasets and publish it in the same
decentralized fashion as Linked Data. The base-line link-
traversal query engine will be extended to enable the genera-
tion, caching and use of the candidate metadata items. Most
of these metadata can easily be generated using the proper
SPARQL queries against the target dataset [19]. However,
we identified two tools that can be extended to programmat-
ically generate the required metadata. One tool is RDFStats
[21], which is an extensible RDF statistics generator and the
other is make-void3, which generates statistical information
from RDf files as VoID expressions [19].
3https://github.com/cygri/make-void

517

5. SEMANTICS-BASED QUERY OPTIMIZA-
TIONS

Adding reasoning support to link-traversal query execu-
tion can improve the following aspects of the query execution
process: 1. Finding more query answers that only follow im-
plicitly from the data. 2. Guiding the link-traversal process
into more query relevant data sources. 3. Query Optimiza-
tion (i.e., detecting conditions for early termination).

To achieve efficient query execution at the web scale, rea-
soning and search need to be intertwined into a hybrid query
framework. As Fensel and van Harmelen [22] stated it: “in-
terweave the reasoning process with the process of establish-
ing the relevant facts and axioms through retrieval ... That
way, retrieval and reasoning become two sides of the same
coin —a process that aims for useful information derived
from data on the Web”. Previous work by Umbrich et al.
[23], to incorporate light-weight reasoning (with RDFS and
owl:sameAs) into link-traversal query execution, improved
its recall by almost double. We propose to extend base-line
link-traversal query execution to support more elaborate en-
tailment regimes with a richer subset of OWL axioms. We
will start with the most widely used subset of OWL, based
on previous empirical analysis by [24].

5.1 Examples:
An example of how RDFS and OWL semantics can be

exploited for query optimization is detecting conditions for
early termination. It is now well-known that the cost of data
retrieval dominates the cost of link-traversal query execution
[25]. That is why the query engine’s ability to entail that it
does not need to exhaustively explore the entire reachable
subweb is essential for efficient query execution. An example
of this is exploiting functional dependencies, as the following
example illustrates.

Example 5.1. Consider the functional dependency between
a country and its capital, and the following query, which asks
for the capital of the country which currency code is CAD.

SELECT ?capital WHERE {

?country rdf:type dbpedia -owl:Country .

?country dbpprop:currencyCode "CAD"@en .

?country dbpedia -owl:capital ?capital .}

Listing 2: SPARQL query

A semantics-aware query engine should terminate its data
retrieval process once it finds Ottawa as a capital for Canada.
On the contrary, in a similar situation, a base-line link-
traversal query engine will continue trying to find more cap-
itals for Canada, until it exhaustively retrieves all the doc-
uments in the reachable subweb.

Reasoning can also help to guide the link-traversal pro-
cess, by reasoning over the cached metadata (section 4), to
prioritize the link traversal process. Consider the following
example.

Example 5.2. Consider the query and the retrieval queue
of Example 4.1. Assume that the metadata cache (Sec-
tion 4) has information that uri2 has 50 instances of class
ex:student and uri3 does not have any instances of class
ex:student. Furthermore, assume that the metadata cache
has information that uri3 contains 150 instances of another
class, ex:gradStudent, and assume that we know that class

Figure 1: Architecture of a Hybrid Query Execution
Framework

ex:gradStudent is a subclass of ex:student (i.e., we know that
“ex:gradStudent rdfs:subClassOf ex:student”). A query exe-
cution engine that does not consider the effect of reasoning
will give low priority to uri3 and high priority to uri2. How-
ever, uri3 has three times the number of students that uri2
has and should be given the highest priority by a reasoning-
aware query execution engine.

To this point, our plan is to start by identifying the sit-
uations where semantics can be used for optimizing query
execution. Then, we will investigate how a link-traversal
query engine can be extended to exploit such situations.

6. ARCHITECTURE OF A HYBRID QUERY
EXECUTION FRAMEWORK

The Query Optimizer (Figure 1) is the key component re-
sponsible for the realization of the optimizations proposed
in this paper. It can be thought of as an implementation
of the LD Oracle concept (section 3.2). To achieve its op-
timization goals, the Query Optimizer will need to: a) con-
sult a Metadata Cache (section 4), b) consult a Semantics
Cache (section 5), c) incorporate an OWL Reasoner4, d) use
a basel-line link-traversal query engine5, e) have access to
the URI Retrieval Queue to be able to revise and prioritize
the data retrieval process.

Throughout the link-traversal query execution process,
the Query Optimizer’s revision of the Retrieval Queue may
result in one of the following outcomes:

1. Changing the lookup priority of URIs based on the
Query optimizer’s belief in their respective potential
to contribute to the query answers.

2. Adding URIs that were not originally part of the queue
but the Query Optimizer has reasons to believe that
they can contribute answers.

3. Excluding URIs from the queue because the Query Op-
timizer has reasons to believe they cannot contribute
answers to the query at hand (however, to guarantee
completeness, this exclusion cannot happen based on
cached statistics, it can only happen based on reason-
ing upon the intermediate results).

We will start with a base-line link-traversal query engine5

and augment it with the proposed optimizations iteratively.
At each iteration, we will experimentally validate the perfor-
mance of the optimized engine against the base-line version
of the same engine. For this purpose, we have extended the
experimental setup used in [25].

4https://jena.apache.org
5http://squin.org

518

7. CONCLUSIONS
To conclude, the following are the key research hypothe-

ses that we are investigating in this research: 1) It is pos-
sible to identify a set of metadata for online Linked Data
which can be cached and utilized later for query optimization
purposes. 2) Reasoning about Linked Data Semantics can
significantly improve the performance of live Linked Data
query execution. 3) A hybrid Link-traversal query execu-
tion framework can be designed to utilize such metadata and
semantics for query optimization and can exhibit the follow-
ing two properties: a) If the metadata is up-to-date, the
framework can provide more efficient query execution and
more complete query answers than base-line Link-traversal
approaches. b) Regardless of the freshness of the metadata,
the query answers will always be sound and complete.

8. REFERENCES
[1] Barry Bishop, Atanas Kiryakov, Damyan Ognyanov,

Ivan Peikov, Zdravko Tashev, and Ruslan Velkov.
Factforge: A fast track to the web of data. Semantic
Web, 2(2):157–166, 2011.

[2] Eyal Oren, Renaud Delbru, Michele Catasta, Richard
Cyganiak, Holger Stenzhorn, and Giovanni
Tummarello. Sindice.com: a document-oriented
lookup index for open linked data. Int. J. Metadata
Semant. Ontologies, 3(1):37–52, November 2008.

[3] Andreas Harth, Jürgen Umbrich, Aidan Hogan, and
Stefan Decker. YARS2: A federated repository for
querying graph structured data from the web. In The
Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference,
ISWC 2007 + ASWC 2007, Busan, Korea, November
11-15, 2007., pages 211–224, 2007.

[4] Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila
Kinsella, Axel Polleres, and Stefan Decker. Searching
and browsing linked data with SWSE: The semantic
web search engine. Web Semant., 9(4):365–401,
December 2011.

[5] Olaf Hartig and Johann-Christoph Freytag.
Foundations of traversal based query execution over
linked data. In HT, pages 43–52, 2012.

[6] Olaf Hartig, Christian Bizer, and Johann Christoph
Freytag. Executing sparql queries over the web of
linked data. In International Semantic Web
Conference, pages 293–309, 2009.

[7] Günter Ladwig and Thanh Tran. Sihjoin: Querying
remote and local linked data. In ESWC (1), pages
139–153, 2011.

[8] Tim Berners-Lee. Linked data - design issues.
http://www.w3.org/DesignIssues/LinkedData.html.
[Online].

[9] Sparql 1.1 entailment regimes.
http://www.w3.org/TR/2013/REC-sparql11-
entailment-20130321.
[Online].

[10] Yingjie Li and Jeff Heflin. Using reformulation trees to
optimize queries over distributed heterogeneous
sources. In The Semantic Web - ISWC 2010 - 9th
International Semantic Web Conference, ISWC 2010,
Shanghai, China, November 7-11, 2010, Revised
Selected Papers, Part I, pages 502–517, 2010.

[11] Heiner Stuckenschmidt, Richard Vdovjak, Geert-Jan
Houben, and Jeen Broekstra. Index structures and
algorithms for querying distributed rdf repositories. In
Proceedings of the 13th International Conference on
World Wide Web, WWW ’04, pages 631–639, New
York, NY, USA, 2004. ACM.

[12] Mathias Konrath, Thomas Gottron, Steffen Staab,
and Ansgar Scherp. SchemEX - efficient construction
of a data catalogue by stream-based indexing of linked
data. Web Semantics: Science, Services and Agents on
the World Wide Web, 16(5), 2012.

[13] Jürgen Umbrich, Katja Hose, Marcel Karnstedt,
Andreas Harth, and Axel Polleres. Comparing data
summaries for processing live queries over linked data.
World Wide Web, 14(5-6):495–544, October 2011.

[14] Günter Ladwig and Thanh Tran. Linked data query
processing strategies. In Proceedings of the 9th

International Semantic Web Conference on The
Semantic Web - Volume Part I, ISWC’10, pages
453–469, Berlin, Heidelberg, 2010. Springer-Verlag.

[15] Olaf Hartig and Andreas Langegger. A database
perspective on consuming linked data on the web.
Datenbank-Spektrum, 10(2):57–66, 2010.

[16] Jürgen Umbrich, Marcel Karnstedt, Aidan Hogan, and
Josiane Xavier Parreira. Hybrid sparql queries: Fresh
vs. fast results. In International Semantic Web
Conference (1), pages 608–624, 2012.

[17] Olaf Hartig and M. Tamer Özsu. Linked data query
processing. In Data Engineering (ICDE), 2014 IEEE
30th International Conference on, pages 1286–1289,
March 2014.

[18] Neil Coburn and Grant E. Weddell. A logic for
rule-based query optimization in graph-based data
models. In DOOD, pages 120–145, 1993.

[19] Michael Hausenblas un Zhao Keith Alexander,
Richard Cyganiak. Describing linked datasets with the
void vocabulary. http://www.w3.org/TR/void/.
[Online].

[20] Thanassis Tiropanis, Wendy Hall, Nigel Shadbolt,
David De Roure, Noshir S. Contractor, and Jim
Hendler. The web science observatory. IEEE
Intelligent Systems, 28(2):100–104, 2013.

[21] Andreas Langegger and Wolfram Wöß. Rdfstats - an
extensible RDF statistics generator and library. In
Database and Expert Systems Applications, DEXA,
International Workshops, Linz, Austria, August
31-September 4, 2009, Proceedings, pages 79–83, 2009.

[22] Dieter Fensel and Frank van Harmelen. Unifying
reasoning and search to web scale. IEEE Internet
Computing, 11(2):96,94–95, 2007.

[23] Jürgen Umbrich, Aidan Hogan, Axel Polleres, and
Stefan Decker. Improving the recall of live linked data
querying through reasoning. In RR, pages 188–204,
2012.

[24] Birte Glimm, Aidan Hogan, Markus Krötzsch, and
Axel Polleres. OWL: yet to arrive on the web of data?
In WWW2012 Workshop on Linked Data on the Web,
Lyon, France, 16 April, 2012, 2012.

[25] Olaf Hartig and M. Tamer Özsu. Reachable subwebs
for traversal-based query execution. In WWW
(Companion Volume), pages 541–546, 2014.

519

