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ABSTRACT
With the increasing use of entities in serving people’s daily
information needs, recognizing synonyms—different ways peo-
ple refer to the same entity—has become a crucial task for
many entity–leveraging applications. Previous works often
take a “literal” view of the entity, i.e., its string name. In
this work, we propose adopting a “structured” view of each
entity by considering not only its string name, but also other
important structured attributes. Unlike existing query log-
based methods, we delve deeper to explore sub-queries, and
exploit tailed synonyms and tailed web pages for harvest-
ing more synonyms. A general, heterogeneous graph-based
data model which encodes our problem insights is designed
by capturing three key concepts (synonym candidate, web
page and keyword) and different types of interactions be-
tween them. We cast the synonym discovery problem into
a graph-based ranking problem and demonstrate the exis-
tence of a closed-form optimal solution for outputting entity
synonym scores. Experiments on several real-life domains
demonstrate the effectiveness of our proposed method.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
Synonym Discovery; Structured Entity; Heterogeneous Graph;

1. INTRODUCTION
Entities are becoming increasingly important and preva-

lent in people’s daily information quest. One major hurdle
in entity understanding is that content creators and search
users often use a variety of alternate names, i.e., entity syn-
onyms, to reference the same entity. For instance, “Kobe
Bryant” is also referred to as “black mamba” or “lakers24”.
Entity synonym discovery is useful for a rich set of appli-
cations (e.g., vertical search, web search), as it helps boost
recall, improves precision and enhances user experience.
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Figure 1: Motivating example.

One way to gather entity synonym information is to lever-
age existing synonyms in entity knowledge bases. For exam-
ple, in Freebase, entity synonym lists (called aliases) are
manually created for some of the entities, and in Wikipedia,
entity synonyms can be obtained based on redirect pages
and disambiguation pages. However, since most of such in-
formation is manually curated, synonyms so obtained typi-
cally suffer from limited coverage and diversity.

A recent trend avoids expensive human laboring and in-
creases coverage and diversity of synonyms by automatically
discovering entity synonyms from query logs [7, 5, 21], where
web queries contain focused and succinct information about
entities. The main insight here is that by tapping into infor-
mation provided by both content creators and search users,
one can more effectively discover the synonyms. For ex-
ample, Fig. 1 highlights the main idea behind these query
log-based approaches: from entity name “Delaware”, get its
clicked web pages which lead to queries clicking on these
pages, and then perform analysis on these queries to mine
the synonyms. One can mine entity synonyms by analyzing
different kinds of information in the query log, such as query
click-through data [7], query context [5], pseudo-document
for web page [5] and their combinations [21]. However, ex-
isting query log-based methods encounter two major limita-
tions as follows:
• Ambiguous Entity Names and Synonyms: Most ex-
isting methods take only the entity’s string name as input,
and thus cannot handle the name ambiguity issue. For ex-
ample, “jr smith” may refer to either the NBA player JR
Smith or the JrSmith Manufacturing Company. Further,
many synonyms can also be ambiguous. In Fig. 1, as a syn-
onym of Delaware, “first state”can also refer to other entities
like First State Bank and First State Investments, which are
in fact two more popular meanings in terms of user clicks.
Both click-based [7] and context-based [5] similarities will
fail to discover such synonyms due to weak click statistics
and noisy contexts. Dealing with ambiguity is crucial for
discovering high quality entity synonyms.
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• Sub-query Synonyms: All existing works use web queries
as a whole to generate synonym candidates but ignore cases
when target synonyms appear only as sub-queries in query
log. Such cases are common since some synonyms are tailed
synonyms (e.g., “diamond state” in Fig. 1), which express
tailed meanings of the synonym strings. Such tailed syn-
onyms have difficulty in returning relevant web pages for
the entity (i.e., Delaware) by themselves. Additional key-
words are typically added (e.g., “history”) for clarifying the
search intent. It is challenging to recognize such sub-queries
as candidates and identify true synonyms.

To tackle the ambiguity issue, we propose a novel problem
definition for entity synonym discovery, by taking a struc-
tured entity instead of only an entity name as input. This
input paradigm allows us to take advantage of structured
attributes of an entity in addition to its name. These struc-
tured attributes help crisply define an entity and therefore
dramatically reduce ambiguity. This in turn also facilitates
in finding tailed synonyms, since we understand the input
entity better. It leads to the possibility of discovering high
quality entity synonyms with good coverage. There ex-
ist a variety of attributes for a structured entity in either
knowledge bases or ad-hoc entity collections. We focus on
two interesting and generally available attributes, i.e., entity
source web pages and existing synonyms in this work, and
discuss in Sec. 5 how to generalize the proposed framework
to incorporate other structured attributes.

To exploit sub-query synonyms, we leverage holistic query
log statistics to extract synonym candidates by identifying
salient sub-queries. The main insight here is that the words
in a legitimate candidate would naturally appear together
(rather than by accident) in a good number of queries. More
specifically, we identify synonym candidates by examining
word collocation for n-grams in queries.

While generating candidates by exploring sub-queries, we
identify the keywords that co-occur with the candidates from
queries. These extracted keywords, along with the web
pages clicked by the candidates, provide highly valuable in-
formation for us to identify true synonyms. As illustrated
in Fig. 2, it is desirable for descriptive web pages (e.g.,
delaware.gov) or keywords (e.g., dover) to be strongly as-
sociated (indicated by solid link) with true synonyms (e.g.,
diamond state). Meanwhile, false synonym candidates (e.g.,
wilmington) would have weak relationships (indicated by
dashed link) with such pages or keywords. Sec. 3 discusses
in detail the relationships between these objects.

Given these heterogenous objects as well as the relation-
ships between them, it is crucial to capture them in a prin-
cipled way. Rather than studying these objects and rela-
tionships in silo, we believe it is much more effective to
model them holistically, so that two objects can influence
each other even though they are not directly related. To
this end, we propose a heterogeneous graph-based frame-
work, called StrucSyn, to discover entity synonyms, by
exploring the interplays between these three types of ob-
jects, i.e., synonym candidates, keywords and web pages. It

is through the subtle interactions via the relationships be-
tween these objects and holistic graph prorogation that we
are able to glean signals for mining tailed synonyms (see
“diamond state” in Fig. 1). We further extend our synonym
candidate generation by expanding the seed query set (e.g.,
“delaware chicken” in Fig. 1) to retrieve tailed web pages for
enhancing the coverage of discovered synonyms, which we
discuss in more details in Section 3.5.

Specifically, a signed heterogeneous graph is constructed
to represent all the available information in a unified form,
which encodes candidate-page, candidate-keyword, keyword-
page and candidate-candidate relations. The relation strength
connecting two objects indicates how much impact they have
on each other when deriving entity synonyms. Synonym dis-
covery is then cast into a heterogeneous graph-based rank-
ing problem, which takes entity name, source web pages and
existing synonyms as labels, and tries to rank each type of
objects by preserving the graph structure. We propose a
convex optimization problem for learning the ranking scores
of all types of objects jointly. We then derive a globally opti-
mal, closed-form solution. An iterative algorithm is further
designed to solve the optimization problem efficiently while
preserving the global optimum.

Our experiments on five entity sets of different real-life
domains demonstrate the power of the proposed method. In
comparing the output as a ranked list, the proposed method
achieves 53.49% improvement over the best performing com-
pared method in Precision@10. For the study of enriching
entity knowledge base where automatic cut-off is applied,
our method is able to output on average 10.35 new synonyms
with 81.67% Precision for Freebase. Our case study results
show that the proposed method can discover many semantic
synonyms beside spelling variants which nicely complements
the existing synonyms in entity knowledge bases.

The rest of paper is organized as follows. Sec. 2 pro-
vides problem definition and details of candidate generation.
Sec. 3 introduces our hypotheses and data model. Sec. 4 pro-
poses our synonym discovery method on the constructed het-
erogeneous graph. We discuss how to generalize our model
in Sec. 5. We provide experimental results and analysis in
Sec. 6 and discuss the related work in Sec. 7.

2. PROBLEM DEFINITION AND
CANDIDATE GENERATION

2.1 Problem Definition
In our problem setting, a structured entity, instead of only

entity’s string name [7, 5, 21], is taken as input, which con-
sists of its string name and other structured attributes of
the entity, e.g., entity type, entity description.

Many entity attributes are generally available across dif-
ferent domains. However, in this work, we mainly focus
on studying two types of structured attributes, i.e., entity
source web pages and existing synonyms. They are gen-
erally available in entity knowledge bases and are domain
independent. By leveraging source web pages, which are
less ambiguous than the entity name, one can generate bet-
ter quality candidates and avoid semantic drift, compared
to using only the entity name. Similarly, multiple existing
synonyms can help consolidate contexts for query entity, and
boost tailed synonyms and tailed web pages. Generalization
of the framework to incorporate other kinds of structured
attributes will be discussed in Sec. 5. Specifically, we define
structured entity as follows:

Definition 1 (Structured Entity). A structured en-
tity, e, has a reference name re, a set of source web pages
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Table 1: Structured attributes for entity Delaware.
Attributes Values

Reference name delaware
Source web http://www.delaware.gov

pages http://en.wikipedia.org/wiki/Delaware
Existing synonyms DE; Del; Dela

Ue = {u1, ..., u|Ue|} which deliver focused information about
the entity, and a set of existing synonyms Ce = {c1, ..., c|Ce|}.

Table 1 shows these structured attributes and their val-
ues for example entity Delaware. Let S be the universal set
of strings, where each string is a sequence of one or more
words. Given a structured entity e, its synonyms are strings
s ∈ S that are used to reference e, including semantic al-
ternations, abbreviations, acronyms and spelling variants.
For example, synonyms for NBA player Kobe Bryant can be
“black mamba”, ’kobe’, “KB” and “coby”. Formal definition
of entity synonym is given as follows:

Definition 2 (Entity Synonym). A synonym for en-
tity e, s ∈ S, is a sequence of one or more words, which not
only is an entity mention, but also can serve as an alterna-
tive name to refer to the entity e.

We require an entity synonym to be an entity mention
so that a string of arbitrary length which expresses equiv-
alent meaning as the entity does will not be considered as
synonym (e.g., “the No.24 player in LA Lakers” is not a syn-
onym of Kobe Bryant). In particular, our definition of en-
tity synonym does not require the entity reference names or
synonym strings to be unambiguous, which is less restricted
than the definitions in previous work [7, 5, 21], and thus
can lead to higher coverage of discovered synonyms. We use
an entity synonym score function, fC(e, s) : E × S 7→ R, to
measure how likely a string s is a true synonym for e.

In this work, we aim to harvest entity synonyms from web
queries, by analyzing user click-through data. Specifically,
user click-through data L is a set of tuples l = (q, u,m),
where q is query, u is web page and m is the number of
times users have clicked on web page u when issuing query
q. With the definitions of structured entity, entity synonym
and query log, we provide a formal definition for Struc-
tured Entity Synonym Discovery as follows:

Definition 3 (Problem Definition). Given a struc-
tured entity e = (re,Ue, Ce) and click-through data L, the
problem of synonym discovery for structured entity aims to
(1) identify a subset of candidate synonyms C = {c1, ..., c|C|}
⊂ S; (2) derive entity synonym scores fC(e, c) for c ∈ C; and
(3) select a subset of Ke candidates with highest fC from C,
as the suggested entity synonyms for e.

2.2 Candidate Generation
We now discuss our candidate generation strategy, which

uses web queries in L to derive a set of candidate synonyms
C ⊂ S. The key difference from existing work is that we
delve deeper to explore sub-queries in candidate generation.

Most existing work use co-click queries, i.e., queries which
share clicked web pages with the entity name query, as syn-
onym candidates, based on the assumption that true entity
synonyms always appear as web queries themselves. Such
process ignores sub-query synonyms (e.g., “diamond state”
in Fig. 1), and thus hurt coverage and diversity of discovered
synonyms. In practice, over 71% of web queries contain enti-
ties, and only less than 1% of these entity queries contain two
or more entities as shown in [15]. Therefore, we propose to
extract the most salient unit, i.e., entity mention, from each
co-click query to generate synonym candidate (see Fig. 3),
based on the following assumption.

first state in 

the union 

first state; 

union; 

state

first state (n=2);

state (n=1)Select candidate 

n-grams with best 

word association

Apply domain-

independent 

filtering rules

Web query Candidate n-grams Synonym candidates

Figure 3: Synonym candidate generation.

Assumption 1 (Single Entity Query). There is only
one single entity mention per user query. Each web query
is either an entity mention itself, or consists of an entity
mention and peripheral context words.

We start with extracting n-grams from co-click queries for
query entity. Given an entity e, let NU (e) denote the set of
web pages which users click when issuing entity name re as
query. We use NQ(u) to denote the set of queries which users
click on web page u in click-through data. Co-click queries
for e, denoted asQ, can then be collected by obtaining NQ(u)
for each u ∈ NU (e), i.e., Q =

⋃
u∈NU (e)NQ(u).

From each candidate query q ∈ Q, we extract n-grams1

NC(q), i.e., word sequences of different lengths n, that does
not start or end with numbers and stopwords, leading to
a set of candidate n-grams N =

⋃
q∈QNC(q) for e. Such

domain-independent filtering rules can help remove many
noisy n-grams that are likely not entity mentions, such as
“where is kobe” and “kobe bryant from”.

We further apply n-gram testing techniques [30, 10, 11] to
select from N the n-grams that have best word collocation
for each n ≥ 2, in order to obtain more salient n-grams as
candidates. Compared to NLP techniques such as chunking
and dependency parsing, n-gram testing methods do not rely
on any model training and are domain-independent. Specif-
ically, we extend Pointwise Mutual Information (PMI) [30]

to measure the collocation for n-grams in N . Let N(n)
C (q)

denote length-n candidate n-grams in NC(q), the collocation

score for candidate n-gram c = [w1, w2, ..., wn] ∈ N
(n)
C (q) is

defined as g(n)(c) = log2
p(w1,...,wn)
p(w1)···p(wn)

where p(s) denotes the

probability of seeing string s in Q, i.e., p(s) = |NQ(s)|/|Q|.
We then can select candidate n-gram c ∈ N(n)

C (q) with high-

est score g(n)(c) to get a length-n synonym candidate c(n),
i.e., c(n) = argmax

c∈N(n)
C (q)

g(n)(c) (e.g., length-2 candidate

“first state” in Fig. 3). For unigrams, we simply set g(1)(c) =
p(c) and select the one with highest p(c) . After above
steps, we can collect a set of synonym candidates, C =⋃

q∈Q
⋃n

i=1 argmax
c∈N(i)

C (q)
g(n)(c), which are salient in terms

of word collocation and thus are more likely entity mentions.

3. DATA MODEL
3.1 Framework Overview

Candidate generation in Sec. 2 leads us to two types of in-
formation sources that are closely related with the extracted
candidates, namely the web pages which the candidates’
support queries click on, and the keywords appearing along
side with the candidates in the support queries. The clicked
web pages offer descriptive information about entity and the
keywords act as useful contextual information about entity.
However, existing methods judge the importance of a web
page for entity merely by click counts from the entity names,
and treat all keywords which come along with entity name
equally important for the entity. In practice, important key-
words and representative web pages help identify sub-query
synonyms, boost tailed synonyms, and add robustness in
handling noisy click-through data. Therefore, we propose to
identify and quantify web pages from click-through data and

1In this work we focus on unigram, bigram and trigram.
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Table 2: Top-5 entity contexts and entity pages of
two example entities derived by StrucSyn.

Entity Context Web page

tattoos en.wikipedia.org/wiki/J._R._Smith
JR dunk twitter.com/jr_swish

Smith young www.nba.com/playerfile/jr_smith
nba www.imdb.com/name/nm0808646/bio

basketball sports.yahoo.com/nba/players/3835
owners en.wikipedia.org/wiki/CBS

chairman cbs.com
CBS sports cbscorporation.com

news forbes.com/companies/cbs
founder youtube.com/user/CBS

context words from web queries, which can provide focused
entity information, in a unified framework.

Intuitively, a candidate is more likely an entity synonym,
if it is closely related to web pages which deliver focused
information about the entity.

Definition 4 (Entity Page). Entity page, u, of an
entity e, is a surrogate web page for e, which is not only
relevant to e but also representative for e.

Wiki page of Delaware, for example, is a high quality en-
tity page. In contrast, although relevant to entity, a news
page or lottery page is not entity page since it is either re-
lated to multiple entities or merely focuses on a certain as-
pect of the entity. To model these properties, we use an
entity page score function, fU (e, u) : E ×U 7→ R, to measure
how likely a web page u is a true entity page for entity e.

Similarly, if a candidate frequently co-occurs with the con-
text keywords which are important for the entity, it is more
likely an entity synonym. We define the concept of entity
context for keywords in queries as follow.

Definition 5 (Entity Context). Entity context, w,
is a keyword in the context of an entity e in queries, which
is not only relevant to e but also exclusive to e.

Example entity contexts for Kobe Bryant include “lakers”
and “24”. Relevant keywords such as “stats” and “team” are
widely related to many entities in sports domain, and thus
are not exclusively relevant to Kobe Bryant. To model entity
context in queries, we use an entity context score function,
fW(e, w) : E ×W 7→ R, to measure how likely a keyword w
is a true entity context for an entity e.

In order to capture the characteristics of synonym candi-
date, web page and keyword, as well as the scores associated
with them, we propose to use heterogeneous graph model as
the underlying data model. A heterogeneous graph model
captures not only different types of objects but also different
types of interactions between these objects. The basic idea
to construct the graph is that two objects are linked with
large weight if they play important roles in deciding scores
for each other. A graph-based ranking problem can be for-
mulated on the constructed graph such that information of
the entity is used as positive labels and ranking scores are
propagated based on the graph structure (Sec. 4). By solv-
ing the ranking problem, we can jointly derive entity syn-
onym scores, entity context scores and entity pages scores
for corresponding objects in the graph.

Table 2 shows top-5 keywords and web pages ranked in
terms of entity context score and entity page score by our
method. For entity contexts, top ranked keywords are not
only relevant to entities but also exclusive, e.g., “tattoos” vs.
“basketball” for JR smith. Similarly, top ranked web pages
for CBS are both relevant and representative for the entity,
instead of focusing on a certain aspect like CBS news.

Specifically, given a structured entity e and click-through
data L, we can construct a heterogeneous graph G which
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exclusion relation

candidate-keyword 
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keyword-page 

relation

candidate-page 
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entity context  

scores (fW)
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entity page  

scores (fU)
Relations

Figure 4: Heterogeneous graph illustration.

consists of three types of objects: synonym candidates C =
{c1, ..., c|C|}, keywords2 W = {w1, ..., w|W|} and web pages
U = {u1, ..., u|U|} which are clicked by users when issuing
queries Q. Naturally, there are three types of relations be-
tween these three objects including candidate-page relation,
keyword-page relation and candidate-keyword relation. In
addition, given there may be multiple candidates generated
from one query, we further explore the mutual exclusion
relationship between these candidates to help infer correct
entity boundary. Together, these four types of relationship
lead to four subgraphs G(CU), G(WU), G(CW) and G(C), re-
spectively. We provide an illustration of the heterogeneous
graph in Fig. 4 and now introduce its subgraph details.

3.2 Candidate-page and Keyword-page
Subgraphs

Intuitively, if users mainly click on web page u after issu-
ing query q, then u is likely relevant to information needs
behind q. Such idea can be extended to measure seman-
tic relatedness between synonym candidates (keywords) and
web pages, by aggregating click-through information with
respect to support queries of candidates (keywords). Ide-
ally, if most support queries of a candidate (keyword) are
related to web page u, then the candidate (keyword) should
be related to web page u as well. We use the above obser-
vation on interplay between candidate (keyword) and web
page to model their respective desired properties.

Hypothesis 1 (Click-Based Relevance). (1) A can-
didate (keyword) is more likely an entity synonym (context)
if its primarily related web pages are entity pages; (2) A
web page is more likely an entity page if its primarily related
candidates and keywords are entity synonyms and contexts.

Specifically, relation strength between a synonym candi-
date c and a web page u can be approximately represented
by the average query-page relation strength over support
queries of c, i.e., NQ(c). We use W(CU) ∈ R|C|×|U| to de-

note the bi-adjacency matrix for G(CU), where W (CU)
ij is the

edge weight between ci and uj which reflects the relation
strength, and is defined as follows:

W
(CU)
ij =

1

|NQ(ci)|
·

∑
q∈NQ(ci)

m(q, uj)∑
u′∈U m(q, u′)

.

Here, m(q, u) is the click count between q and u.
For candidate-keyword relationship, we can similarly ag-

gregate the query-page relationships of keyword’s support
queries, and define edge weight for G(WU) as follows.

W
(WU)
ij =

1

|NQ(wi)|
·

∑
q∈NQ(wi)

m(q, uj)∑
u′∈U m(q, u′)

,

where NQ(w) denote the support queries of keyword w and
W(WU) ∈ R|W|×|U| is the bi-adjacency matrix for G(WU).

In practice, it is desirable to discount the edge weights
between two objects by their node degrees, in order to help
reduce the impact of popularity of objects. For example,

2We extract all non-stopword unigrams from queries Q.
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web pages that have high exposure, i.e., clicked by many
queries, will have high degrees and thus moderate normal-
ized edge weights in turn. Thus, we define the normal-
ized adjacency matrices S(CU) = D(CU)−1/2W(CU)D(UC)−1/2

and S(WU) = D(WU)−1/2W(WU)D(UW)−1/2. Here, D(CU) ∈
R|C|×|C| and D(UC) ∈ R|U|×|U| denote the diagonal degree ma-
trices for candidates and web pages in G(CU), respectively,

where D(CU)
ii =

∑|U|
j=1W

(CU)
ij and D

(UC)
jj =

∑|C|
i=1W

(CU)
ij . Simi-

larly, we define D(WU) ∈ R|W|×|W| and D(UW) ∈ R|U|×|U| for
G(WU). One can check that D(CU) = I|C| and D(WU) = I|W|.

3.3 Candidate-keyword Subgraph
In general, co-occurrence of keyword and candidate across

support queries can provide useful information on judging
whether the candidate is entity synonym, and deciding whether
the keyword is entity context. In Fig. 5, “del state” is more
likely a synonym of Delaware, compared to “univ of del”,
since it is surrounded by a keyword with higher entity con-
text score “revenue” (vs. “football”) for Delaware. On the
other hand, “de population” is probably not a synonym for
Delaware since it contains a keyword “population” which is
likely an entity context. Intuitively, we can capture relations
between candidates and keywords, and model properties for
entity synonyms and contexts, by following the query-based
co-occurrence hypothesis.

Hypothesis 2 (Query-Based Co-occurrence). (1)
If a candidate (keyword) often appears around a entity con-
text (synonym) in support queries, then it is more likely an
entity synonym (context); (2) If a candidate (keyword) of-
ten contains (appears in) an entity context (synonym), it is
probably not an entity synonym (context).

We propose to construct candidate-keyword subgraph G(CW),
which is a signed bipartite graph, to capture two different
types of co-occurrence relations: (1)“contains”(negative) re-
lation and (2) “appears around” (positive) relation. A “con-
tains” relationship between c and w indicates that c contains
w whereas an “appears around” relationship between them
indicates that w appears around c in at least one query.

Formally, we use W(CW) ∈ R|C|×|W| to denote the signed
bi-adjacency matrix for G(CW). We define the indicator func-
tion IC(c, w) which has value 1 if c contains w and 0 other-
wise, and IA(c, w; q) which returns 1 if w appears around c
in q and 0 otherwise. The edge weight between ci and wj
can be defined as follows:

W
(CW)
ij =

∑
q∈{NQ(ci)∩NQ(wj)}

(
IA(ci, wj ; q)− IC(ci, wj)

)
.

To discount popular candidates and keywords, we normal-
ize W(CW) into S(CW) = D(CW)−1/2W(CW)D(WC)−1/2 by a
similar idea as the PMI score, where D(CW) ∈ R|C|×|C| and
D(WC) ∈ R|W|×|W| are degree matrices of the signed graph

with D
(CW)
ii =

∑|W|
j=1 |W

(CW)
ij | and D

(WC)
jj =

∑|C|
i=1 |W

(CW)
ij |.

With this subgraph, if strong “contains” (negative) rela-
tionship exists between an entity synonym and a keyword,
the keyword is less likely an entity context. On the other

del state jobs

User query del state jobs

del state
state

Candidate 

generation

Mutual exclusion relation

-0.2

-0.1

-0.03

fc = -0.1

fc = 0.01
fc = 0.3

Figure 6: Candidate mutual exclusion example.

hand, a keyword is more likely an entity context if one ob-
serve strong“appear around”(positive) relationship between
an entity synonym and the keyword. Similar interactions ex-
ist between an entity context and a candidate as well.

3.4 Candidate Mutual Exclusion Subgraph
In the candidate generation step, multiple candidates (of

different lengths) may be generated from one query (see
Fig. 3), which results in conflict with the single entity as-
sumption in Sec. 2.2. Fig. 6 shows that “state”, “del state”,
and “del state jobs” have strong mutual exclusion relation-
ships with each other, since they are frequently extracted
from the same queries as synonym candidates. To assist
modeling of entity mention property, we propose to exploit
the mutual exclusion relationship between conflicting candi-
dates in our data model, based on the following hypothesis.

Hypothesis 3 (Candidate Mutual Exclusion). If
two candidates tend to co-occur across many different queries,
and if one of them is an entity synonym, then the other is
less likely an entity synonym.

Specifically, we construct a candidate mutual exclusion
subgraph, G(C), to capture conflict co-occurrences in queries
between candidates. With the proposed hypothesis, if there
is a strong mutual exclusion relationship between two can-
didates, and one of them is likely an entity synonym, then
the other one tends to have low entity synonym score. An
affinity matrix W(C) ∈ R|C|×|C| is used to represent the can-
didate mutual exclusion subgraph, where edge weight is de-
fined by:

W
(C)
ij = −

∣∣∣NQ(ci) ∩NQ(cj)
∣∣∣.

To avoid bias to popular candidates, we further normalize
W(C) as S(C) = D(C)−1/2W(C)D(C)−1/2, which discounts the
co-occurrence frequency with popularity (frequency) of each
candidate. Here, D(C) ∈ R|C|×|C| is the degree matrix with

D
(C)
ii =

∑|C|
j=1 |W

(C)
ij |. One can see that the normalized edge

weight S
(C)
ij has similar statistical property as the PMI score,

in terms of measuring association between ci and cj .

3.5 Graph Extension for Tail Web Pages
When collecting candidate queries, existing works only

consider web pages that are clicked by entity name. Tailed
web pages will be ignored in such case, and thus we will
miss many true synonyms (e.g., “blue hen state” in Fig. 1).
To encounter this issue, one needs to collect appropriate
seed queries which help reach tailed web pages in query log,
and construct a more comprehensive data model based on a
richer set of web pages and queries.

In practice, we observed that users tend to reformulate
queries to reach these tailed web pages, by augmenting entity
name with entity contexts (see“Delaware chicken” in Fig. 1).
It is thus natural to extend our seed query, i.e., entity name,
into a set of seed queries for candidate generation, so that
more tailed web pages can be included. Specifically, given
a structured entity e = (re,Ue, Ce), we first extract entity
contexts for e, by exploiting queries which click on source
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web pages Ue, i.e., Q′ =
⋃

u∈Ue NQ(u). For queries q ∈ Q′
containing entity name re as substring, we extract unigrams
from q, excluding re, stopwords, and numbers. By doing so,
a set of high quality entity contexts, We, can be collected,
and will be further used to search seed queries in query log
L. In our implementation, we search over L to find queries
which contain re, and at least one entity context from We,
leading to a set of seed queries, Qe. By replacing re with
Qe in candidate generation step (Sec. 2.2), we can obtain
a more comprehensive set of web pages, i.e.,

⋃
q∈Qe NU (q),

compared to NU (e). Following the same steps in the rest of
candidate generation, an extended graph can be constructed
to include more tailed web pages.

4. SYNONYM DISCOVERY ON GRAPHS
4.1 Data Model Instantiation

We start by introducing how to instantiate the heteroge-
neous graph G for a structured entity by using its structured
attributes. Entity name re and existing synonyms Ce sat-
isfy the proposed properties for entity synonym, and source
web pages Ue also are high quality instances for entity page.
Therefore, we use these objects as positive labels to per-
form the heterogeneous graph-based ranking, by initializing
them with the highest entity synonym scores and entity page
scores, respectively.

Specifically, a label vector is defined for each type of ob-
ject, where the element values represent our prior knowledge
on the objects. Specifically, we define label vectors yC ∈ R|C|
for candidates C and yU ∈ R|U| for web pages U , accordingly.
If a candidate ci ∈ Ce, then yCi = 1. Otherwise, yCi = 0.
Similarly, for web pages U , we set yUi = 1 if ui ∈ Ue, and 0
otherwise. As for keywords W, its label vector yW ∈ R|W|
is set as yWi = 0 in this study, but one can collect entity
contexts as positive labels based on the procedure in Sec. 3.5.

4.2 Problem Formulation
Mathematically, we formulate a joint optimization prob-

lem to unify different types of relations in the constructed
heterogeneous graph G. Each type of relation is encoded
into one graph regularization term to enforce the local and
global consistency principle [34], i.e., two linked objects tend
to have similar or different corresponding scores according
to the sign and strength of relationship between them. Dif-
ferent terms are then combined with corresponding weights
and further unified with label supervision terms to form the
objective function.

More precisely, let vector fC ∈ R|C| denote the entity can-
didate scores for C given target entity e, i.e., fCi = fC(e, ci).
Similarly, we can define the entity context score vector fW ∈
R|W| forW and entity page score vector fU ∈ R|U| for U . We
thus have the objective function O as follows:

min
fC ,fW ,fU

O(fC , fW , fU ) (1)

= λCU

|C|∑
i=1

|U|∑
j=1

W
(CU)
ij

( fCi√
D

(CU)
ii

−
fUj√
D

(UC)
jj

)2

+λWU

|W|∑
i=1

|U|∑
j=1

W
(WU)
ij

( fWi√
D

(WU)
ii

−
fUj√
D

(UW)
jj

)2

+λCW

|C|∑
i=1

|U|∑
j=1

|W (CW)
ij

|
( fCi√

D
(CW)
ii

−
sgn(W

(CW)
ij

)fWj√
D

(WC)
jj

)2

+
λME

2

|C|∑
i,j=1

|W (C)
ij
|
( fCi√

D
(C)
ii

+
fCj√
D

(C)
jj

)2
+ λC

|C|∑
i=1

(fCi − yCi)
2

+λW

|W|∑
i=1

(fWi − yWi)
2

+ λU

|U|∑
i=1

(fUi − yUi)
2
,

where 0 < {λWU , λCU , λCW , λME , λC , λW , λU} < 1 are tun-
ing parameters which control the trade-off between different
types of relationships and prior knowledge.

The candidate-page relation is modeled by the first term
in Eq. (1). Minimizing the term forces the linked candidate
and web page in G(CU) to have similar entity synonym score
and entity page score, which follows Hypothesis 1. We can
rewrite the term into (fTC fC−2·fTC S(CU)fU+fTU fU ). The second
term of Eq. (1) can be rewritten as (fTW fW − 2 · fTWS(WU)fU +
fTU fU ) in a similar way, which models the keyword-page re-
lation based on Hypothesis 1. We omit the details here.

The third term in Eq. (1) attempts to model the signed
relation between candidates and keywords in G(CW), follow-
ing Hypothesis 2. We define the sign function sgn(a) = a
if a ≥ 0 and sgn(a) = −a if a < 0. When there is posi-
tive relation between a candidate and a keyword, the term
forces them to have similar entity synonym score and con-
text score; otherwise, the term forces the scores of two linked
objects to be different. This term can be further rewritten
as fTC fC − 2 · fTC S(CW)fW + fTW fW .

The mutual exclusion relation between candidates is mod-
eled by the fourth term in Eq. (1), which follows the Hypoth-
esis 3. Ideally, if two candidates have strong mutual exclu-
sion relationship and one of them have high entity synonym
score, then the other one is forced to have low entity syn-
onym score. We can rewrite the term into fTC fC − fTC S(C)fC .

The last three terms in Eq. (1) encodes our prior knowl-
edge on entity synonyms and entity pages, by enforcing the
consistency between the estimated scores and initial labels.

4.3 The Closed Form Solution
With above equations, the definitions of augmented score

vector f = [fTC , f
T
W , f

T
U ]

T and label vector y = [yT
C ,y

T
W ,y

T
U ]

T ,
Eq. (1) can be further rewritten into a more concise form:

min
f
F(f) = fTMf + fTΩf − 2 · fTΩy. (2)

Here, we define graph Laplacian matrix L(C) = IC−fTC S(C)fC ,
a symmetric matrix M as follows:

 (λCU + λCW )IC + λMEL(C) −λCWS(CW) −λCUS(CU)

−λCWS(CW)T (λCW + λWU )IW −λWUS(WU)

−λCUS(CU)T −λWUS(WU)T (λCU + λWU )IU

 .

We can prove that M is positive semi-definite by refer-
ring to Eq. (1). We also define a diagonal matrix Ω =
diag(λCIC , λWIW , λU IU ) which can be proved to be positive
definite since {λC , λW , λU} > 0.

By taking the derivative with respective to f and setting it
to zero, we have ∂F/∂f = 2(M+Ω)f−2Ωy = 0. Since (M+Ω)
is positive definite and invertible, the closed form solution
for Eq. (2) thus can be derived as f∗ = (M + Ω)−1Ω · y.
The objective function F is strictly convex since the second-
order derivative of F is (M + Ω), which is positive definite.
Therefore, the convex optimization problem in Eq. (1) has
the closed form solution as its global minimum.

4.4 An Efficient Iterative Algorithm
Directly using the closed-form solution to compute the

scores may be very expensive, especially the matrix inverse
operations on large matrix. Instead, people prefer iterative
solution in such case, where only multiplication operations
between sparse matrices are required.

With scores for all variables initialized by their labels,
i.e., f (0) = y, for each variable in {fC , fW , fU}, we iteratively
update its score by using the current scores of all three vari-
ables, similar to [18]. The update formula can be derived by
taking derivative of F with respect to each variable.
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Table 3: Example entities used in evaluations.
Domain Named Entities

Car bmw z3, ford mustang, nissan gt r
Organization special forces, nbc, 3m
Product argus c3, adobe flash, canon 50mm lens
Sports kobe bryant, john lackey, shane victorino
Location atlanta, delaware, las vegas

For synonym candidates, we set ∂F/∂fC = 0 and obtain the
iterative update formula in the (t+ 1)-th step as follows:

f
(t+1)
C =

λCU
α

S(CU)f
(t)
U +

λCW
α

S(CW)f
(t)
W +

λME

α
S(C)f

(t)
C +

λC
α

yC ,

(3)
where we define α = (λCU + λCW + λME + λC) > 0.

For keywords, we set ∂F/∂fW = 0 and obtain the iterative
update formula as follows:

f
(t+1)
W =

λWU
β

S(WU)f
(t)
U +

λCW
β

S(CW)T f
(t)
C +

λW
β

yW , (4)

where we define β = (λWU + λCW + λW ) > 0.
For web pages, we set ∂F/∂fU = 0 and obtain the iterative

update formula as follows:

f
(t+1)
U =

λWU
γ

S(WU)T f
(t)
W +

λCU
γ

S(CU)T f
(t)
C +

λU
γ

yU , (5)

where we define γ = (λWU + λCU + λU ) > 0.
In the iterative solution, each object iteratively spreads

its score to its neighbors in the constructed heterogeneous
graph G following the proposed hypotheses in Sec. 3, until a
global stable state is achieved. To our knowledge, this is the
first work to perform graph-based semi-supervised learning
on a signed heterogeneous graph. The proof procedure in [34]
can be adopted to prove convergence for the proposed algo-
rithm (to the closed form solution in Sec. 4.3). For lack of
space, we do not include it here.

4.5 Post-Processing for Subset Output
In many applications, such as knowledge base enrichment,

it is desirable to output a subset of high quality synonyms,
instead of a ranked list of synonyms. Typical ways for creat-
ing subset output, such as cut-off by threshold and selecting
top-K results, may generate low quality results because (1)
different entities may have different scale of ranking scores
due to variations of their input (e.g., different number of ex-
isting synonyms); and (2) number of existing true synonyms
varies a lot across different domains (see Table 5).

In our implementation, the cut-off is based on relative
score changes in derived ranking list, since significant score
gap is observed between true and false synonyms in the rank-
ing list. More precisely, suppose c(i) is the i-th candidate in
current ranking list, the list will be cut after candidate c(i)

if fC(c
(i−1))−fC(c

(i))

fC(c(i))
> δ. This technique is applied in evalua-

tions in Sec. 6.3 and in generating system output (Table 6).

4.6 Computational Complexity Analysis
In this section, we analyze the computational complexity

of proposed StrucSyn framework using the term flame [14].
For construction of heterogeneous graph, the cost for com-

puting G(CU) and G(WU) are around |C|dC flames and |W|dW
flames, respectively. dQ and dW are the average numbers of
web pages related to a candidate and a keyword, respectively
(dQ, dW � |U|). Constructing G(CW) costs around |C|lQlq
flames. lQ is average number of support queries for a can-
didate, and lq is average query length in L (lQlq � |W| and
lq is constant). Constructing G(C) costs around 3|C|lQ flames,
and instantiating the graph (i.e., collect query evidence for
keywords) costs around |Q| flames.

Table 4: Statistics of heterogeneous graphs.

Domain |C| |U| |W| #Relationship

Car 2,026 ∼600k 1,280 ∼1.8M
Organization 6,403 ∼1.4M 3,676 ∼5.1M
Product 669 ∼130k 299 ∼383k
Sports 1,411 ∼675k 916 ∼2.1M
Location 4,081 ∼1.7M 3,713 ∼5.0M

For graph-based ranking, in each iteration, update calcu-
lation for fC costs around |C|(dC+ lC lq +3lq +1) flames. Simi-
larly, updating fW costs around |W|dW+ |C|lC lq+ |W| flames,
and updating fU costs around |W|dW + |C|dC + |Ue| flames.
Suppose the algorithm can converge in t iterations (t ≈ 10
based on our empirical studies), the total time complexity

for the proposed framework is O
(
t ·
(
|C|dC + |W|dW + |C|lQ

))
.

5. MODEL GENERALIZATION
In practice, many other structured attributes, besides source

web pages and existing synonyms, may be available for en-
tities. For example, Freebase stores for entity Kobe Bryant:
place of birth, profession, sports teams, etc. Intuitively, a
web page is more likely an entity page if it has strong asso-
ciation with a rich set of structured attributes of the entity.
Compared to a news article on Kobe Bryant, a bibliography
page is a better entity page for him since it contains more in-
formative attributes such as his date of birth, place of birth
and education. Therefore, structured attributes can help in-
fer entity pages and assist the discovery of entity synonyms.

A straightforward way is to identify structured attributes
in web document and use them to measure how likely the
web page is an entity page. More precisely, in data model in-
stantiation, entity page score of a web page can be initialized
by relevance between entity and the web page, computed
based on the occurrences of structured attributes within
the web document. This simple method, however, assumes
all attributes are equally informative for inferring entity
pages, and ignores occurrences of attribute instances that
are closely related to the entity.

More generally, we propose to map structured attribute
into object type in our data model. Suppose there are d ex-
tra types of structured attributes, A = {A1, ..., Ad}. We de-

note by Ae = {a(1)e , ..., a
(d)
e } the attribute instances (values)

for entity e. In our generalized data model, each structured
attribute Ai ∈ A corresponds to a new object type, and

its instances correspond to objects of type-Ai, a
(i)
j where

j = 1, ..., |Ai|. Relations can be constructed between at-
tribute objects and web pages to represent their association
strength. Specifically, for each attribute type Ai, we form

links between its attribute object a(i)j and a web page u, if

a
(i)
j appears in u. The links can be weighted by frequency of

a
(i)
j ’s occurrences in u. By doing so, a subgraph G(AiU), de-

noted by a bi-adjacency matrix W(AiU), can be constructed
for each attribute Ai. With the generalized data model, by
setting a ∈ Ae as positive examples, we can derive impor-
tance scores for attribute instances of different attributes
with respect to e, and propagate entity page scores fU .

6. EXPERIMENTS
6.1 Experimental Setup
1. Data Preparation. We use a sampled query log of a com-
mercial search engine, which contains ∼136 million unique
queries and ∼156 million unique URL. We consider click-
through relationships if and only if the click frequency is
larger than 4. Queries containing frequent spelling errors
are further filtered out.
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We collect named entities from five different domains (20
from each), i.e., car, organization, product, sports and lo-
cation (see Table 3 for examples). These domains are cho-
sen because (1) many applications require entity extractions
on them; and (2) entities in these domain may be ambigu-
ous. Table 4 shows statistics of the constructed graphs for
the entities. For structure attributes, we extract from Free-
base“common.topic.topic equivalent webpage”as source web
pages Ue, and“common.topic.alias”as existing synonyms Ce.

2. Gold Standard Synonyms. We collect a set of gold stan-
dard synonyms for entities in our evaluation set, by com-
bining two sets of ground truth synonyms: existing entity
synonyms in Freebase and manually labeled synonyms.

Over 88% of the test entities have existing alias in Free-
base. However, the number of existing alias is limited, e.g.,
∼3.7 synonyms for the 100 entities on average, and it varies
a lot across different domains. Also, most existing aliases in
Freebase are widely known acronyms and nicknames, which
have limited diversity. This motivates us to conduct manual
labeling for further enriching the gold standard set.

In our labeling process, for each candidate n-grams in N
(see Sec 2.2), we manually judge whether it is true synonym
for e, and collect all positive ones to form the second part of
the gold standard set. In the gold standard set, there may
be synonyms of different categories, e.g., “terminus ga” and
“atl” for entity Atlanta, as well as spelling variants within
one category, e.g., “terminusga” and “terminus”.

We summarize statistics of the five evaluation sets in Ta-
ble 5. Naturally, the difficulty of discovering synonyms is
different due to variance in domain specialty and extent of
entity ambiguity. For example, product domain has more
true synonyms but less candidates while car domain has
more candidates but less true synonyms.

3. Evaluation Metrics. There are mainly two ways for effec-
tiveness evaluation: (1) output as a ranked list of synonyms;
and (2) output as a subset of synonyms with automatic cut-
off technique. By ranking synonyms in terms of entity syn-
onym score, we can employ evaluation metrics for ranking
problem, such as Precision at position K (P@K), to evaluate
the method performance. P@K is defined as the percentage
of true synonyms which appear in the top-K positions.

In many applications, it is more desirable to have a subset
of high quality synonyms as output. The quality of output
can be evaluated by Precision and Recall. However, similar
to the case in [5], it is very difficult to know the universal
set of synonyms for each entity, and therefore hard to report
the traditional recall number. We thus use average size of
output subset per entity as an alternative for Recall.

Table 5: Statistics of the evaluation sets.
Domain Car Org Product Sports Loc

Avg #Candidates 2,579 8,711 797 1,914 6,534
%True synonyms 1.78 0.87 8.27 1.98 1.32

4. Compared Methods. We compare the proposed method
(StrucSyn) with its variants in order to validate different
hypotheses in our data model—StrucSyn is the proposed
full fledged model with all relations (Ce are excluded from
method input); StrucSynCU considers only candidate-page
relation; StrucSynCU+CW considers only candidate-page
and candidate-keyword relations; and StrucSynNoME ex-
cludes mutual exclusion relation. Based on the parameter
study in Sec. 6.5, we set {λC , λW , λU} = {0.1, 0.01, 0.008} and
{λCU , λCW , λWU , λME} = {0.33, 0.4, 0.08, 0.05} for StrucSyn
and its variants throughout the experiments. Several state-
of-the-art methods are also implemented for comparison—
RW [9] performs backward random walk on click graph;
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Figure 7: Performance comparison in terms of Pre-
cision at different positions (K).

ClickSim [7] considers intersecting page count and click ra-
tio between entity name and candidate queries; MixSim [5]
is a hybrid method that leverages both pseudo documents
and query contexts.

6.2 Performance Comparison
First, the proposed method is compared to existing meth-

ods using Precision at different positions (1 to 20). Fig. 7(a)
summarizes the aggregated comparison results over all five
domains. Overall, StrucSyn significantly outperforms other
methods on different Ks, e.g., 53% improvement over best
performing existing method MixSim on P@10, which shows
the performance gains from leveraging source web pages,
exploring sub-queries and studying heterogeneous relation-
ships between the objects. In terms of leveraging query con-
text, StrucSyn explores entity-specific contexts while MixSim
simply considers all contexts equally in the entire query log.
Thus, it will not suffer from noisy contexts or ambiguous
contexts of different entities. With entity pages and entity
contexts, StrucSyn can uncover high quality synonyms with-
out strict assumption like two-way checking in MixSim.

In particular, we notice that click-based variant StrucSynCU ,
which leverages only candidate-page relation, achieves su-
perior performance over both click-based methods (RW and
ClickSim) and hybrid method (MixSim). In fact, StrucSynCU

and RW are similar in weighting query-page relationship and
method input, and are only different in that StrucSynCU

aggregates statistics of sub-query candidates across multi-
ple support queries. This validates our claim that exploring
sub-queries can help uncover more synonyms.

In Fig. 7(b), we further compare StrucSyn with its vari-
ants to validate our hypotheses in the data model. By com-
paring StrucSynCU and StrucSynCU+CW , one can clearly
observe the performance gain (e.g., over 36% enhancement
on P@10) by exploring co-occurrence between candidates
and keywords. This shows evidence for Hypothesis 2 and
demonstrates the effectiveness of entity context for deriving
synonyms. Compared to StrucSynCU+CW , StrucSynNoME

further incorporates keyword-page relation (see Hypothe-
sis 1) when deriving entity context scores and entity page
scores, and obtains performance enhancement over Struc-
SynCU+CW , e.g., around 27% improvement on P@5. Fi-
nally, performance gain by leveraging candidate mutual ex-
clusion relation can be seen from the gap between StrucSyn
and StrucSynNoMe, demonstrating the effectiveness of Hy-
pothesis 3 in detecting entity mention boundary.

In particular, StrucSynCU+CW can be seen as an advanced
version of MixSim. It not only explores sub-queries, but also
leverages source web pages and local contexts using a label
propagation framework. Gap between StrucSynCU+CW and
StrucSyn demonstrates that the proposed method still out-
performs the state-of-the-art method MixSim though it is
augmented to an advanced version, i.e., StrucSynCU+CW .

In terms of method input, StrucSyn takes source web
pages as extra information compared to state-of-the-art meth-
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Figure 9: Enriching entity knowledge base.
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Figure 8: Influence of entity source web pages.

ods. To conduct more comprehensive comparison, we ex-
clude source web pages from StrucSyn to form a new variant,
StrucSynNoSourceURL. Fig. 8 summarizes the study results
across different domains. In Fig. 8(a), StrucSynNoSourceURL

outperforms the best performing existing method MixSim
in terms of aggregated results over all domains. This shows
that our proposed method, even without source web pages
as input, can still obtain superior performance since it mod-
els relations between candidates, keywords and web pages
in a principled way and resolves limitations such as tailed
synonyms and sub-query synonyms in previous methods.

We further look into three different domains (i.e., sports,
organization, car) to study influence of source web pages
on the proposed method. As shown in Figs. 8(b) and 8(d),
source web pages have little influence on entities of sports or
car domain. This is because in these two domains popular
web pages in query log usually are good entity pages. Thus,
the performance gain is mainly produced by heterogeneous
graph-based framework. On the other hand, in organization
domain (see Fig. 8(c)), significant performance boost can be
observed after including source web pages in the method.
This is because popular web pages often focus on certain
aspects of organization entities, e.g., lottery and tourism of
Delaware, and thus are less likely high quality entity pages.

6.3 Enriching Entity Knowledge Bases
Existing synonym in entity knowledge bases usually have

limited coverage and diversity. It is desirable that our method
can complement existing synonyms in knowledge bases, by
outputting high quality subsets of synonyms.

We study the performance of StrucSyn and its two vari-
ants. Compared to StrucSyn, StrucSynw/ExistSyn incorpo-
rates entity existing synonyms Ce in Freebase to instantiate
the data model (Sec. 4.1), and StrucSyn++w/ExistSyn uses
both extended graph (Sec. 3.5) and existing synonyms. Sub-
sets of synonyms are output using automatic cut-off tech-
nique. We compute precision and average number of new
synonyms after excluding existing synonyms from the out-

put synonym subset. By varying the threshold δ of auto-
matic cut-off technique, we can generate output subsets of
different sizes and precisions. Fig. 9 summarizes the perfor-
mances over different domains using different thresholds.

One can see from Fig. 9(a) that, in general, the proposed
methods can discover subsets of new synonyms with high
quality and reasonable size to complement existing ones in
Freebase, e.g., a subset of 10 new synonyms with Precision
over 82% by StrucSyn++w/ExistSyn. By using existing syn-
onyms to instantiate the data model, StrucSynw/ExistSyn

obtains precision boost over StrucSyn. This is mainly be-
cause that existing synonyms provide positive labels on can-
didates and thus help derive entity contexts based on candidate-
keyword relation, as well as entity pages based on candidate-
page relation. With graph extension, StrucSyn++w/ExistSyn

obtains further improvement over StrucSynw/ExistSyn since
extended graph covers more true synonyms and contains
richer information between objects.

When looking at each domain specifically, one can clearly
see the performance differences across different domains.
For example, location entities reach relatively low precision
when output size is larger than 10 (see Fig. 9(e)), while car
entities still preserve good precision with output size of 20, as
shown in Fig. 9(b). This demonstrates the varying domain
specialty, e.g., number of true synonyms (Table 5), across
different domains. It can be further observed that perfor-
mance gaps between three methods vary, showing that ex-
isting synonyms and extended graph bring different degrees
of enhancement in different domains. For example, by com-
paring results in Fig. 9(e) with those in Fig. 9(b), one can
see that existing synonyms significantly boost precision for
location entities but have limited influence on car entities.
One major reason is the limited number of existing syn-
onyms in car domain. In particular, with extended graph,
we can significantly enhance the precision while providing
better coverage for location entities (see Fig. 9(e)).

6.4 Case Studies
To provide a clearer look at the derived entity synonyms,

we select six entity from five different domains, and use
StrucSyn++w/ExistSyn to generate a subset of new syn-
onyms for each entity, where we set the automatic cut-off
threshold δ = 0.22 . Table 6 summarizes our results and pro-
vides existing synonyms in Freebase for comparison. First,
we can see that the proposed method is able to generate rea-
sonable size of new synonym subset with high quality, i.e.,
only two synonyms (in grey color) are incorrect. Also, we
observe that different kinds of entity synonyms are covered
in the output. For entity Kobe Bryant, its returned new syn-
onyms include atypical synonym “kobe the mamba”, super-
string “kobe 24 bryant”, acronym “kb” and spelling variant
“coby bryant”. We find that most of the returned new syn-
onyms are atypical—sharing little text similarity with the
entity name (e.g., see results for Volkswagen Type 2 ). This
demonstrates the effectiveness of our method in discovering
these interesting yet challenging atypical synonyms.

We observe that entities with ambiguous names benefit
greatly from source web pages when comparing StrucSyn
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Table 6: Example output of our method.
Entity Freebase synonyms New synonyms Entity Freebase synonyms New synonyms

transporter microbus bavarian motor works
kombi combi beamer automobile

Volkswagen camper thesamba type BMW bayerische motoren werke bmwgroup
Type 2 bus vw combi bimmer

minibus beamer car
atlanta georgia terminus ga kobe the mamba

atlanta ga ga capital city black mamba bean bryant
Atlanta city of atlanta atl georgia Kobe Bryant kobe bean bryant coby bryant

atl antanta wiki kobe 24 bryant
a town capital of ga kb

8th thundering herd 8th onedrivecom windows live storage
Armored N/A eighth armored div Skydrive windows live skydrive windows drive
Division microsoft skydrive ms storage online
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Figure 10: Model parameter study.

with its variant StrucSynNoSourceURL. For example, while
the returned synonyms by StrucSyn are all correct for NBA
player JR Smith, those return by StrucSynNoSourceURL (e.g.,
“smith nuggets”, “smith plumbing”, “smith drain”) are ac-
tually a mix of two different entities. For CBS, we find
that source web pages also help focus on entire entity (e.g.,
“tiffany network”, “columbia broadcasting system” by Struc-
Syn), instead of aspects of it (e.g., “cbs games”,“cbstv” by
StrucSynNoSourceURL). These examples demonstrate the
importance of source web pages for better entity modeling.

6.5 Parameter Study
We study the effect of parameters for StrucSyn on a vali-

dation set which consists of 100 entities from five domains.
To study each parameter, we vary its value while fixing the
values of other parameters as 0.1 and perform five-fold cross
validation to obtain the Precision at different Ks. Due to
space limit, only a part of results are presented in Fig. 10.

Overall, we find that all the relations are useful since set-
ting any of them to zero will cause performance drop (e.g.,
see Fig. 10(c) for λCU = 0). Similarly, it can be seen that
label information is also critical to the performance (e.g.,
see Fig. 10(b) for λU = 0). On the other hand, we find
StrucSyn shows robust performance over a large range of
values on each parameter. For example, in Fig. 10(c) when
λCU ≥ 0.25, the performance changes slightly. Similar trend
can be observed for λU in Fig. 10(b). Such robustness al-
lows us to use a fix set of parameters while achieving high
effectiveness across different domains.

In our experiments, StrucSyn usually converges (i.e., rel-
ative change of objective value in Eq. (1) is smaller than
10−5) within 10 iterations. For the test entities, StrucSyn
finishes processing each entity in 2.51 seconds on average on
a single server with 2.27Ghz Xeon CPU and 32GB memory.

7. RELATED WORK
Previous efforts on automatically discovering entity syn-

onyms consider a variety of information. Given a corpus,
one can leverage document-level co-occurrence [30, 2] and
distributional similarity [22, 25] to extract synonyms. These
corpus-based methods, however, may suffer from low accu-
racy due to noisy entity context, and sparse co-occurrences
between entities. They also require sophisticated linguistic
features and human labels for model learning. On the other
hand, people start exploring query log, which provide more
focused entity information compared to document, and pro-
pose a variety of features for synonym discovery, including

query click similarity [33, 6, 7], query context similarity [5,
21], and pseudo-document similarity [5]. However, both lines
of work take only entity name as input but ignore the inher-
ent ambiguity nature of many entity names.

Recent studies [19, 21] use a set of homogeneous entities,
e.g., entities from the same domain, as input to help resolve
name ambiguity and collect more accurate information on
entity context. Such limited input schema, however, has
difficulties in handling ad-hoc entities since identifying ho-
mogeneous entities for ad-hoc entity is already non-trivial.

To our knowledge, the proposed method is the first to
study synonym discovery for structured entities. With entity-
focus information provided by structured attributes, our
method can conduct effective and efficient synonym discov-
ery for single entity (see StrucSyn vs. MixSim [5], Figs. 8
and 9). Compared to many query-based methods [7, 5, 21],
we further explore sub-queries as candidates and incorpo-
rate many types of information used by previous methods
in a principled, heterogeneous graph-based framework.

In terms of identifying various ways to reference an en-
tity, our work is related to entity resolution (coreference
resolution), which aims to resolve various entity mentions,
found in documents [26, 31] or structured data records [4,
13], into real-world entities. Entity linking [12, 29], on the
other hand, focuses on matching entity mentions to entities
in structured knowledge bases, which relies on surface forms
(synonyms) of entities to generate candidates. Therefore,
entity synonym discovery is orthogonal to entity linking and
can complement it by providing a richer set of synonyms.
Our work is also related to a rich body of works on iden-
tifying similar queries such as query clustering [28, 1, 17],
intent mining [27, 32], query alternation [3, 8] and query
suggestions [24, 23], in terms of measuring query similar-
ity based on web data. There exists work on finding word
(lexical) synonyms from document [20, 16], but we focus on
discovering entity synonym from query log.

8. CONCLUSION
In this paper, we study the problem of synonym discov-

ery for structured entities where structured attributes are
leveraged to handle entities with ambiguous names and en-
rich the mining process. We propose to explore sub-queries
as synonym candidates, and design a novel heterogeneous
graph-based framework to model properties of entity syn-
onym, by studying interplay between candidate, web page
and keyword. Experimental results demonstrate the effec-
tiveness of our method.
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