
Online View Maintenance for Continuous Query Evaluation

Soheila Dehghanzadeh
INSIGHT, NUI Galway

Daniele Dell’Aglio
DEIB, Politecnico di Milano

Shen Gao
IFI, University of Zurich

Emanuele Della Valle
DEIB, Politecnico di Milano

Alessandra Mileo
INSIGHT, NUI Galway

Abraham Bernstein
IFI, University of Zurich

ABSTRACT
In Web stream processing, there are queries that integrate
Web data of various velocity, categorized broadly as stream-
ing (i.e., fast changing) and background (i.e., slow changing)
data. The introduction of local views on the background
data speeds up the query answering process, but requires
maintenance processes to keep the replicated data up-to-
date. In this work, we study the problem of maintaining
local views in a Web setting, where background data are
usually stored remotely, are exposed through services with
constraints on the data access (e.g., invocation rate limits
and data access patterns) and, contrary to the database set-
ting, do not provide streams with changes over their content.
Then, we propose an initial solution: WBM, a method to
maintain the content of the view with regards to query and
user-defined constraints on accuracy and responsiveness.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services

1. INTRODUCTION
In the Web, there is a growing presence of data streams,

i.e., data characterized by a high velocity, such as data from
social networks (e.g., Twitter and Instagram) and smart city
services (e.g., real-time position of buses and trains). The
presence of data streams on the Web poses new challenges to
stakeholders interested in analyzing Web data. One of the
most common challenge is responsiveness, i.e., providing the
outputs within a time constraint. State of the art solutions
rely on research made in Data Stream Management Systems
and Complex Event Processing, where several techniques are
proposed to process and analyze data streams online [1].

Complex analyses often require to combine dynamic (data
streams) and quasi-static (background data) data. For ex-
ample, consider an advertisement setting1, where the cloth

1Inspired by Chris Testa’s SemTech 2011 talk: http://goo.
gl/kLSqGo.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742761 .

brand ACME wants to hire influential Twitter users to post
commercial endorsements. Those influential users are iden-
tified through a query based on their two main characteris-
tics. First, users must be “trend setters”, i.e., there are more
than 1000 tweets mentioning them in the past 60 minutes.
Second, users must be famous, i.e., they have more than
10000 followers. To take precedence over the rival compa-
nies, ACME wants to identify new influential users as soon
as possible, with updates every 15 minutes, and can accept
approximate results with at least 75% accuracy.

Figure 1: Query Processor Overview

To perform queries like this one, it is necessary to com-
bine data streams (tweets) with background data (the num-
ber of followers), as shown in Figure 1. While the former
are usually pushed into the query processor through push-
based APIs (e.g., the Twitter Streaming API2) and pro-
cessed through windows (time-varying subsets of the streams),
the quasi-static data have to be accessed on demand through
the invocation of pull-based APIs (e.g., the Twitter REST
API3). However, the access cost to the remote services is
high, and affects the responsiveness of the system. More-
over, the remote background data providers can become
temporarily unavailable or they can set rate limits on the
number of invocations (e.g., Twitter has different rate lim-
its for each exposed service4), Furthermore, they can have
predefined data access patterns constraints (e.g., by using
the Twitter REST API it is possible to get the number of
followers given a user, but it is not possible to ask for a list
of users with more than 10000 followers).

Query processors can use local views to store the pulled
data, in order to improve the performance, availability and
scalability of the query processing [2]. However, the quality
of the local view degrades over time due to the fact that the
remote data can be modified and the local view is not up-
dated. An efficient maintenance policy has to be introduced
to keep the local view consistent with the remote data.

2https://dev.twitter.com/streaming/overview
3https://dev.twitter.com/rest/public.
4https://dev.twitter.com/rest/public/rate-limits.

25

2. ANALYSIS OF THE PROBLEM
A number of requirements lead to the design of a Mainte-

nance Policy (MP), which has to take into account not only
features already studied in the database literature (e.g., join
selectivity), but also new ones introduced by the Web setting
and the presence of Web streaming data.

R1: Data Access Constraints. The MP retrieves the
background data through Web APIs. As explained above,
the MP has to take into account the service constraints such
as: the data access patterns (R1.1) have to be conform
the API definitions ; the access rate (R1.2) of the pulling
requests has to be below a limit.

R2: Quality of Service (QoS) Constraints. Each
query has constraints over its response time and the ac-
curacy of its answer. The MP must deal with the trade-off
between them: frequent maintenance of local views leads to
higher accuracy in the response, however, more time is re-
quired. The MP should monitor the quality of the answering
process and fulfill the QoS constraints (R2).

R3: (Dynamic) Change Rate Distribution. The
MP should consider the fact that different elements in back-
ground data can change over time at different rates (R3.1).
E.g., the number of followers of famous Twitter users changes
often than the number of followers of others. Moreover, the
change rate of elements can vary over time. E.g., the num-
ber of followers of a user changes more often during Twitter
activity peeks and less often otherwise. Therefore, the MP
may consider the dynamic change rates (R3.2).

R4: Query Features. Joins may pair streaming and
background data. The MP may exploit this unique feature
to optimize the maintenance. Specifically, the MP may ex-
ploit the sliding window definition (R4.1): at each eval-
uation, part of the window content does not change (as the
window slides), and it can be used to select the local view
elements to be maintained. The MP may also consider the
join selectivity (R4.2) to find the most influential data
elements on response accuracy.

3. PROPOSED SOLUTION
In this section, we propose the Window-Based Mainte-

nance policy (WBM), which exploits the different change
rates of the data elements (R3.1) and the sliding window
definition (R4.1) of the query.

Consider the example in Figure 2. At each iteration, the
query processor processes the elements in the current win-
dow and finds their join counterparts in the local view. E.g.,
at time 8, it uses the content of the W1 window and selects
{a, b, c, d}; at time 9, it uses W2 and selects {b, c, d}. WBM
is limited by an update budget, i.e., the maximum number
of updates, defined w.r.t. the data access constraints (R1)
and the responsiveness requirements (R2). In the example,
the update budget is set to 1.

Among window elements, WBM only maintains their join
counterparts in the local view. WBM works as follow: (1)
it identifies the expired elements by estimating their change
rate information (R3.1); in the example, it estimates that at
time 8, a, c and d are expired in the local view. (2) Next,
it computes in how many future windows they are going to
stay, e.g., for a is 0 (it is not in W2), c and d are 2 (they exit
in W4). (3) Based on the change rate information, WBM
also estimates the next expiration time of a data element, if
updated now, e.g., a will expire again at 12, c at 11, and d

Figure 2: Selection process in the WBM policy

at 9. (4) Finally, WBM chooses the selected candidates that
will save it most number of future updates. In the example,
a is the one that would stay more time up-to-date, but it is
going to exit the window in W2. c and d, in contrast, will be
also in W3 and W4, so WBM gives them priority. Between
c and d, WBM chooses c, because it would stay up-to-date
for a longer time than d, and, consequently, does not need
to be updated anymore in the (near) future.

4. RESULTS AND CONCLUSION
We implemented WBM and we compared it with two

query-driven baselines policies inspired by the Least Re-
cently Used (LRU) and the Random (Rand) page replace-
ment algorithms. We evaluated the policy against a syn-
thetic data set and a real data set collected from Twitter.
In the synthetic data, each element is assigned a different
change rate sampled from a normal distribution.

Rand LRU WBM

Synthetic 0.72 0.73 0.83
Twitter 0.60 0.66 0.76

Table 1: Accuracy of results in the two data sets

Table 1 shows the results of the experiments: it reports the
accuracy of the policies. In both experiments, Rand shows
the worst performance. Comparing WBM and LRU, WBM
outperforms LRU by up to 13.5%, as WBM is more precise in
the identification of expiring data by estimating the change
rates. In the real data, the change rate distribution is highly
skewed, i.e., many elements are changing slowly, and only a
few have high change rates. Here, WBM shows even better
improvements, as it updates only the expired data and LRU
wastes more budgets on still valid data.

By considering the change rate (R3.1), WBM has im-
proved the accuracy of results significantly. As an initial
study, WBM does not consider the dynamic change rates of
data (R3.2) and the join selectivity (R4.2) . In future, we
will extend WBM in those directions.

Acknowledgments
This work has been partially funded by Science Foundation
Ireland grant No. SFI/12/RC/2289.

5. REFERENCES
[1] G. Cugola and A. Margara. Processing flows of

information: From data stream to complex event
processing. ACM Comput. Surv., 44(3):15, 2012.

[2] H. Guo, P.-Å. Larson, and R. Ramakrishnan. Caching
with good enough currency, consistency, and
completeness. In VLDB 2005, pages 457–468, 2005.

26

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150317125312
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150317125312
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryList_V1
 qi2base

