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ABSTRACT
Given a large bipartite graph that represents objects and their prop-
erties, how can we automatically extract semantic information that
provides an overview of the data and – at the same time – enables us
to drill down to specific parts for an in-depth analysis? In this work
in-progress paper, we propose extracting a taxonomy that models
the relation between the properties via an is-a hierarchy. The ex-
tracted taxonomy arranges the properties from general to specific
providing different levels of abstraction.

1. INTRODUCTION
Bipartite graphs, representing objects and their related proper-

ties, are ubiquitous when analyzing information sources available
on the Web. Examples include online medical databases, where
objects represent drugs and properties their characteristics or elec-
tronic document collections, where documents are objects and key-
words their properties. In this work in-progress paper, we propose
to extract taxonomies from such bipartite graphs.

An example of an object-property graph and the taxonomy we
aim to extract is depicted in Fig. 1. On the left, the adjacency matrix
of the graph is shown, with columns representing objects and rows
representing properties. On the right, the taxonomy that describes
the is-a relation between the properties is illustrated (e.g. vertebrate
is-a subclass of animal). The key aspect we exploit is the principle
of inheritance: Each concept in the hierarchy inherits the properties
of its parent concepts, e.g. mammal is-a vertebrate and an animal.
Furthermore, concepts inherit the objects of their children. The
animal concept, e.g., inherits the objects beetle and worm from the
invertebrate concept. To further improve understanding, we aim
to identify similar concepts such as acronyms or synonyms (e.g.
animal and beast) and represent them as a single vertex in the tree.

2. PROPOSED PRINCIPLE
We are interested in extracting taxonomy trees. Formally, given

a bipartite graph G = (O,P,E) with objects O, properties P and
directed edges E ⊆ O × P , we define:

DEFINITION 1. A taxonomy tree T = (V,R) consists of a set
of vertices V and an is-a relation R ⊆ V × V . Each vertex
v = (Pv, Ov) ∈ V represents a concept consisting of a set of

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742753.

Figure 1: Input graph on the left and the corresponding taxon-
omy on the right. The properties are arranged in a hierarchy,
representing an is-a relation.

properties Pv ⊆ P and the objects Ov ⊆ O exhibiting these prop-
erties. Each property is assigned to at most one vertex in the tax-
onomy tree, i.e. Pv ∩ Pv′ = ∅ for v 6= v′.
Given a set of properties Pv , the set of objects Ov is uniquely de-
fined as the set of objects o ∈ O which possess the majority of the
given properties Pv , i.e.

Ov = {o ∈ O |
∑

p∈Pv
[[o ∈ O[p]]] >

∑
p∈Pv

[[o /∈ O[p]]]}
with O[p] = {o ∈ O | (o, p) ∈ E} representing the set of objects
that posses the property p ∈ P and [[.]] being the Iverson bracket.
The is-a relation R states that if (v1, v2) ∈ R, the concept v1 is-a
subclass of the concept v2. Intuitively, the most general concept is
the root vertex of the tree.

To find an instantiation of such a tree that describes the data’s
patterns well, we refer to the principle of Minimum Description
Length (MDL) [1]: a good tree provides a compact description
of the data. Thus, according to MDL, our goal is to find a tree
T that minimizes the overall codelength C(T ) + C(G|T ) where
C(T ) measures the codelength of the model itself and C(G|T ) the
codelength of the data G when encoded with the model T .

Codelength of Model. The crucial idea we exploit is inheri-
tance: Assuming a perfect hierarchy (see Fig. 1), any given concept
vertex inherits the objects of its child vertices. Thus, instead of rep-
resenting an object multiple times, it is sufficient to record it once
in the child vertices and to propagate the information to the parent
vertices. For example, if we know that the object ape is a mammal
(see Fig. 1), and we know that mammals are vertebrates, we do not
need to explicitly store the information that apes are vertebrates.
The information that apes are vertebrates can automatically be de-
rived based on the structure of the taxonomy tree. Based on this
principle, we define the model description cost C(T ) as:

C(T ) = LN(|V |) + LN(|O|) + LN(|P |) +
∑
v∈V

CM (v)
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Figure 2: Accuracy of
the extracted hierarchies
for varying noise levels.
Our method clearly out-
performs the competing
technique.

where we encode (i) the overall number of vertices, the number of
objects, and the number of properties in the tree using the MDL
optimal universal codelength LN for integers [5], and (ii) each in-
dividual vertex of the tree requiring codelength of

CM (v) = log |V |+ LN(|Pv|) + |Pv| · log |P |

+ LN(|Onew
v |) + |Onew

v | · log |O \Oinh
v |.

Here, Oinh
v denotes all objects of vertex v that are inherited from

its children and Onew
v those which are not. Since the objects Oinh

v

are already represented by the child vertices, we only have to en-
code the objects Onew

v . Thus, for each vertex v of the tree we only
encode (a) a pointer to its parent p ∈ V , requiring codelength of
log |V |. (b) The set (and number) of properties Pv used for this
vertex. The codelength is LN(|Pv|) + |Pv| · log |P | bits. (c) The
set (and number) of objects Onew

v , using a similar coding as above.
Codelength of Data. Given the model, what will the codelength

C(G|T ) of the data look like? The taxonomy tree in Fig. 1, for
example, perfectly recovers the input graph, leading to zero cost.
In general, we cannot assume that the data perfectly follows the
given model. Since MDL, however, requires lossless compression,
we additionally have to encode the errors introduced by the model
(e.g. edges which are present in the graph but not represented by
the taxonomy or vice versa). Since each error corresponds to one
edge, the codelength of these description cost can be bounded by

C(G|T ) = LN(|R|) + |R| · (log |P |+ log |O|)
where R denotes the set of errors.

Algorithmic aspects. The optimal taxonomy is obtained by
minimizing the overall codelength, which is an NP-hard problem.
To ensure efficiency, we developed a heuristic algorithm. The basic
idea is to build the tree top-down by iteratively adding new concepts
to the taxonomy. At the beginning, each property represents its own
concept. We process these concepts in descending order of their
specificity, i.e. we start with the most general concept, where the
specificity of a property is defined by the number of objects it pos-
sesses. Thus, when, e.g., constructing the taxonomy of Fig. 1, the
concept animal/beast and vertebrate are processed first. The sec-
ond building block of our technique is a bottom-up search, where
the potential parent of a new vertex is found in reverse order of their
insertion (i.e. leafs first). The new vertex is attached to the parent
which leads to the smallest value in the overall codelength.

Related works. Most taxonomy extraction approaches are lin-
guistic based approaches developed in the field of natural language
processing. Since they, e.g., base on lexical syntactic patterns to
extract relations from text [4], they do not apply to graphs. Other
methods base on the idea of set coverage [2]. They cannot handle
data containing errors since concepts have to fully subsume each
other. Monothetic hierarchical clustering [3] builds a hierarchy of
clusters where members have some common property (e.g. all are
vertebrates) – they follow a similar spirit as our method by describ-
ings concept via sets of properties. A limitation of these techniques
is the generation of binary trees, and the restriction to disjoint clus-
ters, i.e. objects appear only in a single branch of the hierarchy. In
our work, objects might appear in multiple branches. In general,
the crucial difference is that clustering is focused on grouping ob-
jects, while our goal is to hierarchically arrange the properties.
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Figure 3: Subset of the deoxyribonucleic acid (DNA) branch
automatically extracted from DrugBank.

3. EXPERIMENTAL ANALYSIS
Accuracy. We compared our method against the monothetic hi-

erarchical clustering method MONA [3]. We synthetically created
taxonomies (like the one in Fig. 1) and we added a varying degree
of additive noise. We then compared the hierarchy found by our
method with the ground truth hierarchy of the synthetic data. The
same is done for MONA. The hierarchies are compared by using
an adaption of the cophenetic correlation coefficient. To be fair to
MONA, we created binary taxonomies. Each vertex has two chil-
dren, each inheriting 50% of its parent’s objects, starting with 5000
objects at the root. We distinguish two set-ups: (i) the object sets
of the children are disjoint, (ii) they randomly overlap to 25%. Fig-
ure 2 shows that our method clearly outperforms MONA.

Case Study. We applied our method on the DrugBank data
(http://www.drugbank.ca), describing 1,578 drugs and 5,000 exper-
imental substances. Each drug is an object, and the properties are
the drugs’ categories, target information, and keywords. Figure 3
shows a part of the extracted taxonomy. Each vertex represents a
set of properties Pv . Edges denote the relation R. The root in the
center represents the most general concept. Fig. 3 illustrates the
DNA branch of the extracted taxonomy. By following this branch
we see that (a) VZV is the abbreviation for the varicella-zoster virus
and (b) they are related to chickenpox. In fact chickenpox is com-
monly caused by the varicella-zoster virus which is a DNA virus.
This knowledge allowed scientists in the past to develop a vaccine
against chickenpox. Our detected taxonomy, thus, well matches the
inherent properties of the data. Overall, these initial experiments
show the high potential of our taxonomy extraction method.
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