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ABSTRACT
This paper considers an application of showing promotional wid-
gets to web users on the homepage of a major professional social
network site. The types of widgets include address book invitation,
group join, friends’ skill endorsement and so forth. The objective
is to optimize user engagement under certain business constraints.
User actions on each widget may have very different downstream
utilities, and quantification of such utilities can sometimes be quite
difficult. Since there are multiple widgets to rank when a user visits,
launching a personalized model to simply optimize user engage-
ment such as clicks is often inappropriate. In this paper we pro-
pose a scalable constrained optimization framework to solve this
problem. We consider several different types of constraints accord-
ing to the business needs for this application. We show through
both offline experiments and online A/B tests that our optimization
framework can lead to significant improvement in user engagement
while satisfying the desired set of business objectives.

1. INTRODUCTION
Users spend a significant amount of time online consuming in-

formation and connecting with others on web sites. There are sites
that are general and provide a wide variety of content like the home-
page of Yahoo!, MSN and AOL; some are more domain specific
that cater to content and information in a narrow area like sports,
finance, movies and so on; we also have social network sites like
Facebook, LinkedIn and Twitter that allow users to grow and dis-
seminate information through their networks.

The homepage of such a web site serves as a distribution chan-
nel with deep links to various other pages. Recommending the best
links personalized for each user is an important problem. Often,
this is solved by using machine learned methods that optimize the
likelihood of click (CTR) on various links of the homepage. But
in many cases, the downstream values associated with clicks are
disparate and hard to convert into a single value currency. For in-
stance, a click that helps a user connect with another user may have
different value compared to the one that sends the user to a news ar-
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ticle page. In fact, the values may even depend on the user segment.
A user who is new to a social network with very few connections
may find a new connection more valuable than reading a news ar-
ticle. A user with thousands of connections may reach a point of
diminishing returns when making a new connection. Such insights
on values (by user segments) are often obtained through various
macro studies conducted by organizations.

Shaping traffic downstream in such scenarios often entails bal-
ancing multiple competing objectives and becomes a non-trivial
task. One approach is to create multiple sections on the homepage,
each catered to a specific task. For instance, one could have a sec-
tion to recommend articles, some to show ads, some to recommend
people to connect to, and so on. This approach of slotting content is
rigid since it takes a "one size fits all" approach. Another approach
is to have business rules that decide the priorities of content (for dif-
ferent user segments). While this may help the business achieve its
objectives in terms of downstream utilities, it often provides a sub-
optimal solution in terms of driving overall homepage engagement.
A flexible framework that can simultaneously optimize metrics like
CTR while incorporating various business constraints is desirable
to mitigate inefficiencies introduced by using slotting and/or busi-
ness rules.

An ideal approach to this problem would be to associate a long-
term value to each click measured in a single currency. But this
is often difficult due to issues with attribution and long-term value
estimation. Also, a site often seeks to optimize more than one ob-
jective. For instance, a site may have multiple goals of maximiz-
ing user visit frequency by providing engaging content, increasing
advertising revenue, increasing the virality of the network by con-
necting users to each other, growing audience base by encouraging
users to invite their friends to join a site, and so on. One feasi-
ble approach is to optimize myopic objectives like CTR but subject
to some constraints that are intuitive and help in driving long-term
value the site seeks to attain. We provide a framework to solve this.
Our approach is based on formulating the problem in an optimiza-
tion framework and depends on input that is intuitive and easy to
specify from a business perspective. While similar multi-objective
optimization formulations have been proposed in various contexts
before, this is the first instance that reports results based on experi-
ments conducted on live traffic. At the time of writing, the method
was fully deployed on a large social networking site.

Our contributions are as follows. We provide a principled frame-
work to recommend content on a web site that optimizes short-term
metrics like CTR while simultaneously satisfying various business
constraints that are important to drive long-term value. We pro-
vide extensive analysis and describe our experience while deploy-
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ing such a sophisticated method on a module on the homepage of
a large social networking website (See a snapshot of the module in
Figure 1 for the module on the site). To the best of our knowledge,
this is the first time such an approach have been fully deployed on
a real application used by hundreds of millions of users. Our re-
sults clearly show that the new approach significantly outperforms
a strategy based on business rules that was being used by the site
before our work. We also describe various empirical approaches
we took to allow the optimization to work at scale.

Figure 1: A snapshot of the “address book import” widget.

The remainder of the paper is structured as follows. Section 2
introduces the problem formulation. The details of the constrained
optimization framework and various applications of whole-page
optimization are enumerated in Section 3. The online experimen-
tal setup that we used to demonstrate the utility of our approach
and the experimental results are presented in Section 4. The re-
lated references are summarized in Section 5. We summarize our
contributions and identify several future directions in Section 6.

2. PROBLEM FORMULATION
We consider the problem of maximizing user engagement (e.g.

number of clicks) while satisfying certain business constraints. Typ-
ical examples of such constraints include: the minimum number of
impressions certain items are served with, or in some cases the min-
imum number of clicks obtained by certain items. The constraints
are usually imposed because clicks on different items can lead to
different downstream utilities. For example, in a social network
site, a click on accepting to invite people in the address book to
join the social network maybe more valuable to the site than a click
on a shared update from friends. However, the CTR for the lat-
ter item might be much higher than the CTR of the former item.
Therefore, ranking items using predicted CTR alone may lead to
an undesirable downstream traffic distribution; coarse constraints
on downstream traffic volumes ensure the business requirements in
terms of value are incorporated by the serving algorithm.

2.1 Homepage Widget Relevance
We introduce our motivating application to provide background

and context. We focus on the problem of recommending person-
alized promotional widgets in the most prominent spot (shown in
Figure 1) on the homepage of a major professional networking site.
The purpose of this module is to promote some specific "channels",
increase user awareness about certain product offerings and drive
key business objectives. This module is shown to hundreds of mil-
lions of users on a weekly basis and generates significant user en-
gagement actions and downstream page views. Some examples of
the widgets include:

• Address book import: This widget directs a user to import
her address book, in order to find more contacts to connect

to, or send emails to her friends to invite them to become a
member of the network.

• Education: This widget directs the user to the education chan-
nel page (see Figure 2a) which includes schools she attended,
university rankings, field of study to explore, and so forth.
This widget is designed mainly for students to find out edu-
cation opportunities in the world for the field she is interested
in.

• Who viewed my profile: This widget (Figure 2b) directs the
user to a page which shows the list of recent visitors to the
user’s profile.

• People you may know (PYMK): This widget shows a list of
recommended persons for the user to connect to.

• Endorsements: This widget presents the user with a small set
of selected <name, skill> pairs (Figure 2c) among the user’s
connections, and the user can choose to endorse that one of
her connections possesses the specified skill.

• Profile edit: This widget shows a specific link for the user to
click and edit a certain section in her profile.

• Content-channel recommender: This widget (Figure 2d) shows
various types of content channels that the user can follow, in
order to get notifications when those channels publish new
articles.

• Three widgets (variants of address book import, PYMK and
profile edit) with modified interfaces and wording designed
for new and dormant users to on-board them.

There is only one slot to render a widget on the homepage, but
there are quite a few candidates. Different widgets have highly
varying click through rates as well as diverse downstream utilities
(the latter is quite evident from the list above). For example, the
endorsement widget has a much higher CTR than address book im-
port. However, from the business perspective, an address book im-
port action may be worth more than a click to endorse someone’s
skills. Hence, optimizing for CTR alone may serve more endorse-
ment widgets than address book imports, but this will not satisfy the
business value requirements. In this paper, we try to solve this prob-
lem by using constrained optimization which tries to maximize the
user engagement while satisfying several constraints derived from
business requirements.

Notations: Throughout the paper we always index a user by i,
an item (e.g. widget) by j, and context (e.g. time) by t. We assume
the total number of items is J . We denote the binary response of
whether the user i clicks the item j at context t as yijt, and corre-
spondingly, we let xijt represent the probability of serving item j
to user i at context t, and pijt be the probability of user i clicking
item j at context t.

2.2 CTR Prediction
Before describing how we formulate the constrained optimiza-

tion problem, let us first describe a formulation of the model to
predict the CTR, which is an essential component of the frame-
work. Given user i, item j, and context t, we need to build a model
to predict the probability of the user clicking the item at the con-
text, which is denoted as pijt. This has been a very popular topic
in recent literature such as [1, 2, 7, 9, 10]. Since CTR prediction
is not the main focus of this paper and is an independent compo-
nent, without loss of generality, in this section we present a sim-
ple feature-based per-item logistic regression model. Other more
advanced CTR prediction approaches can be applied to our con-
strained optimization framework without any difficulties.
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(a) Education
(b) Who viewed my profile

(c) Endorsements
(d) Content-channel recommender

Figure 2: Snapshots of various widgets

Denote the entire feature set as zijt, which includes all the user,
item and context features, and interactions among these features if
necessary. Also, denote the feature set for user i only as fi. Note
that fi ⊆ zijt. Given a binary response yijt, it is natural to assume
a Bernoulli model

yijt ∼ Bernoulli(pijt), (1)

where pijt can be modeled with a logistic link function

log(
pijt

1− pijt
) = (1,zijt)

′β + (1,fi)
′δj , (2)

where β is the set of the global coefficients, and δj for all j =
1 · · · J are the per-item coefficients. Both β and δj can have Gaus-
sian priors such as

β ∼ N(0, σ2
βI), δj ∼ N(0, σ2

δI),∀j = 1 · · · J. (3)

Note that the term (1,zijt)
′β is purely feature-based, while (1,fi)

′δj
is a per-item component. If there are very few observations for an
item j, due to the prior shrinkage, δj will be very close to 0. On
the other hand, when an item j has a lot of data, δj will become a
meaningful set of coefficients that represent both the residual item-
specific popularity and item affinity to the user features.

The posterior distribution ofβ and δj can be obtained via Laplace
approximation or variational approximation [8]. Denote the pos-
terior mean of β and δj as β̂ and δ̂j respectively, the predicted
probability of user i clicking on item j at context t becomes

p̂ijt =
1

1 + exp(−(1,zijt)′β̂ − (1,fi)′δ̂j)
. (4)

The estimated click probability p̂ijt is used as input to our con-
strained optimization problem in later sections.

2.3 Optimizing CTR with Constraints
While we have established that optimizing click through rate for

the homepage widget module is not the best thing to do, it is usually
also difficult to directly measure and calibrate downstream utilities
and express them in a single currency for the different widgets. In
our application, before we launched the relevance model, there was
already a baseline system that serves widgets using a set of hand-
tuned rules: in a high-level they give a global priority ordering of
widgets to serve to the users. As a result, besides improving per-
formance by launching models to maximize CTR, we also need to

make sure we do not change the status quo impression and click
distribution for each widget significantly. We formulate such busi-
ness needs as constraints in the optimization.

It is worth noting that such scenarios would usually occur any
time a relevance model tries to replace an existing system based
on rules. The inability of expressing the utility of various down-
stream actions in one currency, is also common for any application
on a website that contributes to multiple downstream funnels. Ini-
tially, we also attempted to elicit values for different widgets on
a relative scale by interacting with product managers and business
executives. We found it was easier to specify utilities in terms of
downstream traffic composition instead of relative value.

2.3.1 Optimization via Relative Utilities
Our first formulation tries to solve a global per-widget relative

utility given a pre-specified impression allocation distribution. Such
pre-specified allocation of impressions per widget is obtained from
the existing baseline system, such that we do not generate any neg-
ative downstream impact if relevance model is launched. Let Ij be
the widget-specific impression constraint, specifying the minimum
number of impressions that have to be allocated to widget j. For
the widget module, Ij can be simply obtained via the number of
impressions allocated to widget j in the baseline system with some
tolerance (e.g., the minimum threshold can be 95% of the current
number of impressions that item j is receiving). Also, say wj is
the relative downstream utility for widget j if it gets clicked. If we
take a soft max approach, the serving probability xijt for user i and
widget j at context t becomes:

xijt =
wj p̂ijtP
j wj p̂ijt

. (5)

The relative item-specific utilitieswj are hence obtained by solv-
ing the following equations:

X
i,t

xijt = Ij , ∀j ∈ {1, . . . , J},X
j∈J

wj = 1, wj ≥ 0,∀j ∈ {1, . . . , J}.

(6)
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Note that the constraint
P
j∈J wj = 1 is to make sure the so-

lution of such formulation is unique, as long as
P
j

Ij =
P
i,t

1. wj

can be considered as the relative downstream utility if item j gets
clicked.

2.3.2 Click Optimization with Impression Constraints
A better alternative would be to directly solve for personalized

serving distribution variables xijt, for all users i, widgets j, and
contexts t, where the objective is to maximize the total number of
clicks, while satisfying the desired impression distribution. The
optimization problem can thus be formulated as:

min
xijt

−
X
i,j,t

xijtp̂ijt,

s.t.
X
i,t

xijt ≥ Ij ,∀j, xijt ≥ 0,∀i, j, t,
X
j

xijt = 1,∀i, t.

(7)

Here,
P
i,j,t xijtp̂ijt is the expected total number of clicks, which

represents the user engagement that we want to optimize for. The
other two constraints xijt ≥ 0,∀i, j, t, and

P
j xijt = 1 are to

make sure xijt can represent the probability of serving item j to
user i at context t.

Note that for the scale of websites (including our application of
homepage widget relevance) which often have hundreds of mil-
lions or even billions of users, solving xijt for every user through
this primal formulation is infeasible. Also, new users keep coming
to the site, which requires us to solve xijt in real time with very
low latency. Therefore, we follow [3] to use Lagrangian duality to
solve for a small number of user-independent dual variables (one
for each user-independent constraint). Given the solution to the
dual, the primal variables xijt become independent, and it is com-
putationally much cheaper to solve the optimal xijt using the dual
variables. The mathematical details will be described in Section 3.

Due to the fact that the derivatives of Lagrangian vanish for lin-
ear programs [5], we add a quadratic term to the optimization func-
tion so that it becomes strongly convex:

min
xijt

γ

2

X
i,j,t

(xijt − qijt)2 −
X
i,j,t

xijtp̂ijt,

s.t.
X
i,t

xijt ≥ Ij ,∀j, xijt ≥ 0,∀i, j, t,
X
j

xijt = 1,∀i, t.

(8)

where qijt is a pre-determined serving distribution, and γ is a
constant. Note that in this formulation we penalize the serving
scheme for deviations from the pre-determined scheme q, while the
amount of penalization is controlled by γ, which can be made arbi-
trarily small to get closer to the original formulation. In this paper,
we set qijt as a uniform (random) serving scheme, i.e. qijt = 1/J
for all i and t. The value of γ is set to be 0.1 such that this quadratic
term does not have a big impact on the loss function while main-
taining well-behaved strong convexity. We study the impact of γ in
Section 4.5.

2.4 Adding Click Constraints
While the previous formulation achieves a desired impression

distribution, the primary value for several widgets comes from the
user interactions such as clicks. For example, if an item is an
address-book import to send emails to invite friends to join the
website, the email invitations are sent out after the user chooses to
click on the import button. Hence, the critical business constraint
is often on the clicks or actions on a particular widget, and not on
impressions.

Therefore, if we would like to consider the tradeoff between user
engagement such as clicks with the click-triggered downstream util-
ities, putting constraints on the number of clicks that each item
receives can potentially provide better trade-off than using impres-
sion constraints.

Although directly replacing impression constraints with click con-
straints might sound reasonable, some widgets provide value through
pure impressions as well. For instance, the “education” widget,
which promotes a new product which might be unknown to many
users, could achieve product awareness through just an impression.
Therefore, we might have to use a mixture of impression and click
constraints to satisfy the required business objectives. In our ap-
plication, the impression constraints used in conjunction with click
constraints were sometimes less tight than the standalone impres-
sion constraints since in the former case, there was also some sup-
port from the click constraint.

With the click constraints, the optimization problem now be-
comes

min
xijt

γ

2

X
i,j,t

(xijt − qijt)2 −
X
i,j,t

xijtp̂ijt

s.t.
X
i,t

xijt ≥ I∗j ,
X
i,t

xijtp̂ijt ≥ Cj ,∀j,

xijt ≥ 0, ∀i, j, t,
X
j

xijt = 1,∀i, t. (9)

where I∗j is the potentially relaxed version of the impression con-
straint for each widget j, and Cj is the constraint on the number of
clicks.

We note that the formulations discussed in this section can be
easily extended to many other use cases: For example, in some sce-
nario we might want to put constraints on the aggregated number
of impressions received by a group of widgets. Another use case
is we can try to incorporate user’s negative actions such as closing
the widget, which also requires us to have a close action prediction
model.

3. SCALABLE CONSTRAINED OPTIMIZA-
TION FRAMEWORK

In this section, we describe our scalable constrained optimization
framework to solve the various formulations introduced in Section
2. We also describe an example of the actual online serving infras-
tructure for the homepage widget relevance in Section 3.3.

3.1 Solving Global Relative Utilities
We first describe the approach to obtain the solution of the equa-

tions in Section 2.3.1. Letw = (w1, . . . , wJ−1), Fj(w) =
P
i,t

xijt−

Ij , and F (w) = {Fj(w) = 0, j = 1, · · · J−1}. Equation (6) can
be rewritten as a J − 1 nonlinear system with linear constraints on
w, i.e.,

F (w1, . . . , wJ−1) = 0

wj ∈ [0, 1], ∀j ∈ {1, . . . , J − 1} and
J−1X
j=1

wj ≤ 1.

(10)

To solve this efficiently, we introduce the sum of squares merit
function for F , defined by

m(w) =
1

2
||F (w)||2 =

1

2

J−1X
j=1

F 2
j (w) (11)
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Any solution w∗ of Equation (10) minimizes the merit function
such that m(w∗) = 0. Minimizing m(w) with the linear con-
straints on w can be efficiently solved using Newton method with
adaptive barrier algorithm to enforce constraints. Details can be
found in [5].

For our experiments, we first obtain a vector w̄ by solving Equa-
tion (10) assuming p̂ijt = p̄j , with p̄j being the average CTR per
widget. It then becomes a linear system that is very easy to solve.
Then, we initialize w by w̄, and solve the actual non-linear sys-
tem in Equation (10) using Newton method with adaptive barrier
algorithm. For our application it took about 30 minutes to obtain
w that satisfies Equation (10) for half a million samples on a single
machine.

3.2 Constrained optimization
We now consider solving the constrained optimization problem

introduced in Section 2.3 and 2.4. Without loss of generality, we
will focus on solving the constrained optimization in (9). The same
approach can be applied to others in Section 2.3 and 2.4 trivially.

Finding a scalable solution to (9) is actually quite challenging
due to two reasons: (a). The unknown primal variables xijt are
the serving distributions for all the users at any contexts. For web
applications with hundreds of millions of users, solving all xijt
in a scalable way is non-trivial. (b). There are new users who
continuously come into the system and do not exist in the training
data. Hence, an approach to solve xijt for these users on the fly is
required. To address these challenges, we refer to [3] for a practical
and scalable solution.

3.2.1 Scalable Solution via Lagrangian Duality
The Lagrangian function of the primal problem in (9) is

Λ(x,µ, ξ,ν, δ) =
γ

2

X
i,j,t

||xijt − qijt||2 −
X
i,j,t

xijtp̂ijt

−
X
j

µj(
X
i,t

xijt − I∗j )

−
X
j

ξj(
X
i,t

xijtp̂ijt − Cj)

−
X
i,j,t

δijtxijt −
X
i,t

νit(
X
j

xijt − 1),

where µj ≥ 0, ξj ≥ 0, for all j, and δi,j,t ≥ 0 for all i, j and t.
The dual variables µ, ξ, ν, and δ are introduced to make sure the
constraints are satisfied. By letting ∂Λ(x,µ,ξ,ν,δ)

∂xi,j,t
= 0, we obtain

xijt =
cijt + νit + δijt

γ
, (12)

where

cijt = γqijt + µj + (1 + ξj)p̂ijt. (13)

Hence, as long as all dual variablesµ, ξ, ν, and δ are known, the
serving plan xijt for any i, j, and t can be inferred using Equation
(12). We also note that with qijt and p̂ijt known, cijt only depends
on µj and ξj , where µ and ξ are J dimensional vectors, with J
being the total number of items. However, νit and δijt depend
on user i and context t, and it can become quite high-dimensional
when there are many users in the system. [3] provided an algorithm
with theoretical proof that significantly simplifies the complexity,
such that xijt can be directly obtained on the fly as long as µ and ξ
are known. Given the user i, context t, as well as the optimal dual
plan µ and ξ, the scalable algorithm to obtain the optimal solution
of xijt for all j = 1, · · · , J can be described in Algorithm 1, with
the detailed proof in [3].

Algorithm 1 Fast fitting of primal given the dual

INPUT: User i, context t, a list of items j = 1, · · · , J , dual
variables µ and ξ, pre-determined serving plan qijt for all j, and
constant γ.
Obtain p̂ijt for all the items j = 1, · · · , J using the CTR pre-
diction model.
Let cijt = γqijt + µj + (1 + ξj)p̂ijt.
Order the items by cijt such as ci1t ≥ ci2t ≥ ... ≥ ciJt.
Let xijt = 0 for all j and a = γ.
for k=1 to J do

if cikt + (a− cikt)/k ≤ 0, then
k = k − 1
break;

else
a = a− cikt

end if
end for
Let νit = a/k and set xijt = (cijt + νit)/γ, for j = 1, · · · , k.

3.2.2 Approximations for Solving the Dual
In this section, we describe our approach to obtain the opti-

mal solutions to the J dimensional dual vectors µ and ξ for the
quadratic programming constrained optimization problems intro-
duced in Section 2.3 and 2.4. In Section 3.2.1, we have already
shown that as long as these two dual vectors are known, the primal
xijt can be solved in a very scalable way using Algorithm 1.

Note that using the entire data set containing all users to solve
the dual is still not scalable, and has the same complexity as solv-
ing all the primal variables. However, if J is small (e.g. 10 or 100),
certain approximations can be made to solve the dual variables in a
more scalable fashion. [3] suggested two approaches: (a). Use user
features such as profile features or past interactions with the items
to build clusters, and use a single xljt to represent all users’ serving
probabilities in cluster l for item j and context t. The dual can be
solved with the cluster-wise primal variables, which is in a much
smaller scale, and after the dual is obtained, we can still solve the
personalized serving plans using Algorithm 1. (b). Randomly sam-
ple a small percentage of data, and solve the quadratic programing
problem for the sampled data. After the dual variables are obtained,
the serving plans for all the users can be easily solved. Comparing
the two approaches, [3] shows that the random sampling empiri-
cally performs slightly better than the clustering approach.

In this paper, we adopt the random sampling approach, but apply
a simple wrapper around it using Map-Reduce to achieve better per-
formance. For a data set with N observations, we randomly sample
K number of subsets, with each subset having M samples. The
total number of primal variables xijt thus becomes M ∗ J . For
each subset k, we solve the quadratic programming to obtain op-
timal duals µ(k) and ξ(k), and the final estimates of µ̂ and ξ̂ are:
µ̂ =

P
k

µ(k)/K, and ξ̂ =
P
k

ξ(k)/K. For our experiments where

J = 5, we use K = 100 and M = 300 so that each quadratic
programming solver can finish within 10-15 minutes. We have ob-
served that this parameter setting works pretty well in general in
terms of satisfying constraints except for a few cases. Details are
described in Section 4.

It is worthwhile to point out that the random sampling needs to
be done at the observation level instead of the user level, since some
users can come to the site much more frequently than other users.

We also note that it is actually possible to apply recent devel-
opments of large-scale convex optimization technologies such as
Alternating Direction Method of Multipliers (ADMM) [4] to solve
the dual using all the data, which is one of our future work. The
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scalable computation of primal serving plans given the dual is still
needed for the new users who come to the system continuously.

3.3 Online Serving Infrastructure
In this section, we describe an example of the online serving in-

frastructure for the problems described in Section 2. For simplicity
we assume there is only a single slot to show the recommended
items on the web page. The system consists of three key compo-
nents:

• CTR prediction model training: An offline logistic regres-
sion model training process that regularly kicks off (e.g. weekly).
Since the data can include hundreds of millions of samples,
we adopt the large-scale logistic regression algorithms such
as ADMM [4] and use Map-Reduce for divide-and-conquer
and obtain the consensus across all the partitions.

• Optimization solver: Given the predicted probabilities of
clicks for all the users, items and contexts, we either solve the
global downstream utilities using the approach described in
Section 3.1, or solve the dual variables from the constrained
optimization using the Map-Reduce approach described in
Section 3.2.2.

• Online scoring. When a user i comes to the website at a
certain context t, a request is generated to the backend server
to fetch the recommended item to show to the user. The sys-
tem computes on the fly the predicted CTR for each eligible
item based on the CTR prediction model, and also the serv-
ing plan using either Equation (5) for global relative utilities,
or Algorithm 1 given the dual variables for constrained opti-
mization problems in Section 2.3 and 2.4. After the serving
probabilities xijt for all j ∈ J are obtained, we draw a ran-
dom sample from the multinomial distribution of the serving
plan and serve the sampled item to the user.

4. EXPERIMENTS
In this section we show the offline and online experimental re-

sults with data collected from a major professional social network
website. We first introduce our application and experimental en-
vironment in Section 4.1, and describe our data for model train-
ing and solving dual variables for constrained optimization in Sec-
tion 4.2. In Section 4.3 we show the offline experimental results
of the per-item CTR prediction models, and constrained optimiza-
tion performance through replay. The online experiments of the
constrained optimization approaches in terms of violation of con-
straints as well as the CTR performance are shown in Section 4.4.
Finally in Section 4.5 we show some insights of the constrained
optimization, by visualizing the effects for various values of γ and
different types of constraints.

4.1 Homepage Widget Module
As mentioned in Section 2, the widgets module runs on a major

professional social network with hundreds of million users world-
wide, and it occupies the most prominent slot on the desktop home-
page. The widget slot has tens of millions impressions on a weekly
basis, and the widgets shown therein has a big impact and drives a
lot of downstream user actions and page views. There are currently
around 10 different widget candidates to show to the user — for the
complete list, check Section 2.

For business privacy concerns, we shuffle and anonymize the
widget names while reporting experimental results. For different
segments of users, the candidate pool of widgets are different, i.e.,
not every widget is eligible for each user. For active users, there are
5 widgets (denoted as W1 to W5) in the candidate pool. The active
users are defined to be the ones who have visited the website more

than once in the last 30 days. For the other users who are either
dormant or new to the site, there are 3 more on-boarding widgets
that are eligible; the number of eligible widgets hence becomes 8
(denoted as W1 to W8).

Before we introduced relevance models into the homepage wid-
get module, it was running a set of hand-tuned rules to determine
which widget to show to each user. The rules were based on a non-
personalized priority ordering among the widgets. For example,
since it is believed that address book imports have highest business
values among all the widgets, it was often picked as the first choice
to show to users, regardless of their profile features, or whether
they have interacted with this widget in the past. The widget serv-
ing system also has two important behaviors as listed below:

• A cool-off system. In order to avoid user fatigue, each wid-
get has an impression cap per user in a certain time period.
After the impression cap is reached for a particular user, the
widget is made ineligible (“cooled off”) for that user within
the time period. Such a rule ensures that we do not keep
showing the same widget to a user, regardless of how many
times she has refreshed the page. The widget slot itself also
had a similar cool-off (larger impression cap than the ones
for individual widgets) to avoid over-exposing a user to the
entire widget inventory. In general, the cool-off system pro-
vides a better user experience and allows users to have a more
diversified widget exposure.

• Handling null content. We note that the widget serving sys-
tem only controls which widget to serve to the user; it does
not control what content to serve within each widget, if a
widget is chosen. Each widget belongs to an independent ser-
vice that determines the user interface and content to serve to
the user. For some widgets, the requests to retrieve content
are sometimes unsuccessful, which can be either due to la-
tency timeout of the concerned service, or the fact that there
is no appropriate content to show to this user for that wid-
get type. In this case, even though the widget serving system
may decide to serve this widget, there is nothing to show.
Hence the system automatically falls back to not showing
any widget for this user.

Our online serving system with the relevance model and con-
strained optimization is described in Section 3.3. It simply replaces
the original hand-tuned rules in the system for the widget serving,
but obeys the impression and click constraints obtained from the
original system’s allocation plans. It also inherits the cool-off sys-
tem and the approach to handle null content. Note that these two
system behaviors are not considered in our constrained optimiza-
tion formulation, and hence has resulted in some violations of con-
straints in our online experiments. Embedding such practical sys-
tem designs into our constrained optimization framework is quite
challenging, but is an interesting future work.

Across our experiments we mainly consider the following ap-
proaches:

• Control: The original system which serves widgets using a
set of manually-tuned business rules. It serves as the baseline
of our online experiments, and also defines the desired im-
pression and click constraints for our constrained optimiza-
tion approaches.

• UW-IMP: The approach to learn global downstream utility
weights given the impression constraints. The formulation is
described in Section 2.3.1.

• QP-IMP: The quadratic programming formulation with im-
pression constraints only. See Section 2.3.2 for details.
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W1 W2 W3 W4 W5

0.693 0.703 0.706 0.798 0.721

Table 1: AUC of the CTR prediction model for various widgets.

• QP-CLK: The quadratic programming formulation with im-
pression constraints (can be relaxed) and click constraints.
See Section 2.4 for details.

4.2 Our Data
For the purpose of training our CTR prediction model and solv-

ing the constrained optimization problems, we collected widget im-
pressions and clicks data during the first 2 weeks of February, 2014.
For evaluating the performance of our CTR prediction model as
well as offline replay to make sure the constraints can be satisfied,
we used the third week of February as the test period.

For training the CTR prediction model, directly using the data
collected from the original system with hand-tuned rules would in-
troduce significant serving bias. Therefore, for a small percent-
age of traffic, we apply the random serving scheme that randomly
picks a widget from the candidate set for each user visit, while still
respecting the cool-off rules. The data collected from such serv-
ing scheme is much more unbiased than the data collected from the
baseline system. Our final model training and test data both contain
a few million samples.

The features we used for the CTR prediction model include con-
text features such as the time of day and day of week, user’s past
interactions with each widget for the last 30 days (e.g. impressions,
clicks, and closes), the user’s activities across the website (e.g. past
visits and interactions on different modules and channels), and the
user profile features such as age, gender, industry, skills, and so
forth. Since this application only has a few items, each item j has
a significant amount of data to learn the per-item coefficients δj –
hence no item-specific features are needed.

For solving the quadratic programming problems for the con-
strained optimization, we used a random sample of the data gener-
ated from the hand-tuned baseline serving model. The underlying
reason that we did not use data collected from the random serv-
ing scheme for this purpose is because we have observed that the
user behavior such as number of page views in random bucket is
very different from that in the actual serving bucket. Hence solving
the quadratic programming using the user visit information from
the baseline model provides better precision in terms of carving
out personalized serving plans for each user while satisfying global
impression and click constraints.

4.3 Offline Experiments
We first describe the performance of the CTR prediction model

on a per-widget basis in Section 4.3.1, and evaluate the stability of
our proposed Map-Reduce-based dual solver in Section 4.3.2. We
show the satisfaction of the impression constraints for all the con-
strained optimization approaches in Section 4.3.3. For all offline
experiments we limit our scope to the active user segment where 5
candidate widgets W1 to W5 are considered.

4.3.1 CTR Prediction Model Performance
We evaluate the performance of the CTR prediction model using

the data generated from the random serving scheme during the test
period. The test AUC of for all the 5 widgets can be seen in Table
1). In general the performances across all the widgets are reason-
able, although there are some differences of the AUC for different
widgets, e.g. the AUC for W1 (0.693) is significantly worse than
that for W4 (0.798). Since the CTR prediction is not the focus of
this paper, and the performance can often be improved by adding
more useful features, we do not discuss this further here.

4.3.2 Evaluation of Solving Dual
In this subsection, we evaluate the stability of our proposed Map-

Reduce based algorithm for solving the dual described in Section
3.2.2. The objective here is to make sure that using M = 300 is
good enough, where 5×M indicates the number of primal variables
xijt to solve along with the dual. We note that the amount of time
to solve the quadratic programming increases exponentially as the
size of M grows, for example, for solving QP-IMP and K = 100,
when M = 300 it usually takes 10-15 minutes to solve the dual,
while for M = 500 it can take up to 50 minutes. Hence it is
important to strike the right balance between the accuracy and the
computational efficiency.

We evaluate the choice ofM using the following approach given
K = 100 for QP-IMP: For each value of M (up to 500), we run
the algorithm described in Section 3.2.2 for 100 times, and observe
the standard deviation for the dual variable vector µ. The result is
shown in Figure 3. It is clearly seen that the duals start to converge
after M = 200. We also observe that the differences between the
duals obtained from M = 300 and M = 500 are extremely small.
Hence, M = 300 is a good choice for this application.

Figure 3: QP-IMP: The standard deviation of dual vector µ by
running the dual solving algorithm 100 times, for different values
of M and K = 100.

4.3.3 Offline Replay of Impression Constraints
Given the CTR prediction model and the dual variables, we apply

Algorithm 1 to obtain the serving plan for each user in test data,
which contains all the users who saw any widget during the test
period. The serving probabilities xijt for each user i, widget j
and context t are then aggregated to the global expected number
of impressions per widget, and we test if they match the desired
impression allocation, which is simply Ij/

P
j

Ij for each item j.

In Table 2 we show the replay performance. Both UW-IMP and
QP-IMP were able to precisely match the desired allocation of im-
pressions. In QP-CLK, click constraints were added to ensure that
each widget received enough number of clicks – the impression
constraints for high-engagement widgets (W1 and W5) were also
discarded, since our business partners felt that it was not necessary
as long as those click constraints were satisfied. From the table
it is clear that QP-CLK was also able to satisfy all the impression
constraints, and it was interesting to observe the effect of adding
click constraints was to move some traffic from the high-CTR wid-
get W1 to the low-CTR widget W4, so that W4 can receive more
clicks. We will provide more insights on why this is happening in
Section 4.4 and 4.5
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Widget impression %
Widget Desired UW-IMP QP-IMP QP-CLK
W1 20%(-) 20% 20% 16%
W2 8% 8% 8% 8%
W3 7% 7% 7% 7%
W4 52% 52% 52% 55%
W5 13%(-) 13% 13% 14%

Table 2: Impression distribution achieved by UW-IMP, QP-IMP
and QP-CLK in offline replay. In Desired column, 20%(-) means
the desired impression% for W1 is 20%, but for QP-CLK, it is re-
moved. Same for 13%(-) for W5.

4.4 Online Experiments
We have run two online A/B test experiments on different seg-

ments of users during different time periods. The first experiment
was run from Mar 2, 2014 to Mar 11, 2014, with Control running
with the majority of the traffic, and UW-IMP, QP-IMP and QP-
CLK being the treatments. This experiment was targeted upon the
active user segment, hence for each user there are 5 widget candi-
dates (denoted as W1 to W5). The results are discussed in Section
4.4.1.

In the second experiment that was run in May, 2014, we had to
carve out a constrained optimization solution for a group of 3 on-
boarding widgets specifically designed for relatively inactive users
(i.e., users who visited the website once or less in the last 30 days).
The business requirement was to guarantee a certain number of im-
pressions and clicks for the entire group of widgets (denoted as
W6, W7 and W8), without any particular specification of the inter-
nal distribution. The original set of widgets (W1 to W5) for active
users were also eligible for display, but did not have any constraints
on them since they were not designed for such inactive users. We
show the experimental results in Section 4.4.2.

4.4.1 Experiments on Active User Segments
In Table 3, we show the actual impression distribution achieved

by Control, UW-IMP, QP-IMP and QP-CLK in online A/B tests
for the active user segment. And in Table 4 we show the actual
allocation of clicks for all these approaches. We also show the
lift percentage in terms of total number of clicks received for each
widget, and the CTR of each widget. We note that our ultimate
goal is to maximize user engagement (i.e. CTR) while making sure
the total number of clicks received by each widget can satisfy the
constraints as much as possible. By reading the results carefully,
we observe the following:

• Overall Engagement. QP-CLK performed the best in terms
of the CTR (51.3% lift over the baseline), and it was able
to achieve very big CTR lifts across the widgets with high
percentages of impressions and clicks (W1, W4 and W5).
QP-IMP not only performed worse than QP-CLK in terms of
overall CTR, it also dropped the CTR of W4 by 13%. Con-
sidering W4 is an important widget (desired impression per-
centage 52%), this is in fact a major problem for QP-IMP.
Although UW-IMP gave more uniform CTR lifts across all
widgets, it performed 15% worse than QP-CLK in terms of
global CTR.

• Impression constraints. We note that UW-IMP performed
better than QP-IMP in terms of satisfying the impression
constraints. This is a bit surprising to us, and it happened
mainly due to two reasons: (a) Our Map-Reduce solution for
the dual is only an approximation, while the solution for UW-
IMP is accurate. (b). The cool-off system has introduced a
fair amount of noise that the offline quadratic programming
solver has not considered.

• Click constraints. The click constraints for QP-CLK had
more-or-less been satisfied, except for W2 (-10%) and W3 (-

Widget impression %
Widget Desired UW-IMP QP-IMP QP-CLK
W1 20%(-) 20.2% 12.8% 13.5%
W2 8% 5.1% 5.5% 6.1%
W3 7% 3.1% 2.6% 2.4%
W4 52% 57.4% 69.2% 63.6%
W5 13%(-) 14.2% 9.9% 14.4%

Table 3: Impression distribution achieved by UW-IMP, QP-IMP
and QP-CLK in online experiments. In Desired column, 20%(-)
means the desired impression% for W1 is 20%, but for QP-CLK, it
is removed. Same for 13%(-) for W5.

61%). Also note that the impression constraints of these two
widgets had never been met for all three approaches: UW-
IMP, QP-IMP and QP-CLK. This was actually due to the fact
that these two widgets often return null results in an unpre-
dictable fashion. Since our offline quadratic programming
did not consider such scenarios, the constraints for these two
widgets often get violated in practice.

One thing that we noticed after launching the QP-IMP exper-
iment online, was that the low-CTR widget W4 was having sig-
nificantly lower CTR than Control (-13%), while being allocated
comparable number of impressions. We hypothesized that QP-IMP
was mainly showing W4 to less engaged users, while for highly-
engaged users it showed more W5 (a high-CTR widget) instead of
W4. By doing this, QP-IMP was able to maximize overall engage-
ment while satisfying the impression constraints. To validate our
hypothesis, we segmented our users based on overall widget CTR
for the months of January and February in 2014, and observed the
impression ratio of W5 to W4 for each segment under various ap-
proaches.

Figure 4: Impression ratio ofW5 toW4 for different user segments,
for the various models.

Our findings (as shown in Figure 4) validated our hypothesis.
UM-IMP showed the same impression ratio across all segments,
thus completely missing out on the opportunity to increase engage-
ment. QP-IMP exploited the opportunity to the fullest, and tried to
serve much less W4 for the highly engaged users. QP-CLK, with
the addition of the appropriate click constraint, striked the right
balance between maximizing engagement and ensuring enough en-
gaged users see W4 for satisfying the click constraints.

4.4.2 Group Constraints
In a separate experiment targeting the new and dormant users,

we needed to design a constrained optimization based on the busi-
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Widget click distribution %
Click % Click lift % CTR lift %

Widget Control UW-IMP QP-IMP QP-CLK UW-IMP QP-IMP QP-CLK UW-IMP QP-IMP QP-CLK
Overall - - - - 46.3% 54.8% 63.4% 36.6% 43.8% 51.3%
W1 49.4% 38.1% 38.1% 29.2% 13.0% 19.0% -3.0% -8.0% 52.0% 16.0%
W2 2.7% 2.4% 2.0% 1.5% 28.0% 17.0% -10.0% 35.0% 16.0% -20.0%
W3 0.8% 0.5% 0.2% 0.2% -13.0% -59.0% -61.0% 41.0% -20.0% -20.0%
W4 27.3% 21.1% 18.2% 22.5% 13.0% 3.0% 35.0% 16.0% -13.0% 24.0%
W5 19.8% 37.9% 41.5% 46.6% 181.0% 225.0% 285.0% 50.0% 148.0% 102.0%

Table 4: The click allocation distribution of Control, UW-IMP, QP-IMP, and QP-CLK in the online A/B test for the active user segment. It
also shows the lift percentage in terms of number of clicks and CTR for each approach versus control.

Widget impression %
Widget Desired Control QP-GRP-IMP
W1 - 1.3% 4.6%
W2 - 0.1% 0.2%
W3 - 1.5% 0.2%
W4 - 4.3% 1.3%
W5 - 0.2% 3.2%

W6 −W8 90.0% 88.9% 89.8%
W6 - 66.3% 55.4%
W7 - 14.5% 21.2%
W8 - 8.1% 13.2%

Table 5: Impression distribution achieved by QP-GRP-IMP in on-
line experiments.

ness requirement to guarantee a certain number of impressions and
clicks for a group of 3 specifically-designed on-boarding widgets
(W6 to W8). The original 5 widgets for the active users were still
eligible, but did not have any constraints on them since they were
not designed for such segment of users. For this experiment, we
simply extended our constrained optimization framework to handle
group impression and group click constraints (and a mix of them
as well). The exact formulation we used can be mathematically
expressed as:

min
xijt

γ

2

X
i,j,t

||xijt − qijt||2 −
X
i,j,t

xijtp̂ijt,

s.t.
X

i,t,j∈G

xijt ≥ IG, ∀G, xijt ≥ 0,∀i, j, t,

X
j

xijt = 1,∀i, t. (14)

where G denotes the group of widgets {W6,W7,W8}. We de-
note this approach as QP-GRP-IMP. The only constraint in this ex-
periment was that the widget group G received at least 90% of the
overall widget impressions for this user segment. Table 5 shows
that QP-GRP-IMP was able to satisfy this constraint well, and Ta-
ble 6 shows that QP-GRP-IMP had generated almost uniformly
significant lifts for both the number of clicks and CTR across all
widget groups.

Comparing this experiment with the active user one in Section
4.4.1, we observed that this experiment performed much better in
terms of both satisfying the constraints and matching the online
results with offline replay. We believe it is because inactive users
visited the site much less frequently, and hence the widget cool-off
rules were rarely activated. As a result, the online serving condition
became very similar to our quadratic programming setup.

4.5 Analysis of Decision Boundaries
While the method to convert the predicted click probabilities into

a serving probability distribution is dependent on the optimal dual
weights, it is interesting to visualize this transformation, as we vary
different parameters in the system. This also helps us better under-

Widget click distribution %
Widget Old % New % Click lift % CTR lift %
Overall - - 29.1% 38.3%
W1 −W5 10.9% 15.3% 82.3% 51.8%
W6 −W8 89.1% 84.7% 44.0% 31.8%

W6 73.2% 66.2% 18.6% 51.5%
W7 9.6% 9.8% 33.2% -2.3%
W8 6.3% 8.7% 82.8% 14.3%

Table 6: Click distribution achieved by QP-GRP-IMP in online ex-
periments. It also shows the lift in terms of total number of clicks
and CTR for each widget.

stand what type of users are being served particular widgets, and
how much diversity exists in our serving scheme.

Since visualizing a multi-dimensional serving distribution is dif-
ficult, we simplify the problem to a 2-widget system that only in-
cludes the low-CTR widget W4 and the high CTR widget W5, and
show the effects with variations of constraints and parameters.

Figure 5 shows the probability of servingW4 for different values
of the predicted CTR pair <p̂W4 , p̂W5>. In the top row, we show
for QP-CLK how the serving probability varies as we change γ.
As this parameter shrinks, the serving distribution becomes more
deterministic, as seen in Figure 5a (γ = 0.001). For larger values
of γ, we are able to obtain more randomized serving schemes with
increased user-level widget diversity.

We also try to understand how the dual to primal transformation
changes, as we exclude some of the constraints from QP-CLK with
γ = 0.1. The decision boundaries of original QP-CLK with both
impression and click constraints can be seen in Figure 5b. The un-
constrained system (Figure 5f) rarely shows W4, since the CTR of
W5 is much greater than W4. The impression constraint only pro-
vides a small boost to the serving probability ofW4, while applying
the click constraint provides a much larger boost (Figure 5e and 5d
respectively).

5. RELATED WORK
There is rich literature on methods to recommend content to

users on web portals to maximize a one dimensional short-term
metric like CTR [1, 7, 9, 10]. But little work have been done to
extend the setting to multi-objective optimization except for [3].
Our current work uses the theoretical work proposed in that paper.
However, while [3] provides a rigorous empirical analysis based on
offline analysis on data in the context of Yahoo! front page, it did
not report on online experiments run on live traffic. In this paper,
we provide extensive analysis (both offline and online) on a new
application for a social network site. To the best of our knowledge,
this is the first such case study that presents results obtained by de-
ploying the multi-objective optimization framework on a large real
application. We believe this would encourage many more applica-
tions to adopt such a methodology in the future.

We also note that our framework is different from the compu-
tational advertising problem in [6] where an advertiser specifies a
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(a) QP-CLK, γ = 0.001 (b) QP-CLK, γ = 0.1 (c) QP-CLK, γ = 1.0

(d) Click constraint, γ = 0.1 (e) Impression constraint, γ = 0.1 (f) No constraint, γ = 0.1

Figure 5: Decision boundaries

bid, which is the amount she is willing to pay when a user performs
a positive action on the ad. Since the bids are all in the same cur-
rency, it is easy to derive the value of an action on ads and rank.
In our scenario, we do not have a bid on various actions. The opti-
mization framework used can be thought of as a way to elicit such
utilities through a series of overall constraints obtained through var-
ious business considerations.

6. CONCLUSION
In this paper we proposed a scalable constrained optimization

framework to optimize user engagement under certain business con-
straints, for the specific application of showing promotional wid-
gets to web users on the homepage of a major professional social
network site. Several different types of constraints according to
the business needs are considered and tested in both offline ex-
periments and online A/B tests. The proposed system has signif-
icantly improved over the original baseline with hand-tuned rules,
and hence has been launched to serve full traffic in production for
the web site. Our framework has provided great flexibility in spec-
ifying the business needs that the widget module has to deliver.
The ease with which the ever-changing business needs can be ex-
pressed, has resulted in timely boost to growth, content and other
facets of the professional network.

For future work, we plan to solve for the dual with a much larger
data sample for the quadratic program, using large-scale convex op-
timization algorithms like Alternating Direction Method of Multi-
pliers (ADMM) [4]. We are also incorporating some aspects of the
online system in our offline relevance models — these include the
cool-off behavior and data availability issues. Finally, the frame-
work can also be used to optimize for other user experience metrics
more explicitly — e.g., widget diversity, close rates, downstream
actions.
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