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ABSTRACT

The distance dependent Chinese Restaurant Processes (dd-
CRP), a nonparametric Bayesian model, can model distance
sensitive data. Existing inference algorithms for dd-CRP,
such as Markov Chain Monte Carlo (MCMC) and variation-
al algorithms, are inefficient and unable to handle massive
online data, because posterior distributions of dd-CRP are
not marginal invariant. To solve this problem, we present
a fast inference algorithm for dd-CRP based on the A-star
search [3]. Experimental results show that the new search al-
gorithm is faster than existing dd-CRP inference algorithms
with comparable results.

Categories and Subject Descriptors H.2.8 [Database
Management|: Database Applications - Data Mining
General Terms Theory, Algorithms, Performance
Keywords A-star search, inference, nonparametric Bayesian,
distance dependent Chinese Restaurant Processes.

1. INTRODUCTION

With the fast development of online applications, such as
social networks and E-commerce, new scalable data mining
models that can digest massive data efficiently are urgently
needed[6]. Among these models, clustering analysis is one
of the key tools which has been widely used in user behavior
analysis, topic modeling, outliers detection, to name a few.

The distance dependent Chinese Restaurant Processes (dd-
CRP) proposed recently by Blei et. al. [2] is a new nonpara-
metric Bayesian model for unveiling latent clusters behind
non-exchangeable text data. The dd-CRP can discover dis-
tance sensitive clusters and auto-select the proper number
of clusters. So it is markedly useful for modeling temporal
and spatial dependent data such as news stories and user
behaviors.

Existing work on inferring posterior distributions of dd-
CRP relies on Gibbs sampling [4] and variational inference
[1]. However, both methods are inefficient. Because dd-CRP
requires to infer data-linkage instead of cluster assignments,
the potential values of latent variables are large. On the oth-
er hand, the posterior of latent variables are not marginally
invariant, so variational inference for dd-CRP is complex
and parallel techniques are inapplicable.

To this end, we present an efficient inference method based
on the A-star search [3] for dd-CRP. A-star search has been
widely used in path-finding [5]. Daume et al [3] demonstrat-
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ed that latent states of Bayesian models can be treated as
points in a latent space. Thus, in our search-based infer-
ence, the optimal posterior of dd-CRP is taken as a special
point with maximum data likelihood that can be restored
by the A-star search. We use three heuristic cost functions
to accelerate the searching process. We empirically demon-
strate that the search-based inference can achieve compara-
ble cluster results (w.r.t. data likelihood) and significantly
faster than state-of-the-art methods.

2. THE A-STAR SEARCH FOR DD-CRP

2.1 Model Description

The generation process of dd-CRP is to generate links
between data. Each data record can be linked either to
itself or to another data record. In the former case, dd-CRP
creates a new cluster. In the latter case, the linked data
records (either directly or indirectly linked) are assigned to
the same cluster. The probability of data linkages in dd-
CRP is determined by the distance between data which can
be denoted by a matrix D = {d;jl|i,7 = 1,--- ,N} and a
decay function f(d;;), as in Eq. (1),

ifi#j

(1)
where « is the concentration factor, and ¢, = j denotes that
there is a link from data record j to ¢. So the cluster assign-
ments z(ci:n) can be derived from ci.n, and the mixture
topic model based on dd-CRP can be described as follows:
1. For each document i € [1,---,N] draw assignment
ci ~dd — CRP(a, f, D);
2. For each cluster k € {1, -} draw parameter ¢, ~ H;
3. For each document ¢ € [1,---, N|draw w; ~ F(¢yc),)-

2.2 The A-star Search for inference

A-star is a best-first search. In each step, it explores the s-
pace from the point which seems to be closest to the optimal
point. For dd-CRP, the state point is data linkage c1.n,. No
is the number of points processed in the state. s(ci:n,) is
a knowledge-plus-heuristic cost function of the state, which
measures how close the state to the optimal posterior distri-
bution. For dd-CRP, s(ci:n,) is the likelihood of the state,
which is the sum of two functions:

e The existing state-cost function g(ci:n,, W1:n, ), which
is the data likelihood for states P(wi.n,|z(c1:n, ), H);

e The heuristic state-cost function h(ci:n,, WNg+1:N),
which is the heuristic estimate of the data likelihood
P(wny+1:v]z(C1:n ), H).

From the initial state, A-star search maintains a priority
queue of states, where the priority of states is determined
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Figure 1: Experimental results.

by f(ci:ny). We keep the size of the queue fixed by remov-
ing the states having the lowest priority. However, due to
the limited memory, the states which can potentially reach
the optimal may be also pruned. Thus, the A-star search
does not always guarantee the optimal posterior distribu-
tion. The A-star search inference is summarized in Algo-
rithm 1.

Algorithm 1: A-star Search for DD-CRP.

Input: observations wi.y, a heuristic function h, queue
size B, the distance matrix D, the decay
function f(-)

Output: clustering result zi.n

Initialize Queue Q: @ <+ [(c1 = 1)];

while @ is not empty do

Remove state c¢q.no from the front of @Q;

if Ngo = N then

| return z(ci.n);
for {cny+1 = jIVf(dng+1,4) > 0U{No + 1} } do
¢V = c1:Np D CNy+1;
compute the score:
s =g(c"", wing 1) + h(c™
update queue: @ + (c™V, s);
if B < oo and |Q| > B then
| Shrink queue: Q < Q1:B;

s WiNo+2:N);

new

Here, g( , W) = P(wi.n,|z(c1:nv, ), H) is defined as:

H/( H (fﬂi|¢k))P(¢’k\H)d¢k (2)

i€z(cnew)=k

new

The heuristic function h(-) will influence the search speed.
The closer the estimation of P(wn,+1:~5(2(c1:n), H) is, the
faster the algorithm will be. We propose three heuristic
functions.

e Constant heuristic function hconst(-). We can ne-
glect the heuristic cost by setting hconst(C1:n,) = 1.

e Predictive heuristic function hpreq(-). We can
obtain a tighter heuristic function by calculating the
probability distribution of unclustered data points giv-
en the clusters {¢1, - ,¢x} which are derived from
z(C1:ng ).

N

max

P n:kP n ) n:k
L, Plan = K)P(wn|6k, wn = 1)

3)

n=No+1

e Inadmissible heuristic function h;neq(-). The heuris-

tic cost is calculated by assigning each data in wy,+2:n
a new cluster.

hznad Cl No = H /Pwn\z,zﬁ ¢‘H)d¢ (4)

n=Np+1
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The estimation is even tighter. However, hinqq(-) is
inadmissible[3], which implies even with infinite mem-
ory, the optimal posterior is not guaranteed.

EXPERIMENTS

Experimental settings. We use the synthetic data set
[2] with varying data volumes. The hyper-parameters of dd-
CRP are set as {« = 1, H = 5}. We use window decay for
f(-) and D is measured by time differences between data.

Results. We compare the A-star search inference (with
3 different heuristic functions) with the Gibbs sampling al-
gorithm w.r.t. time cost and log likelihood. The results
are depicted in Fig.1 (a)(b). Our methods are significantly
faster than Gibbs sampling. For different heuristic func-
tions, hinad leads to the fastest search, while the clustering
results w.r.t. likelihood are similar. We compare the time
cost and clustering results w.r.t. queue size B as depicted in
Fig.1 (c)(d). With the larger queue size, we can obtain bet-
ter clustering results but more time cost. The results accord
with the analysis in section 2.2.

4. CONCLUSIONS

We presented a fast search-based inference algorithm for
dd-CRP. This inference uses the A-star search [3] to find the
optimal posterior distribution. Our method is significantly
faster than state-of-the-art inference algorithms and achieves
comparable clustering results.
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