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ABSTRACT
In this paper, we investigate the problem of identifying in-
consistent hosts in large-scale enterprise networks by mining
multiple views of temporal data collected from the network-
s. The time-varying behavior of hosts is typically consistent
across multiple views, and thus hosts that exhibit inconsis-
tent behavior are possible anomalous points to be further
investigated. To achieve this goal, we develop an effective
approach that extracts common patterns hidden in multi-
ple views and detects inconsistency by measuring the de-
viation from these common patterns. Specifically, we first
apply various anomaly detectors on the raw data and for-
m a three-way tensor (host, time, detector) for each view.
We then develop a joint probabilistic tensor factorization
method to derive the latent tensor subspace, which cap-
tures common time-varying behavior across views. Based
on the extracted tensor subspace, an inconsistency score is
calculated for each host that measures the deviation from
common behavior. We demonstrate the effectiveness of the
proposed approach on two enterprise-wide network-based
anomaly detection tasks. An enterprise network consists
of multiple hosts (servers, desktops, laptops) and each host
sends/receives a time-varying number of bytes across net-
work protocols (e.g.,TCP, UDP, ICMP) or send URL re-
quests to DNS under various categories. The inconsistent
behavior of a host is often a leading indicator of potential
issues (e.g., instability, malicious behavior, or hardware mal-
function). We perform experiments on real-world data col-
lected from IBM enterprise networks, and demonstrate that
the proposed method can find hosts with inconsistent be-
havior that are important to cybersecurity applications.
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1. INTRODUCTION
An immense amount of data is collected each day from

enterprise networks, such as network packet flow, URL re-
quests, and other network activities. It is important to
monitor network traffic and identify hosts with suspicious
behavior in a timely manner to prevent large-scale damage
to the whole network. This is a challenging task due to the
fact that network traffic data are heterogeneous, noisy and
gigantic in which meaningful patterns are deeply hidden.

Some existing work tackles this challenge by developing
anomaly detection techniques that identify hosts whose da-
ta are significantly different from those of the majority of
the hosts [12, 20, 23]. However, these techniques suffer from
the limitations that they ignore the intrinsic relationship-
s among attributes. In fact, network traffic data typically
involve multiple views of attributes, each of which captures
network traffic from a particular perspective. For example,
network traffic data can be collected through different pro-
tocols, such as TCP, UDP and ICMP. Although absolute
traffic volume may differ among protocols, there exists some
consistency among these views. For example, when the net-
work undergoes heavy loads, we can expect increase in the
traffic volumes in all the views.

In this paper, we propose a novel approach to detect host-
s with unusual behavior by mining enterprise network traf-
fic data that are collected from multiple views. Differen-
t from existing single-view anomaly detection approaches,
the proposed method considers correlations among differen-
t views and detects hosts that have inconsistent behavior
across these views. There are two major challenges with
this problem. We describe these challenges and the corre-
sponding solutions as follows.

Inconsistency Detection
The key idea of this task is to model commonalities across
views and flag those hosts that violate such common pat-
terns as the inconsistent hosts we try to detect. However,
network data may be quite noisy, so it is hard to find com-
mon patterns at the surface. Moreover, data from differ-
ent views may have different value ranges, and this makes
the comparison across views difficult. Therefore, we pro-
pose to first preprocess each view’s data by applying existing
anomaly detection algorithms, such as Local Outlier Factor
(LOF) [4,6]. Since we are interested in hosts with anomalous
behavior, this step converts data from different views into
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comparable features and discards noisy information while
keeping useful information that helps with the task.

However, even after the application of anomaly detectors
on each view, it is still challenging for researchers to com-
pare anomaly detector outputs from different views. Figure
1 and 2 show the anomaly detector outputs for 50 hosts
on a network traffic dataset and a DNS dataset respectively.
Each dataset consists of 4 views (four protocols or four cat-
egories of URL). More details about these two datasets can
be found in experiments. Each plot in each figure illustrates
one view, in which x-axis denotes host ID and y-axis denotes
anomaly detector outputs. As can be seen, there exist some
commonality across views, but it is difficult to extract such
common patterns by a simple comparison. Correspondingly,
we may not be able to distinguish inconsistent and consis-
tent hosts easily. This observation motivates us to project
multi-view data into a new space with the hope that the in-
consistent and consistent hosts can be well separated in this
new space.

Temporal Behavior
Another challenge is that the behavior of hosts may evolve
over time, and thus approaches that model statical behav-
ior of hosts cannot work. The temporal patterns in hosts’
behavior must be taken into consideration when detecting
inconsistent hosts. For example, a host with a very high vol-
ume of network traffic should not be considered as anoma-
lous if the high volume occurs on weekdays, but it may in-
dicate suspicious behavior if it occurs on weekends. There-
fore, anomaly detector scores from weekdays and weekends
should be considered as two separate groups and we model
consistency on each group separately.

Figure 1: Raw detector scores from netflow data

Figure 2: Raw detector scores from DNS data

Summary of Proposed Framework
To tackle the aforementioned challenges, we develop an ef-
fective approach to automatically extract common pattern-
s across multiple views and detect hosts which behave in-
consistently from time-evolving network data. We name
the approach Temporal Multi-View Inconsistency Detection
(Tmvid), which consists of the following steps: 1) We apply
various anomaly detectors on different attributes of network
data, such as the number of bytes, flows, and packets to ob-
tain anomaly detection output for each time snapshot and
each view. For each view, the scores can be summarized
as a tensor with three dimensions: host, time and detec-
tor. 2) We then conduct joint probabilistic factorization
on multiple tensors simultaneously with the constraint that
the projection matrices across multiple views are similar.
In this way, the commonality across multiple views is cap-

tured by the mean latent tensor and this projection takes
temporal context into consideration. 3) After tensor factor-
ization, we calculate inconsistency score for each host as the
variance of the similarity between each view’s latent tensor
and the mean tensor. This score measures the deviation of
each host’s pattern in one view from the average behavior
considered across views.

Applications and Experiments
We implement the proposed approach and apply it to two
network datasets collected from IBM enterprise networks,
Network flow traffic and domain name system data sets.
The task is to detect inconsistent hosts based on information
collected from multiple internet protocols and URL request
categories, respectively. Besides network traffic application-
s, the proposed method is applicable to other scenarios that
involve multiple views of time-varying data to detect incon-
sistent hosts, events, or actions. The detected inconsistency
can further contribute to the improvement of safety and se-
curity in the cyber or physical world. The advantage of the
proposed approach is its ability to correlate and compare in-
formation from multiple views by joint tensor factorization
to extract information inconsistency. Experimental results
show that the proposed mechanism has the capacity of de-
tecting inconsistent behavior. Especially, the inconsistent
hosts can be distinguished from the consistent hosts in the
final projection results. By comparing with the static ma-
trix factorization approach, we demonstrate the importance
of modeling temporal behavior of hosts. Running time ex-
periments show that Tmvid is efficient and scalable, which
makes it applicable in the real-world big data environment.

To summarize, we make the following contributions:

• We propose the important problem of inconsistency
detection on temporal data with multiple views. Dif-
ferent from traditional approaches that work on sin-
gle views and static data, the proposed approach can
output more meaningful alerts from heterogeneous, dy-
namic and noisy data for the purpose of cyber security.

• We propose an effective approach based on Joint Prob-
abilistic Tensor Factorization (JPTF) to capture the
latent common behavior across multiple views. For
each view, we form a tensor by applying various anoma-
ly detectors on the raw data and record the anomalous
scores for each time snapshot. After joint tensor fac-
torization on multiple tensors, we calculate each host’s
inconsistency score by comparing the latent tensor of
each view with the average lathent tensor.

• As the major component of the proposed method, joint
probabilistic tensor factorization is modeled as an op-
timization problem and we propose an algorithm to
solve this problem by iteratively updating the projec-
tion matrices and latent tensors.

• We validate the proposed algorithm on both synthetic
and real-world data sets, and the results demonstrate
the advantages of the proposed approach in detecting
inconsistent behavior. Due to its ability of modeling
temporal behavior and extracting common patterns,
the proposed approach outperforms existing baselines
that only model static behavior and conduct simple
across-view comparison.
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2. PRELIMINARY
In this section, we introduce the notations and the key

tensor operations used throughout this paper.

Definition 2.1 (TENSOR). A tensor is a mathemat-
ical representation of a multi-way array. The order of a ten-
sor is the number of modes (or ways). The dimensionality
of a mode is the number of elements in that mode.

Specifically, a first-order tensor is a vector denoted by a
lowercase letter, x; a second-order tensor is a matrix denoted
by a capital letter X; and a higher-order tensor has three or
more modes denoted by a Euler script letter X . For example,
a tensor X ∈ R4×5×6 has 3 modes with dimensionality of 4,
5, and 6 respectively. Denote the i-th entry of a vector by xi,
the (i, j)-th element of a matrix X by Xij , and the (i, j, k)-
th element of a third-order tensor X by Xijk. Indices range
from l to their capital version, e.g. l = 1, · · · , L.

Example 1. We have 50 detectors, 500 hosts, and 500
days in a cyber network application. The detector scores
form a tensor X ∈ R50×500×500. Xijk represents the detector
score obtained by applying i-th detector on the number of
bytes of j-th host on day k.

Definition 2.2 (MATRICIZATION). Matricization, al-
so known as unfolding or flattening, is the process of reorder-
ing the elements of an N-mode array into a matrix.

Let X(d) denote the mode-d matricization of a tensor X ∈
RI1×···×IN , where columns of the matrix X(d) corresponds
to the mode-n fibers. The (i1, i2, · · · , iN ) element of tensor
maps to the (id, j) elements of the matrix X(d) in which

j = 1 +
∑N
k=1,k 6=d(ik − 1)Jk,where JK = Πk−1

m=1,m6=dIm.
For example, mode-1 matricization of X in cyber network

scenario, we can obtain X(1) ∈ R50×(500·500); mode-2 ma-

tricization results in X(2) ∈ R500×(50·500); and mode-3 ma-

tricization X(3) ∈ R500×(50·500). The concept is easier to
understand using an example in [17].

Example 2. Assume Y ∈ R3×4×2 and

Y1 =

[
1 4 7 10
2 5 8 11
3 6 9 12

]
;

Y2 =

[
13 16 19 22
14 17 20 23
15 18 21 24

]
.

Therefore, we have:

Y(1) =

[
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

]
;

Y(2) =

 1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

 ;

and

Y(3) =

[
1 2 3 . . . 10 11 12
13 14 15 . . . 22 23 24

]
.

Definition 2.3 (Vectorization). Vectorization, vec(·),
is the process of reordering the elements of an N-mode array
into a vector.

Example 3. Assume Y are defined in Example 2. Thus,
vec(Y) = (1, 2, · · · , 24)T .

Definition 2.4 (MODE-d PRODUCTION). The mode-
d matrix product of a tensor X ∈ RI1×···Id···×IN with a ma-
trix U ∈ RJ×Id element-wise is defined as:

(X ×d U)i1···id−1jid+1···iN =

Id∑
id=1

Xi1···id···iNUjid
, (1)

where X×dU has a size of I1×· · ·×Id−1×J×Id+1×· · ·×IN .

Semantically, the mode-d production transforms X to a
new tensor X ×d U by applying the linear transformation
described by the matrix U to each of the mode-d fibers of
X . We introduce the following simple notation for multipli-
cation in each mode:

GΠ×dU
d , G ×1 U

1 ×2 U
2 × · · · ×N UN . (2)

Definition 2.5 (TENSOR NORM). The Frobenius nor-
m of an N-mode tensor X ∈ RI1×I2×···×IN is:

‖X‖2F =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
in=1

x2
i1i2···iN . (3)

Especially, we have the following useful property about
the Frobenius norm of N -mode tensor [17].

Property 2.6. Assume that X and GΠ×dU
d are three-

mode tensors, the Frobenius norm of X − GΠ×dU
d has the

following properties:

‖X − GΠ×dU
d‖2F = ‖X(d) − UdG(d)(

N⊗
l=1,l6=d

Ud)T ‖2F (4)

= ‖vec(X )−
N⊗
d=1

Udvec(G)‖2F , (5)

where
⊗N

l=1,l6=d U
l = U1 ⊗ · · · × Ud−1 ⊗ Ud+1 ⊗ · · · ⊗ UN ,

and
⊗N

d=1 U
d = U1 ⊗ U2 × · · · × UN .

3. METHODOLOGY
We first formally formulate the problem and pose the joint

probabilistic tensor factorization based framework, Tempo-
ral Multi-View Inconsistency Detection (Tmvid) in Section
3.1. The details of the proposed framework, Tmvid, are
discussed in Section 3 and the complete algorithm of prob-
abilistic tensor factorization is described in Section 3.3.

3.1 Problem Formulation
First we introduce some notations and discuss the problem

setting based on the network flow traffic scenario. Assume
there are M views to describe the behavior of K hosts over
T days. In the network flow traffic scenario, we have M
protocols, such as TCP incoming/outgoing traffic, UDP in-
coming/outcoming traffic and so on. Each view consists of
many attributes: the number of bytes, flows, and packets.
We aim to apply inconsistency analysis to identify unusual
hosts which behave inconsistently across M views. In or-
der to achieve this goal, we propose a three step framework.
First, we conduct N detectors on these attributes on each
day to convert the raw data into comparable level and then
form the detector scores into M tensors. We denote the de-
tector scores tensor from the s-th view as X s ∈ RN×K×T .
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Figure 3: Complete flow of the proposed mechanism: Temporal Multi-View Inconsistency Detection

Namely, X sijk means the j-th host’s detector score obtained
by conducting the i-th detector on the s-th view in day k .
Second, we apply joint probabilistic tensor factorization to
project the detector scores into the latent subspaces. Third,
we calculate the inconsistency score of each host based on
similarity between its latent tensors and the mean latent
tensor.

3.2 Proposed Framework
In this section, we are going to introduce the proposed

three-step framework as shown in Figure 3. First, we apply
several anomaly detectors across multiple views. Second,
we conduct probabilistic tensor factorization to capture the
subspace shared by multiple views, which is the core com-
ponent of Tmvid and the details will be given in following.
Finally, the inconsistency score of each entity will be calcu-
lated based on the dissimilarity from the common subspace.

Probabilistic Tensor Factorization
Probabilistic tensor factorization multilinearly project the
observed tensor X s for s = 1, 2, · · · ,M in the high-dimensional
space RN×K×T to the corresponding latent tensors Gs in the
low-dimensional space RCN×K×CT , i.e.

X s = GsΠ×dUs,d + Es, (6)

where

• Gs ∈ RCN×K×CT is the latent tensor. Each entry Guvw
of Gs stands for the detector score at the u-th detector
and w-th timestamp cluster for v-th host.

• Us,d is the d-th projection matrix, which constructs
the multilinear mapping between the observed detector
scores and the latent tensors.

• Es ∈ RM×K×T is the residue tensor. Each entry of Es
is assumed to follow a Gaussian distribution N(0, σ2).

Based on these observations, we therefore introduce a prob-
abilistic tensor factorization model to describe the distribu-
tion of the entry of residue tensor

Pr(Es|X s,Gs, Us,d) ∝ exp(−‖X s − GsΠ×dUs,d‖2F ). (7)

Let Θ = {Gs, Us,d|s = 1, 2, · · · ,M, d = 1, 2, 3} denote the
parameters set. All parameters are estimated from the ob-
served tensor data. Next, we mathematically formulate the
task as an optimization problem.

Regarding a three-dimension network flow traffic scenario,
we assume detector scores fromM views have been collected.
Note that although we only consider a three-dimension ten-
sor for ease of presentation, the extension to high dimension
setting is straightforward. The log-likelihood of parameter
set Θ given M observed tensors is expressed as:

L(Θ) ∝
1

M
log ΠM

s=1Pr(Es|X s,Θ)

∝ − 1

M

M∑
s=1

‖X s − GsΠ×dUs,d‖2F . (8)

Consistent hosts are those whose behavior is consistent across
different views. Thus, we assume the behavior of anomaly
detectors shall be similar across different attributes. Based
on this observation, we estimate the parameters by minimiz-
ing the penalized log-likelihood function, which is defined as:

LΛ(Θ) ∝ −1

2
L(Θ) +

3∑
l=1

M∑
s=1

(
λl
2
‖Us,l − U∗,l‖2F

)
, (9)

where U∗,l = 1
M

∑M
s=1 U

s,l, l = 1, 2, 3, and Λ = [λ1, λ2, λ3]
is a regularizer parameter vector. The first term represents
the negative log-likelihood, while the second term is a regu-
larizer which has two-fold meaning: (1) the behavior of the
detectors and the pattern of days shall be similar, and (2) it
is adopted to prevent overfitting. More specifically, denote
LΛ(Us,l|Θ) as the objective function with respect to Us,l.
LΛ(Gs|Θ) is the objective functions in terms of Gs.

Next, we propose an algorithm which iteratively optimizes
LΛ(Us,l|Θ) and LΛ(Gs|Θ) by constructing the corresponding
surrogate functions to decouple the parameters.

Model Inference
Denote by Θn = {Gsn, Us,ln |1 ≤ s ≤M, 1 ≤ l ≤ 3} the param-
eters set on n-th iteration. We construct surrogate function-
s Q1(Us,l|Θ; Θ(n)) and Q2(Gs|Θ; Θ(n)), and will show they

are tight upper bounds of LΛ(Us,l|Θ) and LΛ(Gs|Θ) with
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respect to Us,l and Gs separately,

Q1(Us,l|Θ; Θn) =
∑M
s=1

[∑
i,j

[Us,l
n (As

l (As
l )T +λlIl)]ij(U

s,l
ij )2

2U
s,l
n ij

−2
∑
i,j U

s,l
n ij

[
Xs

(l)(A
s
l )
T
]
ij

(1 + log
U

s,l
ij

U
s,l
n ij

)

−2λl
∑
i,j U

s,l
n ijU

s,l
ij (1 + log

U
s,l
ij

U
s,l
n ij

)

]
, (10)

Q2(Gs|Θ; Θn) =
∑M
s=1

[∑
l

[vec(Gsn)Us(Us)T ]
l
vec(Gs)2l

2vec(Gs)

−2
∑
l vec(G

s
n)lvec(X s)l(Us)T(

1 + log vec(Gs)l
vec(Gsn)l

)]
; (11)

where the terms Xs
(l) and Gs(l) are matrices unfolding X s

and Gs on l-th mode, vec(·) is vectorization operation of
tensor as defined above, Asl = Gs(l)(U

s,m ⊗ Us,n)T in which

m,n 6= l and m > n, and Us = Us,3 ⊗ Us,2 ⊗ Us,1.
Note that Q1(Us,l|Θ; Θn) and Q2(Gs|Θ; Θn) enjoy the fol-

lowing desired properties:{
Q1(Us,l|Θ; Θn) ≥ LΛ(Us,l|Θ), ∀Θ,Θn;
Q1(Us,l|Θ; Θn) = LΛ(Us,l|Θn), ∀Θn.

and {
Q2(Gs|Θ; Θn) ≥ LΛ(Gs|Θ), ∀Θ,Θn;
Q2(Gs|Θ; Θn) = LΛ(Gs|Θn), ∀Θn.

The proof of these desired properties of the surrogate func-
tions can be found in the Appendix. Assume that we have
obtained the solutions, Us,ln+1 and Gsn+1, of the optimization

problems minUs,l∈Θ Q1(Us,l|Θ; Θn) and minGs∈Θ Q2(Gs|Θ; Θn).
Following the above properties, it is easy to deduce that
LΛ(Us,l|Θn) ≥ LΛ(Us,l|Θn+1) and LΛ(Gs|Θn) ≥ LΛ(Gs|Θn+1),
which means that minimizingQ1(Us,l|Θ; Θn) andQ2(Gs|Θ; Θn)
at each iteration guarantees that LΛ(Us,l|Θn) and LΛ(Gs|Θn)
will monotonically decrease w.r.t. Us,l and Gs respectively.

Updating Parameters
Owing to the desired property of surrogate functions built
above, we can derive the closed form solution of Us,l and Gs
by solving the optimization problems minUs,l∈Θ Q1(Us,l|Θ; Θn)
and minGs∈Θ Q2(Gs|Θ; Θn), respectively. By deriving the
derivatives of Q1(Us,l|Θ; Θn) and Q2(Gs|Θ; Θn) with respec-
t to Us,l and Gs separatively and setting them equal to zero,
we can obtain their update rules as

Us,lij ← U
′s,l
ij

√√√√√
[
Xs

(l)A
s
l + αlU∗,l

]
ij

[U ′s,l(Asl (A
s
l )
T + αlIl)]ij

, (12)

vec(Gs)k ← vec(G
′s)k

√
[Usvec(X s)]k[

UsUsT vec(G′s)
]
k

. (13)

Here, instead of updating the exact latent tensors, we of-
fer the update rule for their corresponding vector obtained
from vectorization operation. One more mapping is neces-
sary from updated vector form to the latent tensor.

Calculating the Inconsistency Score
Note that all of the M views describe the behavior of the
K hosts; therefore, we expect that they shall achieve the

similar projection for each host. Joint probabilistic tensor
factorization model maps the observed tensor X s into an
unobserved latent tensor Gs. As the projection matrices are
constrained to be similar, the differences across views ap-
pears more in Gs. Denote G∗ as the average latent tensor.
We first calculate the similarity between Gs and G∗, and then
define host’s inconsistency score as the variance of the simi-
larity over the latent subspace. A higher inconsistency score
means the variance of similarity between latent subspaces is
bigger, which in return represents a bigger difference across
views.

3.3 Complete Algorithm

Algorithm 1: Inference of Joint Probabilistic Tensor
Model

Data: X s,CN , CK , and Λ = [λ1, λ2, λ3].
Result: Us,l, G, and Inconsistency Scores list I.
begin

/* Initialization */

initialize Us,l according to Eqn.(14);
1 while not converged yet do

/* Updating parameters */

for s = 1 to M do
for l = 1 to 3 do

update Us,l following Eqn.(12);

update Gs following Eqn.(13);

/* Calculation of Inconsistency Score list I
*/

G∗ = 1
M

∑M
s=1 G

s;
for k = 1 to K do

for s = 1 to M do
S(s) is the cosine similarity between Gs and
G∗;

I(k) = Var(S)

In this section, we provide an efficient initialization and
give the complete algorithm in Algorithm 1.

Initialization
Since initialization plays an important role in the algorithm,
it is important to set a proper starting point for optimiza-
tion. Denote by Xk ∈ RN×T the original observed data
for k-th host. We apply the basic clustering approach, k-
means, on Xk and then achieve the final clustering index by
via majority voting. Thus,

Us,lij = argx∈{0,1} max
k=1,··· ,K

{#(uk,lij = x)}, (14)

where uk,lij = 1 means that the i-th object belonging to the
j-th cluster, otherwise, it is zero. More specifically,

• uk,1 ∈ RN×CN , represents the results of the K-means
clustering algorithm on Xk treating its columns as at-
tributes.

• uk,2 ∈ RK×K is identity matrix.

• uk,3 ∈ RT×CT represents the results of the K-means
clustering algorithm on Xk treating its rows as at-
tributes.
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Algorithm
Combining everything together, Algorithm 1 sketches the
procedure of model inference. After proper initialization, it
iterates between updating Us,l and Gs until the objective
function converges.

4. EXPERIMENTAL ANALYSIS
In the previous section, we propose the framework,Tmvid,

to detect inconsistent hosts across multiple views. Now we
present an empirical evaluation of the proposed framework
via a set of experiments: (1) Compared with baseline meth-
ods, we demonstrate the effectiveness of Tmvid on several
synthetic data sets. We also show that the proposed frame-
work is scalable to large-scale data set by conducting ef-
ficiency tests. (2) The advantage of Tmvid in detecting
inconsistent hosts is further demonstrated on two real data
sets related to network flow traffic and domain name systems
which are collected from IBM enterprise networks.

4.1 Synthetic Data
We begin with introducing the synthetic data sets and the

baselines to evaluate. Experiments are conducted on these
data sets to show the advantage of the proposed framework
over baseline methods.

Description. We simulate the detector scores of hosts
in cyber network scenarios. Data from 3 views are generat-
ed with 5 latent detector clusters and 7 timestamp group-
s. We assume detector scores follow Gaussian distributions
with specific variances which depend on detectors cluster-
s and time groups simultaneously. Besides, detectors from
different clusters have different mean. We randomly select
n hosts and generate detector scores using Gaussian distri-
butions with different parameters. Thus, these n hosts can
be regarded as inconsistent object, as their detector scores
are inconsistent across different views. We expect that a
good framework can find these inconsistent hosts. To better
demonstrate the effectiveness, we vary the characteristics of
the data set, such as the number of detectors, hosts, and
timestamp of the synthetic data. The statistics of synthetic
data sets are described in Table 1.

Table 1: Statistics of Synthetic Data Sets

# of
detectors

# of
hosts

# of
timestamp

# of
views

synth-1 50 1000 200 3
synth-2 50 2000 300 10
synth-3 100 5000 500 50

Evaluation. Denote by the inconsistent hosts positive
samples, and others by negative samples, we can deduce the
true positive, true negative, false positive and false negative
rates, from which F1 score is calculated. The higher the F1

score is, the better the proposed method.
Baselines. We compare the experimental results of meth-

ods to show the advantage of the proposed joint probabilistic
tensor model. The first baseline method is joint nonnega-
tive matrix factorization (NMF) [11] which does not consider
time evolution. It partitions several detectors into laten-
t detector clusters by conducting joint nonnegative matrix
factorization. We average the inconsistency score obtained
by conducting NMF on each timestamp as the final result.

Another popular method is majority voting. More specifi-
cally, if the majority of views claim an hosts as malicious,
it is labeled as malicious. Otherwise it is labeled as noram-
l. There are three basic operations to handle static data
on each snapshot, such as mean, minimization, and maxi-
mization. Therefore, we have Vote/mean,Vote/min, and
Vote/max. Also, instead of applying majority voting across
views, we can take mean, minimization, and maximization
inside each view as well as across views. Therefore, we have
three more baselines: Mean,Min, and Max.

Table 2: F-1 Score Comparison

Vote
/mean

Vote
/min

vote
/max

Mean Min Max nmf tmsid

Synth-1 .81 .85 .80 .10 .15 .10 .80 1.0
Synth-2 .86 .92 .85 .20 .21 .20 .82 1.0
Synth-3 .90 .95 .85 .25 .30 .28 .87 1.0

As shown in Table 2, the proposed method has the high-
est F1 score, as it considers the information across views and
over time simultaneously. For Mean,Min and Max, all of
them have a very low F1 score. The reason is that they do
not consider the temporal pattern over time and simply take
mean (minimization or maximization) over time and across
views. For majority voting approach, it also has compara-
tively higher F1 score, as they extract more reliable infor-
mation across multiple views. Compared with those base-
line methods, we demonstrates that the proposed framework
works well on detecting inconsistent hosts.

Scalability
We evaluate the scalability of Tmvid on synthetic data set-
s. Specifically, for model inference, we measure the average
execution per task by Tmvid while varying the number of
hosts and views. Different data sets with different number of
hosts are generated. As shown in Table 3, the proposed algo-
rithm has almost linear complexity in the number of hosts.
As for the baseline NMF, although its time complexity is al-
so nearly linear, much more time is needed when compared
to the proposed algorithm. As shown in Figure 4, the pro-
posed algorithm has linear complexity with respect to the
number of views. Based on the results on the synthetic data
sets, it is safe to conclude that the proposed algorithm can
scale up to large data sets.

Table 3: Running Time

Joint Probabilistic Tensor
Factorization

Nonnegative Matrix
Factorization

# Hosts Time (s) # Hosts Time (s)

1.0× 102 1.3 1.0× 102 489.3
1.0× 103 10.5 1.0× 103 601.1
5.0× 103 50.8 5.0× 103 704.2
1.0× 104 107.8 1.0× 104 1342.9
5.0× 104 533.4 5.0× 104 6324.0
1.0× 105 1107.5 1.0× 105 12822.0

Pearson Correlation 0.9998 Pearson Correlation 0.9992

4.2 Real Data
In this section, we show experimental results on two real

data sets collected from IBM enterprise netowrks, Network
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Figure 4: Average execution time with increasing
number of views by Joint Probabilistic Tensor Fac-
torization in model inference

Flow Traffic (Netflow) and Domain Names System Data
(DNS). The statistics of the real data sets are shown in Table
4. The goal is to detect inconsistent hosts which behave
inconsistently across different views. More details about the
data are introduced in the following sections.

Table 4: Statistics of Real-World Data Sets
# of
detectors

# of
hosts

# of
timestamp

# of
views

Netflow 50 500 500 4
DNS 50 500 500 5

Network Flow Traffic Data
Network flow traffic data, which is collected from IBM en-
terprise networks, consists of 4 views such as TCP incon-
ming/outcoming traffic and UDP incoming/outcoming traf-
fic for 500 hosts over 18 months. Each view contains 3 at-
tributes: the number of bytes, flows, and packets. We first
conduct 50 anomaly detectors based on these attributes on
each day. Through joint probabilistic tensor factorization,
the proposed framework Tmvid projects the observed data
into a latent subspace, where both detector and timestam-
p dimension are grouped simultaneously. Detector-Cluster
(Timestamp-Cluster) means that the detector scores of de-
tector (timestamp) clusters are considered, while Bi-Cluster
means that we take both detector and timestamp clusters
into consideration. From Bi-Cluster’s perspective, we can
compare hosts’ behavior on the detector clusters and times-
tamp clusters simultaneously. Besides, we can compare their
behavior on detector or timestamp cluster respectively.
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Figure 5: Inconsistent scores for host ID in network

We plot the hosts’ inconsistency score in Figure 5, where
x axis represents hosts’ ID and y axis stands for the incon-
sistency score. As shown in Figure 5, most of hosts behave

consistently, while only very few hosts are abnormal, whose
inconsistency scores are much higher compared to the rest
of hosts. To confirm that the abnormal hosts indeed behave
inconsistently across multiple views, we conduct case study
from three perspectives: Bi-Cluster, Detector-Cluster and
Timestamp-Cluster perspectives.

Bi-Cluster Perspective. Semantically, joint probabilis-
tic tensor model maps the original tensor into a unknown
latent tensor subspace. (Us,1)TXs

kU
s,3 is an unique repre-

sentation of Xs
k in the latent tensor subspace. The benefit of

the proposed framework is that the inconsistent and consis-
tent hosts can be well separated in the new subspace, which
is confirmed by Figure 6 where x, y, and z axes refer to time
cluster ID, detector cluster ID, and detector scores, respec-
tively. In the figure, Figure 6(a) and 6(b) represent the top
two inconsistent hosts found by Tmvid, respectively. Fig-
ure 6(c) and 6(d) stand for the top two consistent hosts.
For the inconsistent hosts, the bi-clusters’ behavior is well
separated in the subspace found by the probabilistic ten-
sor factorization technique, while the behavior of consistent
hosts is almost the same across views.

The results from NMF are shown in Figure 7. Figure
7(a) and 7(b) refer to the top two inconsistent hosts, while
7(c) and 7(d) are consistent hosts. From it, we can see that
the patterns of both inconsistent and consistent hosts from
multiple views are similar in the latent subspace. Thus, it is
hard to separate inconsistent and consistent hosts by NMF.

Detector-Cluster Perspective. Note that the i-th row
of Us,1 represents the detector cluster distribution for the
i-th detector. Namely, Us,1ij means how likely it is that the
i-th detector belongs to the j-th detector clusters. The j-
th row of (Us,1)TXs

k represents the expected detector score
from j-th detector cluster for k-th host on s-th views over
times. Therefore, we expect that for those inconsistent hosts
found by the algorithms, at least one view’s detector cluster-
s’ behavior is significantly different from other views. It is
confirmed by Figure 8(a) and 8(b) where x and y axes refer
to day ID and detector score respectively. We can see that
for inconsistent hosts as shown in Figure 8(a), the patterns
of detector clusters’ are quite different across views, while
the patterns are similar for consistent hosts (Figure 8(b))
across views, ignoring noise affected by randomly factors.

Timestamp-Cluster Perspective. Us,3 describes the
timestamp cluster distribution matrix. More specifically,
Us,3ij measures the probability that the i-th day shall be-
long to the j-th timestamp cluster. Moreover, the j-th row
of Xs

kU
s,3 relates to the expected detector score from the j-

th timestamp cluster for the k-th host on the s-th view over
all individual detectors. It is confirmed by Figure 8(c) and
8(d) in which x axis represents detector ID and y axis refers
to detector score separately. For the inconsistent hosts in
Figure 8(c), the patterns of timestamp clusters’ vary a lot
across views, especially for view 2 and view 4, whose pat-
terns are clearly different from that of view 1 and view 3.
However,the patterns are quite similar for consistent hosts
in Figure 8(d), which show the similar increasing trend.

Domain Name System Data
In this experiment, we evaluate the proposed framework, T-
mvid, on the Domain Name System (DNS) data. The DNS
data, which contains the number of URL requests related to
Sciences, Arts, Shopping, Health, Sport, and others,is also
collected from IBM enterprise networks. We also conduct 50
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(c) 2nd consistent host
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(d) 1st consistent host

Figure 6: Comparison of top two inconsistent and consistent hosts in network flow traffic data: detector score
over both detector and time clusters
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(d) 1st consistent host

Figure 7: NMF, Comparison between top two inconsistent and consistent hosts in network flow traffic data:
Detector scores over both detector and time clusters
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Figure 8: Comparison between top two inconsistent and consistent hosts in network flow traffic data. In all
subfigures, y axis refers to detector score. In (a) and (b), x axis represents day ID while it stands for the
detector ID in (c) and (d)
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detectors and form the detector scores into 5 tensors accord-
ing to the five URL request categories on each day. Based
on the purpose of hosts’ internet access, we partition the
URL requests into five categories: Sciences, Arts, Shopping,
Health, and Sport. In this application, each URL request
category is regarded as a view. Namely, there are totally
five views in DNS data.
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Figure 9: Inconsistency scores for host ID in DNS

We plot the inconsistency score distribution of 500 host-
s obtained from Tmvid on DNS data in Figure 9 where x
and y axes refer to hosts’ ID and inconsistency scores re-
spectively. Figure 9 shows that most of the hosts are con-
sidered as consistent hosts while only a few hosts are con-
cluded as inconsistent ones. This observation corresponds
to our assumption that the majority of hosts behave con-
sistently. Besides, the most consistent host found by our
method is actually the primary server. This phenomenon is
very interesting and realistic. The primary server processes
numerous requests about various categories, making its be-
havior pattern consistent. This result furthermore confirms
the accuracy of the proposed framework Tmvid.

Similar to the previous experiments, we also conduct case
studies on the top two inconsistent and consistent hosts to
demonstrate that our method can well separate them. The
results are shown in Figure 10. Figure 10(a) and 10(b) refer
to the top two inconsistent hosts; 10(c) and 10(d) show the
patterns of top two consistent hosts. The results from N-
MF are shown in Figure 11 from which we cannot separate
inconsistent hosts from consistent ones. Thus, it further-
more confirms that NMF may not work well on detecting
inconsistent hosts.

5. RELATED WORK

Anomaly Detection in Cyber Network
Anomaly detection [1, 6, 22] has become an important re-
search topic in many domains over last decades. Local out-
lier factor (LOF) [4] is a popular detection algorithm for
separating the outlier from normal hosts by measuring how
isolated the object is with respect to the surrounding neigh-
borhood. Many extensions based on LOF are also proposed,
such as [4,16]. However, the limitation of existing approach-
es is that they only consider one view of hosts. To overcome
this challenge, the proposed method can consider multiple
views of hosts, which can output more trustable information.
Some work [8] focuses on supervised learning approach to de-
tect malicious hosts. The limitation of supervised learning is
that they need labels which are time-consuming and money-
consuming to obtain. To overcome this difficulty brought by

the lack of labels, we introduce an unsupervised approach
to detect hosts’ inconsistency across views and over time.

Ensemble analysis [2, 9] has also been proposed in outlier
detection. By incorporating various outlier algorithms, the
authors show that the outlier ensemble learning approach
is able to extract more reliable information. However, the
proposed framework can go further. Tmvid considers the
combination of a various of anomaly detection and multiple
views of an entity simultaneously.

Network anomaly detection has become an essential re-
search field. In [5, 14], network anomaly defines abnormal
behavior of network as the presence of an intruder or net-
work flow traffic overload. Different from this definition,
the proposed framework aims to find these abnormal hosts
whose behavior is inconsistent across multiple views.

Tensor Factorization
Tensor factorization approaches [3, 7, 21, 25, 26, 29] have be-
come popular in the data mining, as it maps from a high
dimensional data space into a low dimension space. Proba-
bilistic tensor factorization [24, 30] has attracted lots of at-
tention during the last decade because of its ability of map-
ping the observed tensors into latent tensors. However, most
of traditional tensor factorization methods simply work on
one tensor from one single view. The proposed approach,
however, stresses the importance of extracting consistency
patterns from multiple views by constraining the projection
matrices to be similar across views.

Another related technique is the matrix factorization pro-
posed in [10, 11, 15, 19, 28]. The limitation of those works
is that they fail to consider the temporal behavior of hosts
over time. As a consequence, important temporal informa-
tion is missing. The proposed work is able to cluster the
timestamp such that days that share with similar behavior
will be clustered together for further analysis.

Temporal Anomaly Detection
The importance of modeling temporal behavior has been re-
alized by researchers [13,18,27,31] when conducting anomaly
detection in network traffic or other domains. Suspicious ob-
jects are detected when their temporal behavior is different
from their historical records or deviate from the pattern of
normal objects. The framework Tmvid we proposed calcu-
lates the inconsistent scores for each object by comparing
the temporal patterns on timestamp and detector clusters
from multiple views simultaneously.

6. CONCLUSIONS
This paper presents a novel framework called Tmvid to

conduct inconsistency detection from multiple views of tem-
poral data. Based on the raw data collected from multiple
views, we first apply anomaly detection algorithms and ob-
tain anomalous scores of hosts. The behavior of hosts can
thus be summarized in a three-way tensor which consists of
the anomalous scores for each host at each time snapshot by
each detector. To extract common behavior hidden in mul-
tiple views, we propose a joint probabilistic tensor factoriza-
tion approach to factorize the observed tensors together so
that the projection matrices are similar across views. Incon-
sistency scores of hosts are then calculated by measuring the
deviation from the mean latent tensor. We demonstrate the
efficacy of Tmvid to capture inconsistencies in multi-view
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(c) 2nd consistent host
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(d) 1st inconsistent host

Figure 10: Comparison of top two inconsistent and consistent hosts in DNS data: detector score over both
detector and time clusters
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Figure 11: NMF, Comparison between top two inconsistent and consistent hosts in DNS data: Detector
scores over both detector and time clusters

temporal data on synthetic data and two network traffic da-
ta sets. Results show that consistent and inconsistent hosts
can be well separated in the new space that is obtained by
the joint tensor factorization. By outperforming baseline
approaches, the proposed approach demonstrates its effec-
tiveness in cybersecurity applications.

APPENDIX
Surrogate Function.
First, we aim to find the relationship between the objective
function LΛ(Us,l|Θ) and its surrogate functionQ1(Us,l|Θ; Θn)
as defined in Eqn.(10). According to the definition of LΛ(Us,l|Θ),
we have:

LΛ(Us,l|Θ) ∝
M∑
s=1

[
1

2
‖X s − GsΠ×dUs,d‖2F +

λl

2
‖Us,l − U∗,l‖2F

]

∝
M∑
s=1

[
1

2
‖Xs

(l) − U
s,lAsl ‖

2
F +

λl

2
‖Us,l − U∗,l‖2F

]

∝
M∑
s=1

1

2

∑
ij

(
Us,lAsl (A

s
l )
T + λlU

s,l
)
ij

(Us,l)Tij

−2
∑
ij

(
X(l)(A

s
l )
T + λlU

s,l
)
ij

(Us,l)Tij



≤
M∑
s=1

∑
i,j

[
Us,ln (Asl (A

s
l )
T + λlIl)

]
ij

(Us,lij )2

2Us,ln ij

−2
∑
i,j

Us,ln ij

[
Xs

(l)(A
s
l )
T
]
ij

(1 + log
Us,lij

Us,ln ij

)

−2λl
∑
i,j

Us,ln ijU
s,l
ij (1 + log

Us,lij

Us,ln ij

)


= Q1(Us,l|Θ; Θn).

In our proof, we replace the related term with its upper
bound, when Us,l = Us,ln the equality is achieved. Therefore,
we have Q1(Us,l|Θn; Θn) = LΛ(Us,l|Θn). So far, we have
proved the desired property of Q1(Us,l|Θ; Θn). Namely,{

Q1(Us,l|Θ; Θn) ≥ LΛ(Us,l|Θ), ∀Θ,Θn;
Q1(Us,l|Θ; Θn) = LΛ(Us,l|Θn), ∀Θn.

Similarly, for Q2(Gs|Θ; Θn), we have:

LΛ(Gs|Θn) ∝
M∑
s=1

[
1

2
‖X s − GsΠ×dUs,d‖2F

]

∝
M∑
s=1

[
1

2
‖vec(X s)− Usvec(Gs)‖2F

]

∝
M∑
s=1

1

2

[∑
k

(
vec(Gs)Us(Us)T

)
ij
vec(Gs)Tk

−2
∑
k

Usvec(X s)T
]

≤
M∑
s=1

[∑
k

[
vec(Gsn)Us(Us)T

]
k
vec(Gs)2

k

2vec(Gs)

−2
∑
k

vec(Gsn)kvec(X s)k(Us)T

(
1 + log

vec(Gs)k
vec(Gsn)k

)]
= Q2(Gs|Θ; Θn).

Provided that Gsn = Gs, we have that Q2(Gs|Θn; Θn) =
LΛ(Gs|Θn), which proves the desired property ofQ2(Gs|Θn; Θn),
that is, {

Q2(Gs|Θ; Θn) ≥ LΛ(Gs|Θ), ∀Θ,Θn;
Q2(Gs|Θ; Θn) = LΛ(Gs|Θn), ∀Θn.
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