
Time-travel Translator: Automatically Contextualizing
News Articles

Nam Khanh Tran, Andrea Ceroni, Nattiya Kanhabua, and Claudia Niederée

L3S Research Center / Leibniz Universität Hannover, Germany

{ntran, ceroni, kanhabua, niederee}@L3S.de

ABSTRACT
Fully understanding an older news article requires context
knowledge from the time of article creation. Finding infor-
mation about such context is a tedious and time-consuming
task, which distracts the reader. Simple contextualization
via Wikification is not sufficient here. The retrieved con-
text information has to be time-aware, concise (not full Wiki
pages) and focused on the coherence of the article topic. In
this paper, we present Contextualizer, a web-based system
that acquires additional information for supporting inter-
pretations of a news article of interest that requires a map-
ping, in this case, a kind of time-travel translation between
present context knowledge and context knowledge at time
of text creation. For a given article, the system provides
a GUI that allows users to highlight their interested key-
words which are then used to construct appropriate queries
for retrieving contextualization candidates. Contextualizer
exploits different kinds of information such as temporal simi-
larity and textual complementarity to re-rank the candidates
and presents to users in a friendly and interactive web-based
interface.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Time-aware contextualization; Complementarity; Temporal
context

1. INTRODUCTION
Reading a current news article about the topic that you

are familiar with is typically straightforward but things get
worse if the article is from the past. In order to understand
the article properly, acquiring context knowledge from the
time of article creation is required. We call this process as
time-aware contextualization. As an example, consider the

Copyright is held by the International World Wide Web Conference Committee
(IW3C2). IW3C2 reserves the right to provide a hyperlink to the author’s site if the
Material is used in electronic media.
WWW ’2015 Florence, Italy
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742841.

Figure 1: Camel advertisement (left) and contextualization
information taken from Wikipedia (right).

advertisement poster from the 1950s in Figure 1. From to-
day’s perspective it is more than surprising that it would be
actually doctors, who recommend smoking. It can, however,
be understood from the context information at the right side
of Figure 1, which has been extracted from the Wikipedia
article on tobacco advertising.

Basic forms of contextualization have already been sug-
gested in early works such as [2, 5] by adding information,
which is related to the entities and concepts mentioned in
the text. In our example, these techniques can produce the
Wikipedia article on the mention“Camels”(camels cigarette),
“Doctors” (medical doctors) but obtaining the contextual-
ization information as shown in Figure 1 is beyond their
scope. In addition, the context information should be di-
gestible in a short time with minimal disruption from the
main reading. Thus, we aim for a contextualization unit
granularity which is considerably smaller than a full Wikipedia
page (e.g, paragraphs).

Therefore, time-aware contextualization, which aims to
associate an information item d with time-aware, coherent
context information c for easing its understanding, is a chal-
lenging task. We address several properties of the context c
[7]: (1) c has to be relevant for d, (2) c has to complement
the information already available in d, (3) c has to consider
the time of creation (or reference) of d.

In this paper, we present a system, called Contextualizer,
that provides a solution for the time-aware contextualiza-
tion problem, implementing a general architecture that au-
tomatically retrieves context from user-highlighted keywords
which we called contextualization hooks and presents them to
the user in a meaningful way. To this end, we first construct

247

Figure 2: The Contextualizer Architecture.

appropriate queries from either the document itself or the
contextualization hooks to retrieve contextualization candi-
dates and in the next step re-rank the results by exploiting
different types of information such as temporal similarity
and textual complementarity. To the best of our knowledge,
we are the first to present a tool that can automatically pro-
vide temporal context that is concise (not full Wiki pages)
and consider the coherence of the article topic.

The rest of this paper is organized as follows. In Section 2,
we will explain the methods underlying our system. Section
3 describes our implementation and the proposed demon-
stration plan. Finally, we present related work in Section 4
and conclude the paper in Section 5.

2. TIME-AWARE CONTEXTUALIZATION
The architecture of the Contextualizer system is shown in

Figure 2. Its three main components are context source pro-
cessing which extracts and annotates contextualization units
from the context source; query formulation which builds the
appropriate queries with using different formulation meth-
ods; and context ranking, which retrieves and re-ranks the
results in a time-aware fashion.

2.1 Context source processing
The first step is to consider which sources to be used

for extracting contextualization candidates. In this demon-
stration, we employ Wikipedia because it is considered the
largest and most up-to-date online encyclopedia covering a
wide temporal range of general and specific knowledge; but
the others such as News Archive can be also used. The sys-
tem processes each contextualization candidate by extract-
ing features and storing them to facilitate faster retrieval
and re-ranking. We use Stanford CoreNLP1 for tokeniza-
tion, entity annotation and temporal expression extraction.
In addition, anchor texts found in the hyperlinks are also
extracted.

2.2 Query formulation
The goal of the query formulation component is to gen-

erate a set of queries for a given document to retrieve con-
textualization candidates as input for the next component,
i.e. context ranking. For building appropriate queries, we
explore two families of methods, one using the document it-
self as a “generator”, and the other using contextualization
hooks as generators.

For the former family of query formulation methods, we
use three strategies which exploit the document content and

1
http://nlp.stanford.edu/software/corenlp.shtml

structure including title which is indicative of main topic
of the document; lead which is the lead paragraph of the
document, representing a concise summary of the document
and its main actors; and title+lead which is a combination
of the previous methods.

Based on user-highlighted keywords, i.e. contextualiza-
tion hooks2 which can be not only entity mentions, concept
mentions, but also general terms and even short phrases,
we consider the hook-based query formulation method by
including all the hooks in a single query, representing a tai-
lored perspective of the user’s combined information needs
for the document. Because the hooks are considered in the
context of the document, we enrich the hook-based queries
by the title of document.

Before being performed, all the queries are pre-processed
by tokenization, stop-word removal and stemming.

2.3 Context ranking
The queries determined given a document d in the previ-

ous step serves as a starting point for retrieving the ranked
list of contextualization candidates. In order to obtain the
candidates, we use query-likelihood language modeling [6]
to estimate the similarity of a query q with the context c.

P (c|q) ∝ P (c)
∏
w∈q

P (w|c)n(w,q) (1)

where w is a query term in q, n(w, q) is the term frequency
of w in q, and P (w|c) is the probability of w estimated using
Dirichlet smoothing:

P (w|c) =
n(w, c) + µP (w)

µ+
∑
w′ n(w′, c)

(2)

where µ is the smoothing parameter, P (w) is the probability
of each term w in the collection.

Once we have obtained a ranked list of contextualization
candidates for each document, we turn to context selection
where we need to decide which of the context items are most
viable. Our ranking algorithm needs to balance two goals,
i.e., high topical and temporal relevance as well as com-
plementarity for providing additional information. To this
end, we exploit various complementarity features and use
the trained model on a set of manual labeled samples (con-
text to document mappings) [7] to re-rank the results.

Relevance and temporal features In order to retrieve
high topical and temporal relevant contextualization can-
didates for the document, we first consider both relevance
and temporal features. For the former one, we exploit the
retrieval scores of context returned by our retrieval model.
For the later one, we apply temporal similarity measure-
ment, i.e., TSU computed as follows

TSU(t1, t2) = α
λ
|t1−t2|

µ (3)

where α and λ are constants, 0 < α < 1 and λ > 0, and µ
is a unit of time distance.

Complementarity features We make use of several types
of complementarity features that are confirmed an impor-
tant role in contextualization including topic diversity, text
different, anchor text distance and geometric distance (see
[7] for computation details).

2We use user-highlighted keywords and contextualization
hooks interchangeably

248

http://nlp.stanford.edu/software/corenlp.shtml

Figure 3: An example of user-highlighted keywords.

3. DEMONSTRATION OF THE SYSTEM

3.1 Implementation
Contextualizer is implemented in Java and uses Lucene for

indexing and retrieving contextualization candidates. After
computing all complementarity measures between each con-
textualization candidate and the document, we make use of
the trained model on manual labeled examples using Ran-
dom Forests, a learning-to-rank algorithm, to re-rank the
results [7]. We implemented a web interface using the Angu-
lar3, Bootstrap4 frameworks and some parts from Elianto5,
all the actions are performed calling the REST api provided
by the server. In order to acquire user feedback information
for improving our model, we allow users to rate the candi-
dates according to how much they are contextually related
to the document in four different ratings:

Top relevant (3 stars) if the candidate are topically
and temporally related to the document, and complements
to the main topics of the document.

Highly relevant (2 stars) candidates are descriptions
of the essential entities (e.g., what are entities) discussed in
the document.

Partially relevant (1 star) candidates that provide back-
ground information about minor aspects mentioned in the
document

Not relevant candidates that are about different topics
or repeat the same thing in the document.

In this demo, we use 51 articles that spanned a wide range
of topics and publication dates from New York Times Cor-
pus6. The Wikipedia dump of February 4, 2013 is used as a
context source and paragraphs are considered as contextu-
alization units. The online system are published at http://
forgetit.l3s.uni-hannover.de:9090/wikinews-webapp.

3.2 Scenarios
In this demonstration, we will show how to retrieve addi-

tional information to the document using our Contextualizer
system. As one of examples for an article of interest, suppose
that a user is reading the article published in 1987 about
Deskpro 386 and highlights several keywords that he/she
wants more information at that time such as “Compaq Com-
puter Corporation”, “Desktop 386”, “Intel’s new 80386 mi-

3
https://angularjs.org/

4
http://getbootstrap.com/

5
https://github.com/dexter-entity-linking/elianto

6
http://catalog.ldc.upenn.edu/LDC2008T19

Figure 4: Contextualization candidates retrieved by the
Contextualizer system.

croprocessor” as shown in Figure 3. In order to support the
user, our system automatically suggests some candidates by
using the spotting module of Dexter [1], a framework that
provides all the tools needed to develop any Entity Linking
technique. The user can either use these keywords or high-
light his/her own ones. The Contextualizer system will use
these highlighted keywords to build appropriate queries (see
Section 2.2) such as a query“Compaq Computer Corporation
and Desktop 386 and Intel’s new 80386 microprocessor” and
issue it to our retrieval component (see Section 2.3). First,
a list of contextualization candidates are retrieved based on
language modeling, and the system will decide which candi-
dates are to be shown as context based on a variety of fea-
tures and a learning to rank algorithm, i.e., Random Forests.

As shown in Figure 4, three contextualization candidates
are returned with its Wikipedia page title and followed by
the actual content. In our example, we observe that the
two candidates “When Compaq introduced the first PC based
on Intel’s new 80386 microprocessor, the Compaq Deskpro
386, in 1986, it marked the first CPU change to the PC
platform that was not initiated by IBM...” and “During this
period Andrew Grove dramatically redirected the company,
closing much of its DRAM business and directing resources
to the microprocessor business. Of perhaps greater impor-
tance was his decision to ”single-source” the 386 micropro-
cessor...” contextually relates to the document, whereas the
last one does not.

As discussed in [7], contextualization hooks can be not
only entity mentions or concept mentions but also general
terms and even short phrases, as shown in Figure 5. In
this example, a user highlights two phrases “experimental
student loan program” and “shift the costs”. These phrases
explicitly represent the information needs of the user or,
more precisely, what requires contextualization to be under-
stood and interpreted. Here the entity linking approaches
can not dealt with these contextualization hooks since there
is no explicit Wikipedia page for such phrases. In con-
trast to these approaches, Contextualier system can be able
to retrieve contextualization candidates based on the user-

249

http://forgetit.l3s.uni-hannover.de:9090/wikinews-webapp
http://forgetit.l3s.uni-hannover.de:9090/wikinews-webapp
https://angularjs.org/
http://getbootstrap.com/
https://github.com/dexter-entity-linking/elianto
http://catalog.ldc.upenn.edu/LDC2008T19

Figure 5: An example of the document with non-entity hooks and its contextualization candidates.

highlighted phrases as shown in Figure 5 (“Higher education
in the United States” and “Student loan”). Again, the user
can also rate the relatedness of the candidates which can be
used to improve the learning process.

4. RELATED WORK
Previous work has focused on detecting entity name men-

tions within text and links them to the corresponding en-
tities in a knowledge base [1, 2, 5]. In contrast to our ap-
proach, both Wikification and entity linkage approaches lack
two ingredients of time-aware contextualization, (a) they do
not take into account the temporal aspect of the text to
be enriched and (b) the additional information provided is
rather general (e.g., Wikipedia articles about an entity) and
not focused to the topical information need resulting from
the text under consideration.

Retrieving and processing external information to be added
to documents have obtained increasing interest in the recent
years. Kanhabua et. al, [4] proposed to enrich news articles
with related predictions. Other works [8, 9] exploit social
media (e.g, Twitter) as external source to discover utter-
ances that discuss a given news article. In contrast to those
approaches, our work adds another dimension to the con-
textualization task, namely time. We are not looking for
more information on the current context, but we try to re-
construct the original context of a document.

The work most related to ours is contextual insights [3]
that provides users with information that is contextually
relevant to the content that they are consuming. However,
they do not take into account temporal dimension. To the
best of our knowledge, we are the first to present a web-
based system that automatically provide temporal context
for a given document in a meaningful way.

5. CONCLUSIONS
We present Contextualizer, a web-based system for auto-

matically contextualizing a news article by providing com-
plementing information to the article, which reflects required,
but not expressed, context for fully understanding it. Our

system allows users to select their interested keywords, and
automatically constructs appropriate queries to retrieve con-
textualization candidates, then re-ranks the candidates be-
fore presenting them to users in a interactive manner. While
our initial illustration of the Contextualizer system has fo-
cused on news articles and Wikipedia, others sources such
as qualitative studies and news archive can be also applied.

Acknowledgements The work was partially funded by the
European Commission for the FP7 project ForgetIT under
grant No. 600826 and the German Federal Ministry of Edu-
cation and Research (BMBF) for the project “Gute Arbeit”
nach dem Boom (Re-SozIT) (01UG1249C).

6. REFERENCES
[1] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and

S. Trani. Dexter: An open source framework for entity
linking. In ESAIR ’13, 2013.

[2] P. Ferragina and U. Scaiella. Tagme: On-the-fly
annotation of short text fragments (by wikipedia
entities). In CIKM ’10, 2010.

[3] A. Fuxman, P. Pantel, Y. Lv, A. Chandra,
P. Chilakamarri, M. Gamon, D. Hamilton,
B. Kohlmeier, D. Narayanan, E. Papalexakis, and
B. Zhao. Contextual insights. In WWW ’14, 2014.

[4] N. Kanhabua, R. Blanco, and M. Matthews. Ranking
related news predictions. In SIGIR ’11, 2011.

[5] D. Milne and I. H. Witten. Learning to link with
wikipedia. In CIKM ’08, 2008.

[6] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In SIGIR ’98, 1998.

[7] N. K. Tran, A. Ceroni, N. Kanhabua, and C. Niederée.
Back to the past: Supporting interpretations of
forgotten stories by time-aware re-contextualization. In
WSDM ’15, 2015.

[8] M. Tsagkias, M. de Rijke, and W. Weerkamp. Linking
online news and social media. In WSDM ’11, 2011.

[9] T. Štajner, B. Thomee, A.-M. Popescu,
M. Pennacchiotti, and A. Jaimes. Automatic selection
of social media responses to news. In KDD ’13, 2013.

250

	Introduction
	Time-aware Contextualization
	Context source processing
	Query formulation
	Context ranking

	Demonstration of The System
	Implementation
	Scenarios

	Related work
	Conclusions
	References

