ASIM: A Scalable Algorithm for Influence Maximization
under the Independent Cascade Model

Sainyam Galhotra, Akhil Arora, Srinivas Virinchi, and Shourya Roy
Xerox Research Centre India, Bangalore
{sainyam.galhotra, akhil.arora, srinivas.virinchi, shourya.roy}@xerox.com

ABSTRACT

The steady growth of graph data from social networks has
resulted in wide-spread research in finding solutions to the
influence maximization problem. Although, TIM [4] is one
of the fastest existing algorithms, it cannot be deemed scal-
able owing to its exorbitantly high memory footprint. In
this paper, we address the scalability aspect — memory con-
sumption and running time of the influence maximization
problem. We propose ASIM, a scalable algorithm capable
of running within practical compute times on commodity
hardware. Empirically, ASIM is 6 — 8 times faster when
compared to CELF++ [1] with similar memory consump-
tion, while its memory footprint is ~ 200 times smaller when
compared to TIM.

Categories and Subject Descriptors: H.2.8 [Database
Management|: Database Applications — Data Mining

Keywords: Social network; Influence maximization; Viral
marketing; Greedy algorithm; Running time; Scalability

1. INTRODUCTION

Social networks have become pervasive owing to the expo-
nential growth in their popularity. The scale at which these
networks operate today is humongous — Facebook, Twitter
etc. have over billions of nodes and trillions of edges. This
wide-spread reach paves the way for a host of applications
with huge impact. The influence maximization problem with
applications in viral marketing is one such example. More
formally, given a network G(V, E); |V| = n, |E| = m, with
edge weights (p(e) | e € E) denoting the pair-wise influ-
ence probabilities, and a budget constraint k£ the objective
of influence maximization is to select a set S of k seed-nodes
(IS| = k) with the ability to maximize the spread of infor-
mation over this network.

Kempe et al. [3] in their seminal work proved that finding
an optimal solution for the influence maximization problem
is NP-Hard and were the first to prove that a simple greedy
algorithm can provide the best approximation guarantees

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).

WWW 2015 Companion, May 18-22, 2015, Florence, Italy.

ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742725.

35

in polynomial time. They incorporated the use of two fun-
damental diffusion models — Independent Cascade (IC) and
Linear Threshold (LT) for information propagation. How-
ever, the algorithm proposed by them had two sources of
inefficiency. The first is that it took O(kmn) time to pro-
duce a solution, while the second one is that it requires an
additional factor of a large number of Monte Carlo (MC)
simulations (= 10K) to obtain the expected value of the
spread.

Considerable amount of work has been done to cater to
the first aspect — optimizing the running time of this greedy
algorithm, with CELF++ [1] being the most efficient of all,
but there hasn’t been much work in improving the second.
More recently, Tang et al. [4] have come up with an al-
gorithm (TIM)! that runs in O((k +1)(m + n) logn/e*) ex-
pected time and produces a (1— % —e¢)-approximate solution,

where ¢ is a constant, with probability as high as 1 — n~".

While this is the fastest known algorithm for influence max-
imization it cannot be termed scalable as it has a high mem-
ory footprint. The worst case space complexity of TIM is
O(n*log (})/€%), which can be very high for small values of
e. For example, the memory footprint of TIM can be as high
as 100 GB for a graph with a million nodes and close to 3
million edges (Details in Section 3). This huge requirement
is tough to be honored by commodity hardware.

In this paper, we propose an efficient algorithm ASIM
which provides the best tradeoff between memory-consumption
and running-time and is capable of handling real-world large
scale networks on moderately sized machines. We argue that
our algorithm can be efficiently parallelized since each MC
simulation is independent of the other. Moreover, a single
iteration of ASIM takes O(kd(m-+n)) (Details in Section 2)
which is faster than TIM thus effectively it can perform
better on overall time? while keeping the memory footprint
150 — 200 times smaller when compared to the latter.

2. ALGORITHM

In this section, we present our algorithm ASIM to address
the influence maximization problem. This algorithm takes
a graph G, number of seeds k and depth value d as input
and returns a set of seed nodes S. It is intuitive that the
probability of a node v to get activated by a seed node w,
assuming the standard diffusion models as proposed in [3],
is dependent upon the number of simple paths from u to v.

!For notation and details please refer [4].

2Considering the ease of availability of multiple processing
units (cores) in a single machine when compared to large
amount of memory (RAM). Details in Section 3.

Algorithm 1 Seed Selection using ASIM
Input: Graph G = (V, E), #seeds (k = |S|) and depth (d)
Output: Seed set S

1: S, C«+0

2: fori=1tokdo

3: max, mazxld <+ 0

4: Score + AssignScore(G, C,d)

5: for each u € V do

6: if Score[u] > max then

7 max < score; maxld < u

8: end if

9: end for

10: S« SU{mazld}; C <~ C U F(maxld)
11: end for

Goyal et al. [2] used a similar idea to propose an algorithm
for the linear threshold (LT) model. ASIM exploits this
aspect of information propagation by assigning a score to
each node (u) of the graph. Scorefu] (Vu € V) is defined as
the weighted sum of the number of simple paths of length
at most depth® (d | d < D) starting from u. The weight
for each path is defined as the product of probabilities p(e)
of the edges composing that path. The score assigned to
a node u tries to mimic closely the expected value of the
spread when u is chosen as a seed node.

At each iteration, our algorithm selects the node with the
maximum score as the seed node and updates the set C' with
the nodes activated by this seed. At any given iteration, the
set C contains all the nodes activated F(s) by the seed nodes
s € S. In line 6 of the algorithm, we assign a score to each
node v of the graph G as explained above. In order to ensure
that the set of nodes activated by each selected seed node
are disjoint, AssignScore neglects the contribution of all the
paths containing any previously activated node ¢ € C in the
score calculation for the subsequent iterations.

Paths of length d from a node w can be calculated as the
sum of all paths of length d—1 from its neighbors. Owing to
this observation, the time taken by the algorithm to assign
scores to each node of the graph is O(d(m + n)) because for
each iteration over d, it looks at the adjacency list of each
node to compute the updated score. Hence the overall time
complexity of ASIM is O(kd(m + n)).

3. EXPERIMENTS

All the simulations were done using the Boost graph li-

brary (http://www.boost.org) in C++ on an Intel(R) Xeon(R)

32-core machine with 2.4 GHz CPU and 100GB RAM run-
ning Linux Ubuntu 12.04. We adopt the C++ implementa-
tion of CELF++ and TIM made available by the respective
authors. We present results on real graphs, taken from the
arXiv (http://www.arxiv.org) and SNAP database (snap.
stanford.edu/data/). All the experiments were conducted
on the following datasets: 1) NetHEPT (15K nodes and 62K
edges), 2) HepPh (12K nodes and 118K edges), 3) DBLP
(317K nodes and 1M edges) and 4) YouTube (1M nodes
and 3M edges). These datasets are undirected, however they
were made directed by taking for each edge the arcs in both
the directions. We use the IC model [3] with each edge being
uniformly assigned a probability of 0.1. As a conventional

3Depth determines the accuracy of the score assignment. D
is the diameter of the graph.

36

Dataset Running Time (min) Memory (MB
CELF++ [ASIM [Gain || CELF++ | ASIM | Gain
NetHEPT 5352.25 648.33 | 8.25x 23.26 10.5195 | 2.2x
HepPh 9746.74 1355 7.2x 24.60 14.0391 | 1.75x
DBLP 88216.69 13166.67 | 6.7x 138.19 159.09 | 0.87x

Table 1: Comparison between CELF++ and ASIM,
k=100 and d = 1.

Running Time (min) Memory (MB) |

| |
Dataset 8T ASIM | Gain | TIM | ASIM | Gain |
[DELP [7851 | G600 | 0.Iox | Goaats | Too00 | 221 |
[YouTube | NA | 19666.67 | » || NA | 55304 = |

Table 2: Comparison between TIM and ASIM, k =
50, d =1 and ¢ = 0.1.

practice, the spread is calculated as an average over 10K MC
simulations®*. We don’t compare ASIM with SIMPATH, as
we present results on the IC model only® while SIMPATH
is specifically for the LT Model.

Table 1 compares the running time and memory consump-
tion of ASIM with CELF++. The results for the YouTube
dataset using CELF++ have not been reported since it re-
quired > 200 hours for 400 iterations and was still not com-
pleted. Table 2 shows a similar comparison of ASIM with
TIM. Although, TIM is = 10 times faster when compared
to ASIM for the DBLP dataset, we argue that this differ-
ence can be easily mitigated (as discussed in Section 1) by
running ASIM in parallel on 10 cores while ensuring the
memory gain to be the same. The memory consumed by
TIM was > 100GB for ¢ = 0.1, £k = 50 on YouTube, thus
we could not report the results for the same.

4. CONCLUSIONS

In this paper, we addressed the problem of influence max-
imization in social networks from a scalability standpoint.
Since majority of the influence maximization algorithms are
not scalable ([3,4] and the references therein), there are ef-
ficiency concerns in real-world scenarios with huge graphs.
Consequently, we designed an efficient algorithm that uses
graph topology and connectivity, and runs in linear time.
Moreover, the space complexity of our algorithm is linear
which is orders of magnitude better when compared to the
current state of the art. Our empirical studies on real world
social network datasets showed that our algorithm scales
well, portraying significant improvements in terms of both
running time and memory consumption, and is practical for
large real graphs.

S. REFERENCES

[1] A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++: Optimizing
the greedy algorithm for influence maximization in social
networks. In WWW (Companion Volume), pages 47-48, 2011.

[2] A. Goyal, W. Lu, and L. V. S. Lakshmanan. Simpath: An
efficient algorithm for influence maximization under the linear
threshold model. In ICDM, pages 211-220, 2011.

[3] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread
of influence through a social network. In KDD, pages 137-146,
2003.

[4] Y. Tang, X. Xiao, and Y. Shi. Influence maximization:
Near-optimal time complexity meets practical efficiency. In
SIGMOD, pages 75-86, 2014.

“These instances were run in parallel on 32-cores for
CELF++4 and ASIM. However for a fair comparison with
TIM we report the total time taken.

®Owing to the space constraints

http://www.boost.org
http://www.arxiv.org
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/

	Introduction
	Algorithm
	Experiments
	Conclusions
	References

