
Entity-driven Type Hierarchy Construction for Freebase
Jyun-Yu Jiang†

∗
, Chin-Yew Lin‡ and Pu-Jen Cheng†

†Department of Computer Science and Information Engineering, National Taiwan University
‡Microsoft Research Asia

jyunyu.jiang@gmail.com, cyl@microsoft.com, pjcheng@csie.ntu.edu.tw

ABSTRACT
The hierarchical structure of a knowledge base system can
lead to various valuable applications; however, many knowl-
edge base systems do not have such property. In this pa-
per, we propose an entity-driven approach to automatically
construct the hierarchical structure of entities for knowledge
base systems. By deriving type dependencies from entity in-
formation, the initial graph of types will be constructed, and
then modified to become a hierarchical structure by several
graph algorithms. Experimental results show the effective-
ness of our method in terms of constructing reasonable type
hierarchy for knowledge base systems.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

Keywords
Knowledge Base; Entity Type; Type Hierarchy.

1. INTRODUCTION
Modern knowledge base systems record abundant infor-

mation about myriads of entities. Most of them exploit
entity types to categorize entities. For example, each en-
tity in Freebase [2] has several types. However, entity types
of many knowledge base systems are not hierarchical, such
as Freebase [2]1 and DBpedia [1], so dependencies among
different entity types are also unable to be interpreted. In
other words, the capability of entity types can be improved
with the hierarchical information. For instance, film.actor
and people.person are two types in Freebase. If the depen-
dency between two types is provided, we can infer that an
entity with the type film.actor must belong to the type
people.person because people.person is an ancestor of
film.actor in the type hierarchy. Therefore, an approach
to automatically construct type hierarchy is needed for im-
proving knowledge base systems.

In this paper, given entities with their types in a knowl-
edge base system, we aim to construct the hierarchical struc-
ture for such entity types. For example, given entities with
types people.person, sports.athlete and tennis.player,
we would like to derive the hierarchical structure as follows:

people.person← sports.athlete← tennis.player,

where the type people.person is the root of the hierarchy
for human entities. One possible solution is to find identical
entities in other hierarchical knowledge base systems, and
then align the types [3, 4]. However, there are some critical

∗Part of this work was done when the first author was on
an internship at Microsoft Research Asia
1Although every entity type in Freebase belongs a brief
group called the type domain, there is still no hierarchical
structure.
Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742737.

Algorithm 1 Initial Graph Construction

Input: Given entity set: E; type set: T ; threshold of de-
pendency confidence: θ (0 ≤ θ ≤ 1).

Output: Initial graph: Gθ = (V,Aθ), where V = T and Aθ
is the set of edges (i.e., dependencies among types).

1: V ← T,Aθ ← ∅
2: for t1 ∈ T do
3: for t2 ∈ T − {t1} do
4: if |E(t1) ∩E(t2)| / |E(t1)| ≥ θ then
5: Aθ ← Aθ ∪ {(t1 → t2)}
6: end if
7: end for
8: end for
9: return Gθ = (V,Aθ)

problems. First, some entities and types might not exist in
other knowledge base systems, so they cannot be aligned and
transferring information. Second, the alignment of entities
is not actually equivalent to the mapping of entity types, so
the hierarchy of the other system cannot be directly trans-
ferred. Hence, in this work, our goal is to construct the
hierarchical structure of entities types with only the entities
in the original knowledge base system.

To solve the problem, we propose a data-driven approach
to construct the type hierarchy for knowledge base systems
without hierarchical structure, such as Freebase [2]. The
principal idea of our approach is that entities of a type t1
may contain the other general type t2, which should be the
ancestor of t1. Exploiting entities as hints, we mine po-
tential dependencies among types. After deriving potential
dependencies, several graph algorithms are applied to adjust
dependencies to become hierarchical. Finally, experimental
results show that our approach can well build satisfactory
type hierarchies for the Freebase knowledge base system.

2. PROPOSED METHOD
Given the type set T and the entity set E, we aim to au-

tomatically construct a hierarchical structure G for all types
t ∈ T . Denote E(t) ⊆ E as the set of entities with the type
t. If most of entities in E(t1) belong to the type t2, the type
t1 may be dependent to t2. Based on this observation, we
can derive several potential dependencies among types and
construct the hierarchy. Therefore, we propose an entity-
driven approach consisting of four stages: (1) initial graph
construction, (2) equivalent type contraction, (3) back-edge
elimination and (4) vertex separation with cross-edges.

(1) Initial Graph Construction. We first derive the po-
tential dependencies among entity types from entity infor-
mation as shown in Algorithm 1. By verifying the propor-
tion of shared entities for each type pair, the confidence of
dependencies can be identified. Here θ (0 ≤ θ ≤ 1) is a
threshold to sieve out confident enough dependencies, and
Gθ is a directed graph. Only the dependencies to types with
more than θ of shared entities will be kept in the graph as
edges. However, such initial graph may not be a hierarchi-
cal structure. The relationship among entity types will be
too complicated to understand. Hence, the graph requires
adjusting and modifying to become hierarchical.

47

tv.tv_song_performer

music.artist

0.89296(25/28)

music.conducted_ensemble

music.musical_group

0.9843(188/191)

broadcast.artist

0.8051(11125/13818)

music.orchestra

0.9982(565/566)

0.9971(200720/201304)

music.group_member

0.7762(140312/180780)

music.opera_singer

0.8229(381/463)

music.songwriter

0.8294(2892/3487)

music.producer

0.7333(18687/25484)

music.drummer

0.8865(242/273)

music.bassist

0.9226(596/646)

music.guitarist

0.8419(3727/4427)

Figure 1: The sub-hierarchy rooted by the type music.artist while θL = 0.7. Numbers beside edges are the
confidence of edges and the detailed proportions of shared entities.

(2) Equivalent Type Contraction. A problem is that the
graph may contain cycles, which represent the dependencies
propagate back to the types themselves. In the case of edges
with high confidence, a cycle may show that types are equiv-
alent because they are likely to be dependent to each other.
To put it differently, they can be contracted into a single
vertex to avoid the cycle and represent the same idea.

To identify types in cycles, Kosaraju’s algorithm [5] is ap-
plied to find maximal strongly connected components (SCCs).
The graph theory guarantees that vertices must be in a SCC
if and only if they are in a cycle. Given a higher threshold
θH and the corresponding graph GθH , we contract vertices
in each SCC into a vertex, and then denote the new vertex
set as VθH . Next, the graph GθH ,θL = (VθH , AθL) is con-
structed by the contracted vertex set VθH and the edge set
AθL with a lower confidence threshold θL. However, cycles
might still exist in AθL , so we build G′

θH ,θL
by iteratively

finding the largest cycle, and then removing the edge with
the lowest confidence until there is no cycle. In this paper,
we set θH as 0.9 and θL as a tunable parameter. Finally, the
graph G′

θH ,θL
will be a directed acyclic graph.

(3) Back-edge Elimination. While constructing the graph,
some edges, especially back-edges, might be redundant for
the hierarchical structure. For example, if there are three
edges (t1 → t2), (t2 → t3) and (t1 → t3), the back-edge
(t1 → t3) is redundant because t1 can trace its ancestors to
t3 without (t1 → t3). Here we apply the simple depth-first
search to find and eliminate all back-edges in the graph.

(4) Vertex Separation with Cross-edges. Since all
pairs of types will be verified in Algorithm 1, it is possible
that a type is dependent to multiple types. It is reasonable
because an entity may act as different characters. For exam-
ple, a US president is not only a politician but an appointer
of the government, so the type government.us_president
should be dependent to government.politician and peo-
ple.appointer at the same time. To solve this problem,
for a vertex with k out-links in the graph (i.e., a type de-
pendent to other k types), we separate the vertex and its
descendants into k different sub-trees below k correspond-
ing vertices. Hence, in the graph, each vertex will have at
most only one parent.

Finally, the graph is a forest consisting many hierarchies
about specific topics. We then create a pseudo root r, and
let all roots of hierarchies link to r. Therefore, the type
hierarchy of the knowledge base system is well constructed.

3. EXPERIMENTS
We utilize the Freebase dataset2 from December 2014, in-

cluding more than 90 millions unique entities and 1,950 en-
tity types in more than 80 domains.

Table 1 shows four examples of contracted equivalent en-
tity types. The first three examples are much reasonable.

2Freebase Datadumps: https://developers.google.com/
freebase/data

Table 1: Examples of equivalent types with θH = 0.9.
1. aviation.airline ↔ aviation.aircraft_owner

2. astronomy.discovery ↔ astronomy.star_system_body

3. book.scholarly_work ↔ education.dissertation

4. music.release ↔ media_common.creative_work

Table 2: The accuracy and entity coverage of edges
in the graphs with different θL.

θL 0.5 0.6 0.7 0.8 0.9

Accuracy 0.8936 0.9033 0.9124 0.9213 0.9414
Coverage 0.9369 0.9274 0.9209 0.9167 0.8908

For instance, an airline must be the aircraft owner, and vice
versa. The last example is stranger than others because a
creative work might belong to not only music but also di-
versified media. This is caused by the entity bias. Most of
creative works in Freebase are in the form of music, so an in-
correct edge from creative_work to music.release exists.

Figure 1 shows an example of the sub-tree while θL = 0.7.
Entity types are well arranged into a hierarchy by appropri-
ate levels. To further evaluate the quality of the hierarchy
construction, we annotated the correctness of each edge in
the hierarchies with different θL, i.e., the accuracy of edges.
Moreover, we evaluate the entity coverage of the built hierar-
chies. Table 2 shows the accuracy and the coverage of edges
in the hierarchy. Generally, the accuracy of every setting is
satisfactory. It is obvious that larger θL leads to higher ac-
curacy and lower coverage. This is because the confidence of
type dependencies increases, but less edges pass the thresh-
old. We then analyze the error in the hierarchy construc-
tion. The major mistakes are still about the entity bias.
For example, an incorrect edge is (military.commander →
people.deceased_person) because more than 90% of com-
manders in Freebase have passed away.

4. CONCLUSION AND FUTURE WORK
In this paper, we focused automatically constructing the

type hierarchy for knowledge based systems without hier-
archical structure. We propose an entity-driven approach
to exploit entity information to derive the potential depen-
dencies and build the type hierarchy. Experimental results
shows the effectiveness of our method. The ongoing work is
to apply the type hierarchy of Freebase to mine knowledge
in other systems, such as web search engines.

5. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and

Z. Ives. Dbpedia: A nucleus for a web of open data. Springer,
2007.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for
structuring human knowledge. In SIGMOD ’08, pages
1247–1250. ACM, 2008.

[3] E. Demidova, I. Oelze, and W. Nejdl. Aligning freebase with the
yago ontology. In CIKM ’13, pages 579–588. ACM, 2013.

[4] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to
map between ontologies on the semantic web. In WWW ’02,
pages 662–673. ACM, 2002.

[5] S. R. Kosaraju and G. Sullivan. Detecting cycles in dynamic
graphs in polynomial time. In STOC ’88, pages 398–406. ACM,
1988.

48

https://developers.google.com/freebase/data
https://developers.google.com/freebase/data

	Introduction
	Proposed Method
	Experiments
	Conclusion and Future Work
	References

