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ABSTRACT
A central task of computational linguistics is to decide if
two pieces of texts have similar meanings. Ideally, this de-
pends on an intuitive notion of semantic distance. While
this semantic distance is most likely undefinable and un-
computable, in practice it is approximated heuristically, con-
sciously or unconsciously. In this paper, we present a theory,
and its implementation, to approximate the elusive seman-
tic distance by the well-defined information distance. It is
mathematically proven that any computable approximation
of the intuitive concept of semantic distance is “covered” by
our theory. We have implemented our theory to question
answering (QA) and performed experiments based on data
extracted from over 35 million question-answer pairs. Ex-
periments demonstrate that our initial implementation of
the theory produces convincingly fewer errors in classifica-
tion compared to other academic models and commercial
systems.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Foundations of Data
Mining; H.3.3 [Information Search and Retrieval]: Query
Processing

Keywords
Question answering, text classification, information distance,
semantic distance

1. INTRODUCTION
In a Question Answering (QA) system, the bottleneck is

usually not the lack of knowledge, but how to correctly in-
terpret the queries, as the Internet, social QA communities,
Wikipedia, and many other databases usually contain the
answers we are looking for.
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For example, if we already know the answer to “What is
the population of Canada?”, then we should also know the
answer to “How many people live in Canada?”. The answer
is the same and the semantic distance between these two
queries should be approximately zero.

We know what semantics is and we all have an intuition
of how to judge the semantic distance between two queries.
However, we do not know how to formally define it, let-
ting alone how to compute it. Just like when we talk about
“computation”, is it the same as“Turing computation”? This
particular question relies on the Church-Turing thesis. Logi-
cians, philosophers and computational linguists, beginning
with Richard Montague [25], have studied theories of natural
language semantics and its relation with syntax. While the
Montague semantics is not interested in the real world, but
in semantical properties of language, our intuitive notion of
semantic distance is really not definable (and undecidable,
for example using Gödel’s theorems), just like we do not
know how to define computability without relying on the
Church-Turing thesis.

Over the years, many researchers in computational lin-
guistics have tried, consciously or unconsciously, to approx-
imate such a semantic distance. We first give a brief and
non-inclusive review on the approaches in the known litera-
tures, and then suggest a few more extensions of computing
or approximating the informal concept of semantic distance
following the conventional paths. Following the notations
in [4], let c1 and c2 be two synonym sets (synsets), L(c1, c2)
be the WordNet path length from c1 to c2, and lso(c1, c2)
be the lowest super-ordinate of c1 and c2.

1. At the word level, [11] proposed a measure of semantic
relatedness defined as

rel(c1, c2) = C − L(c1, c2)− k × d

where d is the number of times the path changes direc-
tion on the WordNet tree, and C and k are constants.

2. At the word level, [16] approximated the semantic sim-
ilarity by

similarity(c1, c2) = − log
L(c1, c2)

2D

where the length function L uses only hyponymy links
(i.e. “is-a” relations), and D is the overall depth of the
taxonomy.
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3. At the word level, [28] introduces information contents
to the measure by defining

similarity(c1, c2) = − logP (lso(c1, c2))

where P (·) is the probability of encountering an in-
stance of a synset c in some specific corpus.

4. At the word level, [14] also used shared information
content :

dist(c1, c2) = 2 logP (lso(c1, c2))−[logP (c1)+logP (c2)]

5. At the word level, [19]’s semantic similarity measure is

similarity(c1, c2) =
2 logP (lso(c1, c2))

logP (c1) + logP (c2)

6. Matching in latent space approach by [33] matches
documents and images via the semantic space, and
goes beyond the above word-level WordNet semantics
approaches.

7. At the sentence level, obviously identical sentences or
queries mean the same thing. After substituting some
words with their synonyms, or with words that are
close by word-level similarity measures, they should
still carry the same meaning.

8. Generalizing the above, if two queries are similar, say
with small syntactic edit distance, then they have sim-
ilar semantics. However, this does not work for things
like “What is the weather like today in Toronto?” and
“In Toronto what is the weather like today?”

9. Certainly one can keep on improving the above by al-
lowing permutations of addresses and time blocks, but
then we still have trouble with“What is the population
of Canada” and “How many people live in Canada”.
They have large edit or parsing structure distance, but
the same semantics.

10. Computing such semantic approximations is also lan-
guage dependent. For example, the three Chinese sen-
tences in Table 1 all ask about the price of apples. The
first two sentences are easily comprehensible through
literal translation, however, one can hardly expect a
non-Chinese speaker to link “how to sell” with the ac-
tual meaning of“how much”. Thus we have more prob-
lems: how to make a language-independent definition
or approximation of semantic distance?

Chinese sentence Literal translation

苹果什么价钱？ Apple what price?

苹果多少钱一公斤？ Apple how much money one kg?
苹果怎么卖？ Apple how to sell?

Table 1: Three ways of asking the price of apples in
Chinese

New applications of natural user interface have created
new challenges and revitalized some of the old problems.
Current mobile personal assistant systems use practical nat-
ural language processing methods, such as template or key-
word matches, possibly with added models or probabilities
to bias the meaning of a template or keywords, thus, mis-
takes abound. If we ask Siri, “What do fish eat?”, Siri
answers with a list of seafood restaurants nearby. When
asked “Where can I find hamster food?”, Siri also answers

with a list of restaurants. The query “What is the tem-
perature on the surface of the Sun?” and “How hot is the
Sun’s surface?” have the same meaning, but Siri can only
answer one of them. One way of explaining this problem
is that Siri fails to classify the questions into the correct
vertical domains. In general, a QA system, or a mobile per-
sonal assistant system, naturally consists of a collection of
application domains. These domains may include, for ex-
ample, music, maps, weather, calendars, time, food, hotel,
email, news, telephone functions and a general search do-
main. Once restrained to a certain vertical domain, queries
can be processed more efficiently and effectively. However,
query classification is no easy job. Questions belonging to
different domains may not differ much literally, for example
“What is the temperature on the sun?” and “What is the
temperature in Tucson?”. While the questions in the exam-
ples above are expressed in proper English, things become
more challenging when the query is translated from another
language, for cross language search, or when a non-native
speaker speaks to a device. Even native speakers suffer from
noisy environments. In these cases, the users’ questions are
often slightly distorted. As a result, current systems may
fail to give answers to these questions. For example, the
QA website evi.com (formerly True Knowledge), accessed
on Nov. 10, 2014, at the time of writing this paper, could
answer “Who is the mayor of Toronto?”, “Who is mayor of
Toronto?” (missing “the”) and “Who is Toronto’s mayor?”
correctly, but “Who is the Toronto’s mayor?”, with an ex-
tra “the”, still a comprehensible expression to humans, could
not be answered.

Obviously, all these problems would be solved if we knew
how to compute the “semantic distance”. We will show that
even without a formal definition of the elusive “semantic dis-
tance”, we can still develop a theory to approximate it and
mathematically prove that our approximation is the “best”
there can be. We want the theory to be natural, univer-
sal, and free from ad hoc feature selections for each new
application domain. This unifying theory naturally leads to
a practical system which outperforms existing methods for
our QA tasks: (1) classifying a query into a proper domain,
and (2) finding a question, closest to the query, with an an-
swer. Our system is then tested using a data set with over
35 million QA pairs.

The paper is organized as follows: Section 2 introduces
some related work in the fields of QA question classification
and topic classification. Section 3 formalizes our problem.
Our theory is introduced in Section 4. In Section 5, we show
how to implement our theory. Section 6 describes classifica-
tion framework. Experimental results are shown in Section
7. Finally, conclusions and future work are addressed in
Section 8.

2. RELATED WORK
Question classification in QA systems has long been stud-

ied. Traditionally, questions are categorized based on their
intents: The popular taxonomy [18] includes Abbreviation,
Description, Entity, Human, Location, and Numeric Val-
ues. Subsequent work introduces the categories from the
prospective of user-intent analysis, including Navigational,
Informational, Transactional [20], and Social questions [5],
or combining intents with the contents, such as Solution,
Reason, Fact, etc. introduced in [2]. Our problem differs
from these in the aspect of categorization, that we classify
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the questions into more concrete vertical domains, such as
Weather, Restaurants, and Maps, hence better organizing
the knowledge base and providing more accurate answers.

This vertical taxonomy leads our task into a topic classi-
fication problem, which is a basic task in text classification.
In this field, contents of texts are usually fully exploited,
such as their lexical features (e.g. n-grams), syntactic fea-
tures (e.g. parse trees [10, 27]) and semantic (e.g. WordNet-
based) features. Moreover, the contents are usually relevant
to users’ intents [13]. Therefore, based on these textual fea-
tures, many models have been developed and have been ap-
plied in question classification. For example, specific lexical
features are more important to determine the topic and these
methods are independent with languages [12, 29]. Syntac-
tic and semantic features combining with machine learning
models (e.g. support vector machines) are competent to
classification [15, 18, 34]. However, content-based analy-
sis requires well-formed texts with sufficient contexts. For
shorter queries, it is difficult to train reliable probabilistic
topic models (such as latent semantic indexing / analysis,
latent Dirichlet allocation, etc.). What is more, informal
texts or errors greatly decrease the accuracy of semantic
analysis and bring challenges to topic identification [31], es-
pecially in our task, where the questions may be from speech
recognition softwares or translated from another language,
hence containing errors.

Question-answering on speech transcripts (QAST) has also
been studied recently, especially in the Cross Language Eval-
uation Forum (CLEF) campaigns [32]. These studies usually
recognize the named entities (NEs) as the key components
of question types [8]. Phonetic codifications are introduced
to enrich the possibility of the entities. Then the entities,
together with the modifiers are queried within all the an-
swers. These traditional approaches are still limited within
the variations of linguistic methods. For more complicated
situations, we need a robust understanding of these extem-
poraneous or imperfect recognized texts. Our solution is to
find a question or cluster that is semantically very “close” to
the input query, defined by information distance.

The theory of information distance have been widely ap-
plied [17], including QA tasks such as named entity extrac-
tion by recognizing multiword expressions (MWEs) [3], mea-
suring the “distance” between a question and an answer [35],
or measuring the distance from a speech transcript to its real
intent (well-formed text) [30]. These preliminary studies il-
lustrate a vast possibility of using information distance to
solve natural language processing problems, but they stop
short not giving a general theory of approximating seman-
tics and how to do a general implementation. In this paper
does the above, and as application we measure the question-
question semantic distances rather than question-answer rel-
evance.

3. PROBLEM FORMALIZATION
Intuitively, each query may be thought of as a point, or

an information carrying entity, in the information space. We
wish to approximate the semantic distance between any pair
of such information carrying entities using a well-defined
“distance”. This distance must satisfy basic metric prop-
erties, such as the triangle inequality. Thus, given a new
query, all we need to do is to measure its “distance” to an-
other question or a domain, hence, properly classifying it.
We also wish to make sure that the distance we choose is the

only metric. Additionally, when we introduce a new domain
and its associate language models for its queries, it will be
governed by the same distance metrics so that the new do-
main language models do not overextend, which might cause
conflict with other existing domains.

Let us refine the problems we wish to solve. Specifically,
the main problems that we address in this paper are:

1. Query variation. Human understanding is robust. One
question could be asked in hundreds of grammatically
correct ways. Furthermore, when a sentence is gram-
matically wrong, or contains irrelevant words, it is
usually still comprehensible. We not only understand
“How tall was the world trade center?”, or “What is
the height of the world trade center?”, but also un-
derstand “How tall is the ward trade center?”. Given
a question from voice recognition (possibly distorted),
or translated from another language, or a proper En-
glish question having no answer, we want our system
to be able to find a semantically similar question with
an answer in the database.

2. Query classification. “What is the temperature out-
side?” is asking about weather, while“what is the tem-
perature of boiling water?” is not. “Is the weather suit-
able to play golf today?” is a question for the weather
domain, while “What is the climate like on Mars?” is
not. We would like our system to perform classifica-
tion before finding the answer to a question, i.e., given
a (possibly noisy) question, to classify it into one of the
vertical domains which are semantically represented by
positive and negative query examples.

These two problems can be seen as related, as they both
involve defining a distance between the questions. To solve
Problem 1, query variation, we classify questions within a
small distance from each other as being the same. To solve
Problem 2, query classification, given positive and negative
examples of questions for each domain, we choose the do-
main with a representative question that has the smallest
distance from the query. For instance, for the query “What
is the weather like in Seattle?”, if we have, in our training
data, the question “How is the weather in Toronto?” as a
positive example, and the question “How is the weather on
Mars?” as a negative example, then what we need is a mech-
anism that determines that the query has a smaller distance
to the positive than to the negative example.

For the purpose of classification, a number of approaches
may be immediately considered, such as support vector ma-
chines (SVM), neural networks, decision trees, Bayesian net-
works, Markov models, etc. Besides the accuracy issues,
these methods are often sensitive to noise, thus cannot solve
Problem 1. Furthermore, when training for a new domain,
typically, one has to choose features ad hoc, often result-
ing in a re-training process, such as changing the kernel or
normalizing the probabilities. If we have a proper semantic
distance, adding a new domain, even by a user, is just adding
data to the database. There are indeed “distances” that try
to approximate semantic distance, including all those listed
in Section 1, cosine distance (derived from cosine similarity)
and Lexical Level Matching (LLM) distance [9]. However,
all these distances have problems: The distances listed in
Section 1 are word level distances; LLM and cosine are sim-
ilarity measures, not distances; LLM is not even symmetric;
LLM and cosine distance do not respect sentence structures
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(hence too aggressive as encoders) hence bound to be defec-
tive, as shown in the experiments.

Thus, our solution to the problems stated above relies on
our intuitive notion of semantic distance, or a good approx-
imation of it, between two questions. Although a formal
semantic distance is most likely undefinable and uncom-
putable, is it possible to find a well-defined distance met-
ric that would minorize (be no more than) all other well-
defined computable approximation of our intuitive concept
of semantic distance? Not only we want the theory to be
mathematically unique and optimal, thus not replaceable,
but also we want a systematic method to implement or ap-
proximate this theory for the task of natural language query
understanding.

To formalize the notations, we have a set of general ques-
tions Q, and vertical domains V1, V2, . . . , Vk. We assume
that each domain Vi has a set of comprehensive natural lan-
guage queries Qi ⊆ Q, and a fixed number of application
programming interfaces (APIs) to answer domain-specific
questions or to perform domain-specific tasks. The seman-
tic distance between two queries, q1 and q2, is denoted as:

ds(q1, q2).

Thus, given a query q, the distance from q to a domain Vi

is defined as

ds(q, Vi) = min
q′∈Qi

ds(q, q′).

To reiterate, the semantics distance ds cannot and will
not be formally defined. In the next section we will give a
provably “best” approximation to it.

4. APPROXIMATING SEMANTICS
Our intuitive concept of semantic distance cannot be well

defined and cannot be precisely computed. In Section 1,
we have seen many authors trying to approximate it. How-
ever, can we have an approximation that is indisputably
universal? The task seems to be impossible: how can we
approximate something that is not even formally defined,
and approximate it so well that it covers all reasonable ap-
proximation of it?

It turns out that this indeed can be done. The idea is to
use information distance [1]. Although it is still not com-
putable, it directly suggests many natural ways of approxi-
mation, including those given in Sections 1 and 5.

We first follow [17] to give a brief and informal intro-
duction to information distance. The theory of information
distance depends on the theory of Kolmogorov complexity,
which was invented in the 1960s. Fixing a universal Turing
machine U , the Kolmogorov complexity of a binary string x
condition to another binary string y, KU (x|y), is the length
of the shortest (prefix-free) program for U that outputs x
with input y. Since it can be shown that for a different
universal Turing machine U ′, the metric differs by only a
constant, we will write K(x|y), instead of KU (x|y). We
write K(x|ε), where ε is the empty string, as K(x). For a
casual reader, it is sufficient to understand K(x) simply as
the number of bits of the shortest program written in your
favorite programming language to output x, given no input.
We call a string x random if K(x) ≥ |x|. We refer the read-
ers to [17] for further details of Kolmogorov complexity and
its rich applications.
K(x) defines the amount of information in one object x.

What would be a good departure point for defining an “in-

formation distance” between two information carrying ob-
jects? In the early 1990s, in [1], the authors studied the
energy cost of conversion between two strings x and y. John
von Neumann hypothesized that performing 1 bit of infor-
mation processing costs 1kT of energy, where k is the Boltz-
mann’s constant and T is the room temperature. In the
1960s, observing that reversible computations can be done
for free, Rolf Landauer revised von Neumann’s proposal to
hold only for irreversible computations. Starting from this
von Neumann-Landauer principle, it was proposed in [1] to
use the minimum number of bits needed to convert between
x and y to define their distance. Formally, with respect to
a universal Turing machine U(·, ·), the cost of conversion
between x and y is defined as:

E(x, y) = min{|p| : U(x, p) = y, U(y, p) = x} (1)

Clearly, E(x, y) ≤ K(x|y) + K(y|x). In [1] the following
optimal result was obtained, modulo log(|x|+ |y|):

Theorem 1.

E(x, y) = max{K(x|y),K(y|x)}.

Thus, this has enabled the definition of information dis-
tance between two sequences x and y as:

d(x, y) = max{K(x|y),K(y|x)}. (2)

This distance d was shown to satisfy the basic distance re-
quirements, such as non-negativity, symmetry, and triangle
inequality. Furthermore, d is universal in the sense that d
always minorizes any other reasonable computable distance
metrics, such as [14], [19], [33] and so on. In particular,

Theorem 2. If d′(x, y) is any reasonable (satisfying some
basic density constraints) computable distance approximat-
ing the semantic distance, then there is a constant c, for all
x, y,

d(x, y) ≤ d′(x, y) + c.

Now we are ready to make a bold proposal: let’s equate in-
formation distance, which is well-defined, with our intuitive
concept of “semantic distance”. Figure 1 explains the con-
sequences: for any computable traditional distance d′(x, y)
that tries to approximate“semantic distance”, it is minorized
by d(x, y) in the sense that there is a c, for all x, y, we have
d(x, y) ≤ d′(x, y) + c. That is, if under d′, x, y are close in
“semantics”, then so do they under d.

Thus, we have replaced an undefined concept semantic
distance by a well-defined information distance, although
both being un-computable. Our definition directly suggests
a natural approximation by compression.

Information distance and its normalized versions have been
applied in bioinformatics as well as plagiarism detection [6],
clustering [7] and many other applications [17]. In the field of
text processing, topics include question and answering sys-
tems [35], multiword expression linguistic analysis [3], web
page authorship, topic and domain identification, Internet
knowledge discovery, multi-document summarization etc.

5. ENCODING ALGORITHMS
In this section, we describe our approximation of infor-

mation distance in the domain of QA, under the guidance
of our general theory. While part of our system, especially
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Figure 1: Relationships between distances

at the word level, is based on traditional WordNet-based
metrics, the whole system is subtly different and new. On
one hand, it avoids the aggressiveness of the unstructured
bag-of-words model adopted by methods such as LLM and
cosine distance, so that “What do fish eat” and “What eats
fish” will not be considered to have the same meaning; on
the other hand, it does not rely on structural parsing, which
often fails especially on imperfect input sentences. More-
over, the semantic clustering algorithm allows us to discover
semantic resemblance regardless of syntactical features.

Our approximation scheme is a natural derivation of the
information distance theory, which considered the strings on
the semantic level. Given a piece of language, x, which can
be a word, a phrase or a sentence, let κ(x) be the number
of bits required to encode the meaning of x in the semantic
space. κ(y|x) denotes the number of bits required to en-
code the semantic meaning of y given input x. Following
the definition of information distance, our approximation of
semantic distance defines ds(x, y) = max{κ(x|y), κ(y|x)}.

At word level, we use a WordNet-based approach for the
semantic encoding; at sentence level, we use a syntactic en-
coder as well as a new semantic clustering method. The
advantages of our general theory include:

1. It unifies all approaches in Section 1 under one roof,
using one measure (encoding bits), so that any measure
can be used as long as it is shorter.

2. It avoids pitfalls of some approaches, such as asymme-
try (L) of approaches 1 and 2 in Section 1. At sentence
level, this problem becomes more prominent. For ex-
ample, given sentences x and y, should we compress x
using y or compress y using x? These two quantities
may be different.

3. The new theory is conveniently extendable, allowing
other measures of similarity or other databases to be
added in, consistently. For example, it has allowed us
to introduce a new semantic encoding scheme which
incorporates a database of 35 million QA pairs and
encodes questions via similar answers.

5.1 Encoding Words
Given a word w, κ(w) should be a measure of how much

information w carries. Without any information about the

language, we can only treat each word as a uniformly ran-
dom occurrence (or a distributional variation) of the com-
plete vocabulary. Say there is a total of N words in the
English vocabulary, then logN (or logPi for i-th word) bits
are required to generate any single one of them. This is our
baseline of approximating κ(w), i.e. the actual κ(w) should
be no more than this value.

The first useful knowledge for determining κ(w) is part-
of-speech (POS) tags. Words such as “the” (article), “into”
(preposition) and“might”(auxiliary verb), are considered“ir-
relevant” words, carrying very little information, therefore
can be assigned very small values of κ(w). On the other
hand, nouns, verbs and adjectives carries relatively more in-
formation. Although in many cases it is true that “small
words” can completely change the meaning of a sentence,
in the context of question answering, such approximations
usually suffice.

In order to further assign reasonable values of κ(w) and
ds(w1, w2), we need to have knowledge of the semantic re-
lations between them. Here we use WordNet [24], because
it not only groups synonyms together, but also contains hi-
erarchical semantic relations between words. For example,
the database containing all nouns has the following useful
properties:

• The root node, “entity”, is the ancestor of all entities,
thus every w that appears in the tree corresponds to
a path originating from the root node. We let κ(w) to
be the length of this path, i.e. the number of steps of
specialization required to produce a specific entity.
• Words that denote the same concept are within the

same node (synset), for example, “sofa” and “couch”.
Hence, if w1 and w2 are within the same synset, then
κ(w1|w2) ≈ 0;
• The parent-child relation in its tree structure corre-

sponds to hypernym-hyponym relations between enti-
ties, for example, the synset {seating} is the parent
node of the synset {sofa, couch}. Therefore, if w1 is
a hypernym of w2, then κ(w2|w1) = 1, meaning given
w1, we need one step of specialization to produce the
semantic meaning of w2;

Additionally, we also use the similarity and hypernym rela-
tions in WordNet’s verb and adjective databases.

Therefore, given two words w1 and w2, we first find the
synsets containing them, synset(w1) and synset(w2), and
then calculate ds(w1, w2):

• The POS tag of w1 falls into the “irrelevant” category
described above. Then ds(w1, w2) = κ(w2). The same
rule applies when w2 is an “irrelevant” word.
• synset(w1) and synset(w2) are the same synset. Then
ds(w1, w2) = 0;
• synset(w1) and synset(w2) both exist in the WordNet

tree of entities. Then, ds(w1, w2) is computed by find-
ing the least common ancestor (LCA) of synset(w1)
and synset(w2), and then taking the greater of the
number of steps from LCA to synset(w1), and from
LCA to synset(w2), in accordance with the definition
ds(x, y) = max{κ(x|y), κ(y|x)};
• synset(w1) and synset(w2) do not exist in the same

tree. Then ds(w1, w2) = max{κ(w1), κ(w2)}.

Finally, it should be noted that the process above applies to
not only words, but short phrases as well.
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5.2 Encoding Sentences
Given query sentences q1 and q2, to compute ds(q1, q2),

three scenarios are considered. (a) No semantic relationships
exist, hence converting one sentence to the other requires
word-by-word substitutions, resulting in a relatively large
value; (b) When the two sentences are syntactically similar,
converting one sentence to the other can be done with only
small local modifications, thus the encoding of the whole
sentence is the encoding of these local modifications; (c)
Using our 35 million QA database to encode questions via
their answers. The shortest of the three is taken as the final
encoding.

Standard techniques of processing natural languages, such
as tokenization, POS tagging and named entity recognition,
are applied first, thus a sentence becomes a sequence of
words and phrases.

In case (b), the source of similarity comes from alignments.
An alignment of the two sentences is performed using the
standard dynamic programming method with respect to the
semantic distances between words and phrases. Thus for
sentences within small edit distances, for example, sentences
differ only by one insertion / deletion or substitution, their
semantic distance depends on the semantic distances be-
tween the words by which they differ, as in the case “What’s
the weather like in Beijing” versus “What’s the weather like
in New York”.

Before performing the alignment, however, a few adjust-
ments are necessary:

• Redundant words. Sometimes people add phrases such
as “Can you tell me” and “I would like to know” before
their questions. In our QA context we consider this
to be irrelevant information and remove it during pre-
processing.
• Permutations of phrases. “How is the weather in Lon-

don” and “In London, how is the weather” are essen-
tially the same question. Some re-ordering does occur
in natural conversations. Therefore, we set a few rules
to re-arranges the phrases. For instance, a time phrase
at the end of a sentence is placed at the beginning of
the sentence, so that all time phrases can be aligned.

In case (c), we deal with questions that cannot be aligned,
such as “What is the population of Canada” and “How many
people live in Canada”. They should have a relatively small
distance since they ask about the same thing and have the
same answers. We hereby introduce a semantic clustering
method that discovers question similarity by processing re-
lationships between the entities in the QA pairs.

5.3 Semantic Clustering
Intuitively, each question is either explicitly or implic-

itly about relationships between entities. Questions asking
about the same kind of relationship hence have shorter rel-
ative encoding. For the purpose of discovering relationships
of two questions, we used our data set of over 35 million pairs
collected from community question answering websites. For
each {q, a} pair, we extract the named entities that q and a
contains, namely eq and ea. The named entity set is limited
to the fact set of an external graphic knowledge base, such
as DBpedia. Given surface text s, the corresponding named
entity e is retrieved by searching through the index of the
hyperlinks of Wikipedia pages, with a confidence score

C(e, s) = Popularity(e) ∗ P (e|s), (3)

who is <E>’s wife
who was <E>’s wife
who is the wife of <E>
who was <E>’s first wife
what was <E>’s wife’s name
what is <E>’s wife’s name
what is <E>’s wife called
who is <E> married to
who is married to <E>
who married <E>
who was married to <E>
...

Figure 2: Selected templates representing the rela-
tionship of “spouse”

where P (e|s) is the probability of the entity e given text s
and Popularity(e) is the number of occurrence of entity e
in the hyperlink set.

Then we use the same knowledge base to determine rela-
tionships between eq and ea, that is, to find predicate paths
connecting them. We assume each question has only one
entity that is related with its answers. Thus, for each re-
lation r that is found over the entity pair eq and ea, we
generate a question template t, with eq extracted from q.
Note that multiple relations may result in multiple tuples of
(t, eq, ea, r) for a single {q, a} pair.

Next, we group tuples with the same template together.
For a template t, we want to select the most relevant relation
r by calculating an ranking score:

Score(r|t) = P (r|t)·log
|T |
|Tr|
·

∑
q∈Tuple(t,r)
r⇐(eq,ea)

C(eq, sq) · C(ea, sa)

|Tuple(t, r)| .

(4)
The probability P (r|t) denotes the frequency of the re-

lation r in the tuples that contains template t. The item

log |T|Tr| is the inverse template frequency, where |T | is the to-

tal number of templates and |Tr| is the number of templates
that are associated with relation r. The third part of the
product is averaging the confidence of named entity recog-
nitions that produce relation r over tuples contains both t
and r. Finally, the tuples are clustered such that those that
share the same relation r are put into the same cluster.

To illustrate the result of the clustering, in Figure 2, we
list the templates that represent the “spouse” relationship,
where “<E>” denotes a named entity.

With these data, given a question, we can determine the
relationships it asks about by finding the matching tem-
plates, and their corresponding relationships. If two ques-
tions share the same relationship, then the information dis-
tance between them is defined to be the information distance
between the named entities in the questions or the answers.

5.4 Building Domains
The encoding steps above are reasonably accurate to ap-

proximate the uncomputable information distance in this
natural language setting. We now briefly describe how to
obtain Qi, the set of questions for a vertical domain Vi.

Depending on the scenario of application, the question set
Qi can be constructed in multiple ways. In our system, it
is done semi-automatically, by clustering on a human anno-
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tated corpus. Details of our implementation are described
in Section 6. Qi can also be constructed fully automatically,
when less manpower is available. First we start with a few
representative queries. Then we use a compiler that gener-
ates queries that are similar to the representative queries,
i.e. queries that are within a small semantic distance from
the representatives. More formally, starting from the rep-
resentative set Ri for each q ∈ Ri, the compiler generates
the set q∗ = {q′|ds(q′, q) ≤ ε}, where ε is a small constant.
Finally we get Qi =

⋃
q∈Ri

q∗.
Building domains requires the most human effort in the

process of developing our QA system. Therefore we are
hopeful that the completion of the compiler will greatly re-
duce the need of human intervention by automating the task.
Generally speaking, to build a domain is to expand the set
of representative questions. The user only needs to provide
a few representative questions, and leaves the task of gener-
alizing similar questions to the compiler.

Figure 3 illustrates the vertical domain Time. The core of
the domain is the key concepts that defines it, or, more con-
cretely, the APIs to answer domain-specific questions, which
is to be implemented by the QA system. To instantiate these
concepts, the procedure described above is performed, which
goes from keywords to questions and then to clusters.

API(time)

API(date)

Key words / phrases:

What time, day, date, ...

Clusters:

What time is it [time phrase] [location phrase]

What day is [time phrase] [location phrase]

...

Questions:

What time is it now

What time is it

What time is it in Paris

What day is today

What day is today in Toronto

Figure 3: Vertical domain Time

6. CLASSIFICATION FRAMEWORK
In this section, we briefly describe the framework of the

classification process.
Given a set of labeled data, i.e. questions Q and the corre-

sponding domains they belong to, we first prepare the train-
ing sets for classification. Concretely, for each domain Vk,
all the questions from Q that are labelled as positive exam-
ples in Vk are collected as Q+

k . All the rest questions in Q
form Q−k .

In the classifying process, upon receiving a query q, the
semantic distance between q and each vertical domain Vk

(k = 1, 2, . . . , n) is calculated by:

1. Iterate through all the questions in Q+
k and Q−k , and

find question q+k and question q−k that has the smallest
semantic distance from q.

2. If the distance ds(q, q+k ) ≤ ds(q, q−k ), then return
ds(q, q+k ) as ds(q, Vk); otherwise, return +∞.

Finally, each domain V with ds(q, V ) < +∞ are the re-
sults of classification. This distance also serves as a likeli-
hood measure, i.e. the domain Vk with the smallest ds(q, V )
is considered to be the most likely domain that q belongs to.

In practice, however, a few optimizations are necessary:

1. For each vertical domain Vk, we use a pre-determined
list of keywords to filter the questions. Questions that
do not contain any of these keywords are excluded from
Q−k , and are considered impossible to be a positive ex-
ample for Vk. The keyword list is supposed to be ex-
haustive, so as not to create false negatives. This does
not violate the principle of automatic processing, as
the human effort of picking keywords for each domain
is a vital part in creating the vertical search domain.

2. To further speed up the computation, we perform clus-
tering on the questions in Q+

k , using plain edit distance
with a low threshold. This step will avoid repeated
comparisons with highly similar questions in Q+

k .

7. EXPERIMENTS AND RESULTS

7.1 Data
To sufficiently test our theory, we have decided to ob-

tain the largest QA dataset available to academic research.
We have crawled the Internet and downloaded more than
35 million English question-answer pairs. These questions
and answers are all posted by users of QA websites, such
as WikiAnswers and Yahoo Answers. Although many of
these questions contain typos and grammatical errors, we
decided not to correct them to be honest to the Internet
data. Also, by keeping the original data, we hope to simu-
late, to some degree, the erroneous speech recognition results
and the translated questions in cross language search.

Removing domains (1) for which we do not have data (e.g.
phone functions), (2) that are not available on commercial
systems, or (3) that are not specific enough (e.g. news), we
are left with three popular domains: Weather, Maps and
Restaurants. The experiments are conducted individually
on the domains, i.e. considering the problem as three binary
classification problems.

In order to do the testing, we have first selected over
50,000 relevant questions by clustering methods. Then we
manually annotated these 50,000 relevant questions, classi-
fying them into different domains. To our knowledge, this
is the first large scale effort and dataset for testing question
classification and it is also the largest dataset available for
our purposes. The data is available on request.

To build a training data set, we first use some keywords
to filter the questions, leaving a relatively small number of
questions as possible candidates on each domain, respec-
tively. This reduces many obvious negative questions, hence
avoid unnecessary annotations for question labelling. We
also deploy clustering on the candidates to sample the most
representative questions within a domain.

We have selected questions from each domain individually,
thus questions in different domains do not overlap. For each
question we simply give it a label whether or not it belongs
to the domain. Table 2 lists the total number of questions
(selected from over 50,000 questions which in turn were se-
lected from 35 million) as well as the number of positive and
negative samples for each domain.
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Table 2: Experiment dataset statistics
Weather Maps Restaurants

# Positive 1,520 1,246 610
# Negative 2,517 4,805 2,068
# Uncertain 420 156 286

Total # Questions 4,457 6,207 2,964

100 questions from each domain were randomly chosen for
the purpose of testing. Table 3 shows the statistics of these
test data.

Table 3: Test data statistics
Weather Maps Restaurants

# Positive 32 25 27
# Negative 68 75 73

Total # Questions 100 100 100

The annotations were conducted by two human experts,
with agreements of Cohen’s κ = 0.95, 1.00, 0.93 of Weather,
Maps and Restaurants domains, respectively. A third anno-
tator is introduced to resolve the conflicts. Generally speak-
ing, human annotators had little difficulty. But to comput-
ers, the questions can be misleading in various ways, as illus-
trated in Figure 4. This usually happens when the specific
keywords exist but the question is actually asking for some
other facts. For instance, keywords “hot”, “cold”, “tempera-
ture”, “today”, etc. are to some extent revealing the topic of
Weather, but apparently there can be general domain ques-
tions that contain these words.

7.2 Baseline Algorithms
We performed classification with our algorithm (InfoDist)

in comparison with other methods. Our baseline methods
include:

• LLM: Introduced in [9], the original LLM similarity is
defined as:

LLMorig(s1, s2) =

∑
v∈s2 maxu∈s1 sim(u, v)

|s2|
,

where sim(u, v) is a similarity metric defined over se-
mantic units u and v in two sentences s1 and s2. Here
we use WNSim, a similarity measure based on Word-
Net. Note it is not symmetric. Hence we take the
arithmetic mean instead:

LLM(s1, s2) =
LLMorig(s1, s2) + LLMorig(s2, s1)

2
.

• Word2Vec cosine similarity: The original cosine sim-
ilarity deploys a simple vector space model with TD-
IDF weights. We improved it by using the popular
Word2Vec [22, 23] to vectorize text. The vector for a
sentence is obtained by adding up vectors of its words.
Thus

Word2V ec(s1, s2) = cossim(
∑
u∈s1

vec(u),
∑
v∈s2

vec(v)),

where u and v are words in the sentences s1 and s2,
respectively. vec(u) is the vector of that word, con-
taining 300 dimensions.

• Traditional classification approaches. We have imple-
mented a näıve Bayesian classifier, a logistic regression
model, and SVMs, with linear, polynomial, radial, and
Sigmoid kernels. Among these methods, SVM per-
forms the best. Therefore we only included SVM in the
question classification experiments. Details of these
methods are discussed below.

• In addition, we also tested two commercial systems:
Apple’s Siri and Samsung’s S-Voice. These tests were
performed manually. The weather domain experiment
was done in July, 2012 using Siri on iPhone 4S and
S-Voice on Samsung Galaxy III, both with the latest
version at the time. The tests for the restaurant and
map domains were performed in January, 2013, using
Siri on iPhone 5 and S-Voice on Samsung Galaxy III,
also with the latest versions. At the time of our ex-
periment, S-Voice did not contain the functionality of
finding restaurants, hence, we did not include its re-
sults for the restaurant domain.

Note that all of these tests are for classifying purposes only,
not to see the correctness of the answer. Hence, when Siri
replied “Sorry, I can’t look for restaurants in Canada”, ap-
parently the question was classified into the restaurant do-
main. Our statistics were then done accordingly.

For the Bayesian classifier, by using the n-gram language
model and assuming Markov properties, the probability of
observing that the sentence W would consist of the words
w1, w2, . . . , wm is approximated as:

P (w1, w2, . . . , wm) ≈
∏

i=n+1,...m

P (wi|wi−n, . . . , wi−1).

The näıve Bayesian classifier simply tries to find the ques-
tion set ci that maximizes the probability P (W ):

C = argmaxci∈CP (ci)
∏

w∈W

P (W |ci).

In the binary classifying context, C = {c0, c1}, where c1
denotes the set of questions belonging to the domain, and
c0 denotes the set of questions not belonging to the domain.

The following features are used for both logistic regression
and the SVM models:

(1) Number of words in the question;
(2) Difference of unigram, bigram and trigram probabilities:

P (W |c0)− P (W |c1);
(3) Sentence tense: past, present or future;
(4) Having location expressions: yes or no;
(5) Having time expressions: yes or no;
(6) Question type: who, what, how, and so on.

The hypothesis of the logistic regression classifier is repre-
sented as a logistic function of a linear combination of inputs:
h(x) = σ(wTx). h(x) can then be interpreted as P (x ∈ c1).

Among these methods, the linear kernel SVM has achieved
the highest accuracy by a 10-fold cross validation. This
SVM has accuracies ranged from 85.1% to 91.1% among the
three domains, about 1 percentage point and 10 percentage
points higher than the logistic regression and Näıve Bayesian
classifiers, respectively. This linear kernel also performs the
best among the other traditional kernels (approx. 1 point,
5 points and 10 points higher than the Sigmoid, polynomial
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Domain Questions Relevancy

Weather
What is the weather like for the Superbowl? Relevant
Is silk good to wear in hot weather? Irrelevant
How cold weather can cats deal with outside? Irrelevant

Maps
Distance from the origin to a point? Irrelevant
How long is emirates plane? Irrelevant
How do you reach Blue Mountain by train? Relevant

Restaurants
Where is ice cream popular? Irrelevant
What’s the best Chinese food in town? Relevant
Food that begins with New York? Irrelevant

Figure 4: Examples of misleading questions.

and radial kernels, respectively). Therefore, SVM with lin-
ear kernel (denoted as SVM-linear) will be used in the next
section as the baseline standard approach.

Besides the traditional kernels, we have also implemented
a tree-kernel SVM [26] for an advanced baseline, denoted
as SVM-tree. This SVM exploits the syntactic parse tree
information, hence is more suitable in NLP problems.

7.3 Main Results
Table 4 lists the result of different services (models) on the

domains. The best result of each measurement is in bold.
As revealed, InfoDist outperforms the baseline approaches
as well as some state-of-art services.

7.4 Question Variations
Our proposed method is able to process variants of the

questions. Syntactical and text edit level variations are more
straightforward to see, here we give one example on our
semantic encoding. While large scale experiments require
much larger datasets for the purpose of sufficient clustering,
here is a preliminary test. A set of questions with respect
to the “military service” relationship, i.e. questions asking
about people’s military roles, was extracted by clustering
from our database of 35 million QA pairs. The cluster is
similar to those in Figure 2. With the algorithm mentioned
in Section 5, we are able to recognize all these variations,
and give short semantic encoding via the “military service”
cluster. In contrast, Siri and Wolfram Alpha failed to answer
such kinds of questions and always referred to web search.
evi.com, on the other hand, did slightly better. Although it
did not have all the knowledge, in some cases it did recognize
the named entities, in which case we consider it being able
to understand the questions.

The questions evi.com was able to understand include:

• What military service did John F. Kennedy serve in?
• What military rank is George Washington in?
• What did John F Kennedy do in the navy?
• What role did George Washington play in the Ameri-

can revolution?

The questions evi.com was not able to understand are:

• What was Andrew Jackson’s position in the Tennessee
militia?
• What was George Washington rank in the revolution-

ary war?
• What was Abraham Lincoln’s military rank?
• What war did Elvis serve in?
• What did Robert Todd Lincoln serve as in the civil

war?

7.5 Discussions
Not only our system is implemented based on a solid the-

ory, but also it outperforms commercial systems as well as
baseline academic systems such as SVM, cosine distance and
LLM. Not only producing inferior results, the traditional
classification methods (such as SVM) hardly provide any
clue on how to answer the questions even after correct clas-
sification. By contrast, given a query, by finding a question
(with answer) within a small information distance to it, we
can answer the query using the same answer.

To conclude, our seemingly simple method is robust. It
uses all text information and has the potential of deeper
comprehension of the semantic intent.

8. CONCLUSIONS AND FUTURE WORK
While we have provided a unifying theory to capture the

essence of the undefined semantic distance, our implemen-
tation is deceptively simple. Simplicity implies robustness,
as shown in our experimental results. Although we have
used traditional building blocks such as WordNet for word
similarities, there is indeed a subtle difference between our
approach and known ones. In our work, we aimed for sim-
plicity (for shortest encoding), but we kept the bottom line
of decodability. In comparison, other methods such as co-
sine distance, LLM, and SVM (most kernels) do not re-
spect decodability hence unable to distinguish questions like
“what eat fish” and “what fish eat”. We have also introduced
new algorithms of encoding via semantic space by clustering
questions with similar answers.

It is important to point out that our theory has estab-
lished an absolute distance. While the encoding algorithm
we have provided is only an initial effort to approximate,
it is a once-and-for-all deal. The advantage of a universal
approximation using information distance is that it enables
us to use any useful encoding scheme, including everything
listed in Sections 1 and 5, in a consistent way. Currently
our encoding method treats each word or phrase as one iso-
lated object, and does not take the context or probability
into consideration. Thus, it does not handle ambiguity well.
In fact, this is exactly the reason why our classifier failed in
some test cases. Solving ambiguity is difficult, but in some
cases it does help to infer the exact meaning of a word from
the context.

We are also implementing a compiler that, given the ex-
amples of a particular domain, generates similar questions
within small information/semantic distance away. With such
a compiler, users can easily create new vertical domains,
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Table 4: Comparison of Siri, S-Voice, LLM, Word2Vec, SVM and InfoDist on the three domains
Domain Measurements Siri S-Voice LLM Word2Vec SVM-linear SVM-tree InfoDist

Weather

Accuracy 0.470 0.230 0.850 0.820 0.880 0.920 0.950
Precision 0.344 0.176 0.750 0.727 0.862 0.838 0.912

Recall 0.667 0.364 0.818 0.727 0.758 0.939 0.939
F1-score 0.454 0.238 0.783 0.727 0.806 0.886 0.925

Maps

Accuracy 0.770 0.870 0.860 0.920 0.900 0.950 0.950
Precision 0.528 0.875 0.762 0.870 0.800 1.000 0.885

Recall 0.760 0.560 0.640 0.800 0.800 0.800 0.920
F1-score 0.623 0.683 0.696 0.833 0.800 0.889 0.902

Restaurants

Accuracy 0.670 – 0.830 0.880 0.850 0.910 0.940
Precision 0.438 – 0.679 0.759 0.750 0.846 0.862

Recall 0.778 – 0.704 0.815 0.667 0.815 0.926
F1-score 0.560 – 0.691 0.786 0.706 0.830 0.893

thus significantly speeding up the development of natural
user interface systems.

This approach depends on the hypothesis that, in most
cases, semantic distance and information distance coincide.
It is clear that small (computable approximation of) seman-
tic distance implies small information distance. On the other
hand, does small information distance imply small semantic
distance? In the QA context, from the data we have seen
(our 35 million QA pairs and [21]), we believe this is the
case. However, in other applications domains, this might
not hold. It is important to study the limitations of our
approach, as all good theories have boundaries.

9. ACKNOWLEDGEMENTS
We appreciate the annotators for testing and labeling the

compared services and the anonymous reviewers for their
comments. This work was supported in part by NSERC
Grant OGP0046506, Canada Research Chair program and
a CFI infrastructure grant, an NSERC Collaborative Grant,
Killam Prize, and an IDRC grant. We are also supported
by National Grant Fundamental Research (973 Program) of
China under Project 2014CB340304.

10. REFERENCES
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