
A Hybrid Approach to Perform Efficient and Effective
Query Execution Against Public SPARQL Endpoints

Maribel Acosta
Institute AIFB

Karlsruhe Institute of Technology
maribel.acosta@kit.edu

Supervised by Prof. Dr. Rudi Studer

ABSTRACT
Linked Open Data initiatives have fostered the publication of Linked
Data sets, as well as the deployment of publicly available SPARQL
endpoints as client-server querying infrastructures to access these
data sets. However, recent studies reveal that SPARQL endpoints
may exhibit significant limitations in supporting real-world appli-
cations, and public linked data sets can suffer of quality issues, e.g.,
data can be incomplete or incorrect. We tackle these problems and
propose a novel hybrid architecture that relies on shipping policies
to improve the performance of SPARQL endpoints, and exploits
human and machine query processing computation to enhance the
quality of Linked Data sets. We report on initial empirical results
that suggest that the proposed techniques overcome current draw-
backs, and may provide a novel solution to make these promising
infrastructures available for real-world applications.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information processing;
H.2.4 [Systems]: Query processing

Keywords
SPARQL Endpoint, RDF, Query Optimization, SPARQL Query,
Hybrid System, Crowdsourcing, Microtasks, Quality Issues

1. PROBLEM STATEMENT
Linked Open Data (LOD) initiatives have promoted the publica-

tion of Linked Data (LD) sets in different knowledge domains in-
cluding Life Sciences, news, geographical data, cross-domain and
many others.1 As of April 2014, more than 1,000 data sets have
been made openly available using RDF and other standards and
protocols.2 One of the main mechanisms to consume a Linked
Open Data set is via accessing publicly available SPARQL end-
points. Endpoints support a flexible interface to query RDF repos-
itories: clients can pose queries against endpoints which, in theory,

1lod-cloud.net
2http://linkeddatacatalog.dws.informatik.
uni-mannheim.de/state/

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’15 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741750.

are capable of executing any given valid SPARQL query and return
the results to the requester. Although SPARQL endpoints are ac-
knowledged as a promising technology for RDF data access, this
querying infrastructure still exhibits significant limitations in sup-
porting real-world applications with high demands on performance
(in terms of execution time and availability) and data quality.

A recent analysis by Buil-Aranda et al. [5] indicates that per-
formance and availability vary notably between different public
SPARQL endpoints. One of the reasons for the at times undesir-
able performance of public SPARQL endpoints is the unpredictable
workload, since a large number of clients may be concurrently ex-
ecuting queries arbitrary complex queries against the endpoint. For
instance, the DBpedia endpoint3 processes almost 500,000 queries
per day according to log files from DBpedia 3.8.4 Scenarios like
this impose new challenges for query processing solutions that ac-
cess public SPARQL endpoints, in which optimization techniques
should be tailored not only to produce results in a reasonable time,
but also to take into account the endpoint performance in terms of
computational resources to ensure its availability.

An orthogonal but equally important aspect of accessing pub-
lic endpoints is the quality of the retrieved data. Recent studies
reveal that RDF [8] data sets exhibit varying quality in different di-
mensions including completeness, semantic validity, and semantic
accuracy [17]. Quality issues in LD often pose a serious problem
to developers aiming to consume and integrate LD in their applica-
tions. In addition, executing queries against data with quality issues
leads to low-quality results. The challenge is then to detect and cor-
rect inaccurate portions of the data set during query processing to
produce complete and high-quality results. Recent research shows
that certain LD quality issues can be repaired automatically [12];
however, other quality issues require further semantic interpreta-
tions that could be easily assessed by humans.

In order for the public SPARQL endpoint infrastructure to reach
its full potential, more flexible client-server architectures in terms
of performance and quality are needed. The main research goal of
this work is to define a solution to efficiently and effectively access
public SPARQL endpoints, taking into account the capabilities of
endpoints and the quality requirements of clients. We identify three
specific research goals: (RG1) Efficient query execution against
public SPARQL endpoints, where efficiency is defined in terms of
execution time; (RG2) Effective query execution enhancing data
completeness; (RG3) Effective query execution via data cleansing,
to handle LD quality issues. To accomplish our research goals, we
propose a hybrid system that combines human and computational
intelligence to execute queries against a given SPARQL endpoint.

3SPARQL endpoint: http://dbpedia.org/sparql
4USEWOD 2013 Dataset, available at: http://data.
semanticweb.org/usewod/2013/challenge.html

469

We have implemented and empirically analyzed the performance of
the core components of our system. Results show that our approach
is feasible and able to outperform existing solutions.

2. STATE OF THE ART
We focus on investigating two types of related work: SPARQL

endpoint availability and hybrid (human/computer) systems.
SPARQL Endpoint availability. SPARQL endpoints attempt to

completely execute client queries that meet certain complexity and
selectivity restrictions. Performance statistics of public SPARQL
endpoints have been recently collected by Buil-Aranda et al. [5];
reported results reinforce the statement that SPARQL endpoints
as a stand-alone querying infrastructure are not very likely to suc-
ceed, except for very simple queries. Verborgh et al. [15] proposed
Linked Data Fragments (#LD), an architecture to execute queries
against SPARQL endpoints. #LD shifts parts of the query from the
server to the client; all the query operators are executed at the client
while the server is dedicated to transfer data fragments to resolve
the query. Data fragments are gathered by contacting the endpoint
in a nested-loop fashion. While caching techniques may reduce
data lookups, this approach may not scale up to large intermediate
results because a relatively small number of simultaneous threads
are usually allowed from the same IP in public endpoints [13].

Hybrid Systems. Approaches such as CrowdDB [6], Deco [10],
and Qurk [9] target scenarios in which existing microtask plat-
forms are directly embedded in relational query processing sys-
tems. CrowdDB [6] provides SQL-like data definition and query
languages to support hybrid query execution, and attempts to re-
duce the number of crowdsourcing tasks in enumeration queries by
exploiting structural properties of the relational data [14]. Deco [10]
implements caching strategies to reuse previously crowdsourced
data. Additionally, Deco [11] and Qurk [9] provide a set of physical
operators and models to estimate selectivity and cardinality. These
statistics in conjunction with the physical operators allow for defin-
ing physical plans that reduce execution time, monetary cost, and
number of tasks. All of these approaches require user intervention
on the definition of the crowd-based workflows and do not take into
consideration the performance of the crowd. In contrast, we pro-
pose a solution to automatically create hybrid query-driven work-
flows exploiting crowd knowledge to on-the-fly decide whether the
crowd is knowledgeable to resolve certain types of questions.

Furthermore, crowdsourcing has also shown to be feasible for
other scenarios related to Semantic Web technologies. Amster-
damer et al. propose OASSIS [4], a system that combines general
knowledge from ontologies with frequent patterns mined from per-
sonal data collected from the crowd. OASSIS provides a SPARQL-
like query language where users specify sub-queries that will be
evaluated against the ontology and the ones that will be mined from
the crowd. The OASSIS query engine is able to order the execution
of the sub-queries in a way that questions posed to the crowd are
minimized. LODRefine,5 an LD integration tool, has made avail-
able an extension that allows to manually configure and run specific
data matchmaking tasks on a microtask platform. Although these
approaches address different LD management problems, they are
not tailored to tackle incomplete or incorrect values in RDF data.

3. PROPOSED APPROACH
We propose a hybrid query processing system that combines hu-

man and computer capabilities to execute queries against public
SPARQL endpoints. Figure 1 depicts the main components of the
proposed architecture. Below we describe each component.
5https://github.com/sparkica/LODRefine

SPARQL Query Q

Tasks

Human
input

SPARQL
Engine

Crowd

Crowd
KB Microtask

Manager

SHEPHERD

SPARQL
Endpoint

Input

Results for Q
Output

Shipping
Optimizer

Cost
Model

Endpoint
Stats

Query
Decomposer

Completeness
Model

Quality Issue
Component

RDF-Hunter
Shipping-based
plan for Q

Hybrid
plan for Q

Figure 1: The proposed architecture

When a query Q is issued, Q is firstly optimized by SHEP-
HERD [2]. This component implements optimization techniques
based on a novel cost model. The SHEPHERD optimizer is tailored
to devise plans that are efficiently executed by public endpoints.

Plans generated by SHEPHERD are then processed by RDF-
Hunter [1]. The objective of this component is to detect parts of
the query Q that yield incomplete results. The RDF-Hunter query
decomposer generates a hybrid plan for Q composed of two par-
titions: one partition is executed against the endpoint, the other is
solved via human computation. The query decomposer in combi-
nation with the quality issue component is able to identify quality
issues [3] in the intermediate results of Q. Potential erroneous data
retrieved from the endpoint is resorted to human assessment to de-
tect and provide correct values to build high-quality results for Q.

Hybrid (human/computer) plans for Q are executed by the SPARQL
engine. Intermediate results of the human-driven sub-plan are sub-
mitted to the microtask manager, responsible for enabling human
intelligence in our system via microtasks. Microtask crowdsourc-
ing consists on resorting questions (tasks) to human contributors;
each question is typically solved in parallel by a high number of
contributors in a fast and affordable way. The microtask manager
builds human tasks exploiting the semantics of the RDF resources
to build rich user interfaces that facilitate the crowd’s work. User
interfaces display values (if available) of human-readable proper-
ties such as short description, picture, geo-location (which is shown
in a map), links to the homepage, and corresponding Wikipedia
article. The microtask manager submits the human tasks to ex-
isting microtask marketplaces such as Amazon Mechanical Turk6

(MTurk) and CrowdFlower.7 The SPARQL engine combines the
intermediate results retrieved from the data set with the human in-
put and produces the results for Q.

3.1 SHEPHERD: Efficient Query Execution
Against Public SPARQL Endpoints

The SHEPHERD component [2] generates query plans to be ef-
ficiently executed against public endpoints while shifting workload
from the server to the client. This component considers the capabil-
ities of the addressed SPARQL endpoint, and offers a competitive
performance in terms of execution time and the number of answers.
To do this, SHEPHERD implements shipping policies [7] which
allow for deciding where the different parts of a query will be ex-
ecuted according to the capabilities of endpoints. This component
addresses the object from our research goal (RG1).

SHEPHERD collects Statistics from SPARQL endpoints in order
to characterize endpoint performance in terms of: execution time
and size of result set. Gathering relevant statistics from public end-
points is a challenging task, since the only mechanism to retrieve
information from the endpoints is by submitting SPARQL queries.
6https://www.mturk.com/
7https://www.crowdflower.com/

470

Therefore, queries used to collect statistics must be able to be ex-
ecuted by the endpoint while providing useful information. Col-
lected statistics provide reliable estimators of performance used by
the cost model. SHEPHERD implements a novel Cost Model able
to estimate the cost of plans based on the combination of query exe-
cution time and the endpoint computational resource consumption.

The Shipping Optimizer implements a cost-based optimization.
The shipping optimizer traverses the space of plans exploring dif-
ferent shipping policies. During the optimization process, SHEP-
HERD decides whether to place the operators at the server (i.e.,
endpoint), or client (i.e., SHEPHERD) according to the statistics of
each endpoint. In this way, SHEPHERD explores shipping polices
tailored for each public endpoint to enhance their reliability.

3.2 RDF-Hunter: Effective Query Execution
Enhancing Data Completeness

RDF-Hunter [1] combines human and computer capabilities to
enhance the answer completeness of queries. For instance, execut-
ing a query against the DBpedia endpoint that selects “movies, includ-
ing their producers, that have been filmed in Italy” returns no producers for
16% of the movies in the result set. The goal of RDF-Hunter is then
to find missing values in the data set, e.g., missing movie producers
in DBpedia, via microtask crowdsourcing. RDF-Hunter provides a
highly flexible crowdsourcing-enabled SPARQL query execution:
no extensions to SPARQL or RDF are required, and users can con-
figure the level of expected answer completeness. This component
addresses our research goal (RG2).

A novel Completeness Model for RDF data sets is implemented
by RDF-Hunter. This model estimates the completeness level of
portions of a data set by comparing the topology of RDF sub-
graphs. In our running example, the quality model compares the
sub-graph of all movies and the sub-graph of movies filmed in Italy.
This comparison reveals that most of the movies have at least one
producer, therefore, movies without producers are considered as
incomplete data according to the quality model.

The Crowd Knowledge Base (or Crowd KB) stores the answers
retrieved from the crowd and describes the types of questions the
crowd is likely to be able to solve accurately. The Microtask Man-
ager aggregates results from human tasks assessed by the crowd
so far, and annotates them with a confidence score. To illustrate
this, consider that the crowd is enquired to provide the producer(s)
of the movie Ocean’s Twelve and the aggregated answer is “Jerry Wein-
traub is a producer of Ocean’s Twelve” with a confidence of 0.90, then the
high value of confidence suggests that the crowd is knowledgeable
answering this type of questions.

RDF-Hunter implements query decomposition techniques to au-
tomatically decide the parts of a query that should resort to the
crowd. The Query Decomposer combines information collected
from the quality model and the crowd knowledge base to enhance
the answer completeness. For example, based on the completeness
model, the decomposer decides to crowdsource the producers of
movies shot in Italy. However, the crowd have provided informa-
tion with high confidence about the producer of Ocean’s Twelve, then
this particular instance will not be assessed by the crowd again.

3.3 Quality Issue Component: Effective Query
Execution via Data Cleansing

The quality issue component [3] allows for detecting low-quality
data retrieved from the SPARQL endpoint. Among the quality is-
sues that can be detected are the following:
Incorrect Object. This quality issue is present in RDF triples in
which the object position has an erroneous value. For instance, DB-
pedia asserts that one of the dates of the tournament 2005 Six Nations

Championship is “0001-02-05”. However, according to its Wikipedia
article, the correct date in this case is “2005-02-05”.
Incorrect Data Type. Objects of RDF triples can be annotated
with metadata that denotes the type of data such as integer, dou-
ble, date, etc. This quality issue states that the data type assigned
is inaccurate. For example, the year in which the HDI (Human De-
velopment Index) of Italy was calculated in DBpedia is annotated
as an integer number (xsd:integer). To allow for correctly handling
the data from the example, e.g., comparison with other dates, the
expected data type in this case is xsd:gYear.
Incorrect Hyperlink. This quality issue states that the content
from a web page is unrelated to the subject of an RDF triple. For in-
stance, DBpedia links the RDF resource Italian language to the page
http://etcweb.princeton.edu/dante/pdp/, although the content
of this website is not directly associated with the resource.

Analogous to the RDF-Hunter workflow (cf. Section 3.2), the
Query Decomposer relies on the quality issue component to deter-
mine the parts of the query that might yield results with quality
issues. The crowd is enquired to provide correct values to build
the query results. The output from the crowd is stored in the Crowd
Knowledge Base and exploited in subsequent executions. The com-
bination of the quality issue module with automatic query decom-
position techniques allow for realizing our research goal (RG3).

4. METHODOLOGY
The methodology adopted in the development of this doctoral

work adheres to the following tasks:

1. Investigation of state-of-the-art solutions relevant to the stud-
ied problem. This includes the study of literature about effi-
cient query processing approaches published in the areas of
Databases and Semantic Web, as well as publications of so-
lutions that apply crowdsourcing to computational problems.

2. Formalization of the problem to solve and formulation of re-
search questions and hypotheses. Then, the proposed solu-
tion is defined, identifying the novel contributions. The for-
mal properties of the proposed solution will be demonstrated,
including an analysis of the space and time complexity for
the best and worst cases. The proposed solution will be im-
plemented and made available to the community.

3. Empirical evaluation of the proposed solution to measure its
performance with respect to state-of-the-art approaches. The
experiments will be conducted as follows: i) Implementa-
tion of state-of-the-art or baselines approaches. ii) Definition
of benchmarks to measure the quality of the proposed so-
lution. For the experiments, appropriate LD sets, queries,
and SPARQL endpoints will be selected as well as metrics
to measure the efficiency and effectiveness of our solution in
comparison to the state of the art. iii) Execution of experi-
ments and statistical studies of the obtained results to draw
conclusions about the hypotheses. iv) Analysis of the results.

5. EXPERIMENTAL STUDIES & RESULTS

5.1 Evaluating SHEPHERD
We empirically compared the performance of the hybrid ship-

ping policies implemented by SHEPHERD with the query shipping
policy when executing queries directly against the endpoint.
Public Endpoints and Query Benchmarks: We selected four
public SPARQL endpoints that exhibit different performance [5]:

471

0.1

1

10

100

Query 0 Query 1 Query 2 Query 3 Query 4

Ti
m

e
in

 s
ec

on
ds

 (l
og

)
DBpedia

0.1

1

10

100

Query 0 Query 1 Query 2 Query 3 Query 4

Ti
m

e
in

 s
ec

on
ds

 (l
og

)

IproClass

0.1

1

10

100

Query 0 Query 1 Query 2 Query 3 Query 4

Ti
m

e
in

 s
ec

on
ds

 (l
og

)

data.oceandrilling.org

 SHEPHERD Endpoint

0.1

1

10

Query 0 Query 1 Query 2 Query 3 Query 4
Ti

m
e

in
 s

ec
on

ds
 (l

og
)

TIP

 SHEPHERD Endpoint

Figure 2: SHEPHERD vs. Endpoint: Runtime when benchmark
queries are executed against four different public endpoints

DBpedia, IproBio2RDF, data.oceandrilling.org, and TIP.8 By ana-
lyzing triple patterns answerable for each endpoint, we designed a
query benchmark comprising five different queries per endpoint.9

Implementations: SHEPHERD was implemented using Python
2.7.6. Queries were executed directly against the endpoints using
the command curl. In the experiments, the clients were deployed
on the Amazon EC2 Elastic Compute Cloud infrastructure.10

Evaluation Metrics: i) Execution Time: The elapsed time from the
moment that the engine issues the query until it produces the last
result. It is measured with the Python time.time() function.
ii) Size of Result Set: Number of tuples produced by the engine
when a query is executed.

Results: Execution Time & Size of Result Set
Figure 2 depicts the result of executing the benchmark queries in
terms of the execution time (sec.). We can observe that in the ma-
jority of the cases SHEPHERD retrieves the results notably faster
compared to the query shipping policy (endpoint), except in three
queries. This suggests that the hybrid-shipping plans implemented
in SHEPHERD can be efficiently executed against public endpoints.

Concerning the size of the retrieved result set, a similar picture
emerges. For 18 of the total 20 queries tested, both SHEPHERD
and the query-shipping client produced the same amount of results,
while in one instance each SHEPHERD and the query-shipping
client did not retrieve any answers. Both methods therefore seem
to be on par in this regard.

SHEPHERD is able to execute queries against endpoints in an
efficient way. This could not be achieved neither by simply mov-
ing all operator execution to the client – since this increments the
bandwidth consumption and the evaluation of non-selective queries
may starve the resources of the client – nor by submitting the whole
query to the endpoint as shown in our experiments. These re-
sults suggest that the proposed techniques can improve efficiency
of SPARQL endpoints, addressing our research goal (RG1).

5.2 Evaluating RDF-Hunter
We empirically assessed the answer completeness achieved by

RDF-Hunter. To allow for reproducibility, setting details of these
experiments and further results are available online.11

Crowdsourcing Platform: We use the CrowdFlower platform.

8Available at http://iproclass.bio2rdf.org/sparql,
http://data.oceandrilling.org/sparql and http:
//lod.apc.gov.tw/sparql
9http://people.aifb.kit.edu/mac/shepherd/

10https://aws.amazon.com/ec2/instance-types/
11http://people.aifb.kit.edu/mac/rdf-hunter

F-Measure
Life
Sciences History Music Sports Movies

Query 1 0.83 1.00 0.80 0.91 1.00
Query 2 0.80 0.68 0.44 1.00 1.00
Query 3 0.94 1.00 1.00 1.00 1.00
Query 4 1.00 0.80 0.78 1.00 0.61
Query 5 1.00 0.96 0.84 0.71 1.00
Query 6 1.00 0.98 1.00 0.81 1.00
Query 7 1.00 0.75 0.91 1.00 0.88
Query 8 1.00 0.98 0.80 0.96 0.98
Query 9 0.93 0.97 0.75 0.92 1.00
Query 10 1.00 0.75 0.66 0.63 0.97
Average 0.95 0.89 0.80 0.89 0.94

Figure 3: Heat map of F-Measure achieved when evaluating the
benchmark queries against the crowd with RDF-Hunter

Query Benchmark and Gold Standard: We designed a bench-
mark of 50 queries that yield incomplete results for the DBpedia
SPARQL endpoint. We designed 10 queries each to belong in one
of these five categories: Historical, Life Sciences, Movies, Music,
and Sports. We built a gold standard of the missing answers of the
50 queries that required to be collected from the crowd.
Evaluation Metrics: i) Precision: Fraction of the answers col-
lected from the crowd that actually corresponds to the query an-
swers. ii) Recall: Fraction of the missing answers that are collected
from the crowd. iii) F-Measure: Combines the values of precision
and recall to measure the accuracy of the crowd output.

We crowdsourced a total of 502 RDF triples, and collected 1,619
answers from the crowd.

Results: F-Measure
We report the results of F-measure using a heat map (cf. Fig-

ure 3). The darkest color represents values of F-measure equals to
1.0. Columns represent the five query categories, while rows cor-
respond to the benchmark queries.

We can observe that in 21 out of 50 queries, the crowd was able
to correctly and completely provide all the missing values. Fur-
thermore, for 39 queries the achieved recall is greater than 0.80. In
each column, it is noticeable that although the queries belong to the
same category, the crowd achieved a variable range of accuracy (F-
measure). This observation provides evidence of the importance
of identifying portions of the domain where the crowd is knowl-
edgeable. Thus, in subsequent requests, RDF-Hunter will exploit
this knowledge to avoid crowdsourcing these two questions again.
These results showed that answer completeness can be enhanced
with our solution, as formulated in our research goal (RG2).

5.3 Detecting LD Quality Issues
We measured the quality of the crowd when detecting erroneous

triples from an LD set. To allow for reproducibility, all the settings
of these experiments and additional results are available online.12

Crowdsourcing Platform: We use the MTurk platform.
Data Set and Gold Standard: We used 1,512 triples resulting
from the DBpedia Evaluation Campaign [16] in which 58 LD ex-
perts participated. We generated a gold standard by evaluating
these triples and resolving the conflicts via mutual agreement.
Metrics: i) Precision: Measures the fraction of the triples that were
correctly identified as erroneous by the crowd.

After removing duplicates and broken links from the contest data
we submitted 1,073 triples to MTurk: 509 for Incorrect Object task,

12http://people.aifb.kit.edu/mac/
DBpediaQualityAssessment/

472

341 for Incorrect Data Type task, and 223 for Incorrect Hyperlinks
task. A total of 80 distinct workers participated in this experiment.

Results: Precision
For the Incorrect Object task, the MTurk worker reached a pre-
cision of 0.90, while the LD experts 0.72. Most of the incom-
plete values that are extracted from Wikipedia occur with the pred-
icates related to dates. In addition, there were 52 DBpedia triples
whose values might seem erroneous, although they were correctly
extracted from Wikipedia. We found out that the LD experts clas-
sified all these triples as incorrect. In contrast, the workers suc-
cessfully answered that 50 out of this 52 were correct, since they
compared the DBpedia and Wikipedia values in the microtasks.

In the Incorrect Data Type task, the experts reached 0.83 of pre-
cision on finding this type of quality issue, while the precision of the
crowd on verifying these triples is 0.51. The low performance of
the MTurk workers compared to the experts is not surprising, since
this particular task requires certain technical knowledge about data
types and, moreover, the specification of values and types in LD.

In the Incorrect Hyperlink task, the extremely low precision of
0.15 of the contest’s participants was unexpected. We discarded
the possibility of a malfunction of the tool used during the contest.
The MTurk workers achieved a precision of 0.94. The 6% of the
links that were not properly classified by the crowd corresponds
to those web pages whose content is in a different language than
English or, despite they are referenced from the Wikipedia article
of the subject, their association to the subject is not straightforward.

These experiments suggest that hybrid human and computer tech-
niques can assess effective tasks of data cleansing, and thus address
our research goal (RG3).

6. CONCLUSIONS AND FUTURE WORK
In this doctoral work, we study the problem of query execution

against public SPARQL endpoints. We propose a hybrid architec-
ture that combines query processing techniques with crowdsourc-
ing able to: i) ship workload from endpoints to the client, and ii)
produce complete and high-quality results, while achieving com-
petitive performance with existing solutions. Our initial experi-
mental study demonstrates that our proposed solution can enhance
the performance of public SPARQL endpoints by devising query
plans according to the capacity of the endpoint. Another important
result is the feasibility of automatically incorporating human com-
putation via microtask crowdsoourcing into LD-specific problems
by exploiting the structure of RDF graphs. The data retrieved from
the crowd can be further incorporated into LD sets to enhance the
quality of subsequent SPARQL query answers.

Future work will focus on empirically analyzing the performance
of our proposed architecture on different scenarios, including a
more extensive study with different public SPARQL endpoints. This
will allow for generalizing the properties observed so far.

Acknowledgements
The author would like to thank to Andreas Harth, Elena Simperl,
and Maria-Esther Vidal for their guidance and fruitful discussions
during the development of this doctoral work.

7. REFERENCES
[1] M. Acosta, E. Simperl, F. Flöck, and M. Vidal. RDF-Hunter:

Automatically crowdsourcing the execution of queries
against RDF data sets. Under review.

[2] M. Acosta, M. Vidal, F. Flöck, S. Castillo, C. B. Aranda, and
A. Harth. SHEPHERD: A shipping-based query processor to

enhance SPARQL endpoint performance. In Proc.
International Semantic Web Conference, ISWC, Posters &
Demonstrations Track, pages 453–456, 2014.

[3] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer,
and J. Lehmann. Crowdsourcing linked data quality
assessment. In Proc. International Semantic Web
Conference, ISWC, pages 260–276, 2013.

[4] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov,
and A. Somech. OASSIS: query driven crowd mining. In
Proc. International Conference on Management of Data,
SIGMOD, pages 589–600, 2014.

[5] C. B. Aranda, A. Hogan, J. Umbrich, and P.-Y.
Vandenbussche. SPARQL web-querying infrastructure:
Ready for action? In Proc. International Semantic Web
Conference, ISWC, pages 277–293, 2013.

[6] M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing. In
Proc. International Conference on Management of Data,
SIGMOD, pages 61–72, 2011.

[7] M. J. Franklin, B. T. Jónsson, and D. Kossmann.
Performance tradeoffs for client-server query processing. In
Proc. International Conference on Management of Data,
SIGMOD, pages 149–160, 1996.

[8] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann,
J. Lehmann, R. Cornelissen, and A. Zaveri. Test-driven
evaluation of linked data quality. In Proc. International
Conference on World Wide Web, WWW, pages 747–758,
2014.

[9] A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. PVLDB, 6(2):109–120, 2012.

[10] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina,
N. Polyzotis, and J. Widom. Deco: A system for declarative
crowdsourcing. PVLDB, 5(12):1990–1993, 2012.

[11] H. Park and J. Widom. Query optimization over
crowdsourced data. PVLDB, 6(10):781–792, 2013.

[12] H. Paulheim and C. Bizer. Improving the quality of linked
data using statistical distributions. International Journal on
Semantic Web and Information Systems (IJSWIS),
10(2):63–86, 2014.

[13] M. Salvadores, M. Horridge, P. R. Alexander, R. W.
Fergerson, M. A. Musen, and N. F. Noy. Using SPARQL to
query bioportal ontologies and metadata. In Proc.
International Semantic Web Conference, ISWC, pages
180–195, 2012.

[14] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar.
Crowdsourced enumeration queries. In Proc. International
Conference on Data Engineering, ICDE, pages 673–684,
2013.

[15] R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck,
L. D. Vocht, M. V. Sande, R. Cyganiak, P. Colpaert,
E. Mannens, and R. V. de Walle. Querying datasets on the
web with high availability. In Proc. International Semantic
Web Conference, ISWC, pages 180–196, 2014.

[16] A. Zaveri, D. Kontokostas, M. A. Sherif, L. Bühmann,
M. Morsey, S. Auer, and J. Lehmann. User-driven quality
evaluation of dbpedia. In Proc. International Conference on
Semantic Systems, I-SEMANTICS, pages 97–104, 2013.

[17] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann,
and S. Auer. Quality assessment for linked data: A survey.
Semantic Web Journal, 2015. (To appear).

473

