
Cloud WorkBench: Benchmarking IaaS Providers based on
Infrastructure-as-Code

Joel Scheuner, Jürgen Cito, Philipp Leitner, Harald Gall
software evolution & architecture lab

University of Zurich
Switzerland

{lastname}@ifi.uzh.ch

ABSTRACT
Optimizing the deployment of applications in Infrastructure-
as-a-Service clouds requires to evaluate the costs and per-
formance of different combinations of cloud configurations
which is unfortunately a cumbersome and error-prone pro-
cess. In this paper, we present Cloud WorkBench (CWB),
a concrete implementation of a cloud benchmarking Web
service, which fosters the definition of reusable and repre-
sentative benchmarks. We demonstrate the complete cycle
of benchmarking an IaaS service with the sample bench-
mark SysBench. In distinction to existing work, our system
is based on the notion of Infrastructure-as-Code, which is
a state of the art concept to define IT infrastructure in a
reproducible, well-defined, and testable way.

Categories and Subject Descriptors
D.m [Software]: MISCELLANEOUS

Keywords
Cloud Computing; IaaS; Benchmarking; DevOps; IaC

1. INTRODUCTION
In the cloud computing model Infrastructure-as-a-Service

(IaaS), ”processing, storage, networks, and other fundamen-
tal computing resources” [7] are acquired on a pay-per-use
basis, most commonly in the form of virtual machines (VMs).
The functional similarities of these services are contrasted by
significant variations in non-functional properties. Service
performance not only varies between providers, as studies
listed in [2] show, but also for services exhibiting the same
specification [3]. Representative benchmarks (i.e., perfor-
mance tests) can be used to assess service performance and
thus assist software engineers in service selection. However,
testing multiple providers with variable configurations re-
sults in a large parameter space to explore, making bench-
marking a labor-intensive task. Moreover, in fast moving

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742833 .

cloud environments, continuous reevaluation is inevitable,
when providers change their supported instance types or up-
grade their hardware. Therefore, several research projects
[1, 5, 9] aiming at extensible cloud benchmark automation
were recently introduced. They all facilitate systematic cloud
benchmarking. However, defining benchmarks is typically a
tedious and error-prone activity, which often involves manu-
ally creating VM images for each benchmark, cloud provider,
and region. This increases the time necessary to benchmark
a given configuration, and reduces comparability and repro-
ducibility of results.

In this paper we demonstrate Cloud WorkBench (CWB),
a web-based framework that is grounded on the notion of
Infrastructure-as-Code (IaC) to foster simple definition, ex-
ecution, and repetition of benchmarks over a wide array of
cloud providers and configurations. IaC was introduced by
the current DevOps trend [4] and captures the complete pro-
visioning and configuration of various middleware compo-
nents, most importantly IaaS VMs, operating systems, and
standard software, in provisioning code. Applying provi-
sioning code reproducibly converges a system to a desired
state, without the need for manual steps and irrespective of
previous configurations of the same components.

We introduced Cloud WorkBench (CWB) in a companion
full paper [8], presented the results of a large-scale cloud
evaluation analyzing more than 33000 measurements in [6],
and we now give an example of its capabilities by showing
how a common benchmark from literature can be completely
defined, scheduled, and automatically executed in a cloud
environment.

2. SYSTEM OVERVIEW
This section introduces the CWB framework for defining,

scheduling, and executing benchmarks.

2.1 Architecture
Defining and executing a benchmark in CWB involves

interactions among the components shown in Figure 1.
The (human) experimenter defines benchmarks via the

provisioning service and the CWB web interface, which sub-
sequently allows one to schedule and manage executions
of benchmarks. The CWB server is the main component
consisting of a standard three-tiered web application. It
provides the web interface, implements the business logic
in collaboration with external dependencies, and stores its
data (definitions and results of benchmarks) in a relational
database. The scheduler component of the CWB server pe-
riodically triggers the execution of defined benchmarks.

239

IaaS ProviderIaaS ProviderIaaS ProvidersCWB Server

Web Interface

 Provisioning Service

REST REST

Upload
Configuration

Configure
Benchmarks +
Schedule and

Manage
Executions

Pr
ov

id
er

 A
PIManage VMs

Provision VMs +
Execute

Commands

Notify State +
Submit Results

REST REST

Business Logic

Sc
he

du
le

r

Relational
Database

REST

Pr
ov

id
er

Pl
ug

in
Experimenter

Configurations

C
lo

ud
 V

M

C
W

B
C

lie
nt

 L
ib

ra
ry

Be

nc
hm

ar
k

Ex
ec

ut
io

n
En

vi
ro

nm
en

t

C
lo

ud
 V

M
sSSH

Fetch
Configuration

Figure 1: Architecture Overview

Benchmarks in CWB are typically defined across a mul-
titude of different IaaS providers, which the CWB server
interacts with over a provider API. Fundamentally, this API
is mostly used to acquire and release cloud VMs of a given
user-defined specification. These cloud VMs are the Sys-
tem Under Test (SUT) and execute the actual benchmark-
ing code. To ease the interaction between the cloud VMs
and the CWB server, a small CWB client library is in-
stalled in each VM. This client library, along with all other
required code (e.g., Linux packages required by a bench-
mark, or the benchmark code itself), is provisioned in the
cloud VMs based on IaC configurations retrieved from a
provisioning service. The provisioning service knows how to
prepare a given bare VM to execute a given benchmark.
All interactions among these components happen typically

over REST services to foster loose coupling and reusabil-
ity, with the exception of the interaction between the CWB
server and the cloud VMs. These components communicate
over the standard Linux utilities rsync and ssh for simplic-
ity reasons.

2.2 Benchmark Definition
One core feature of CWB is that benchmarks, including

the cloud configuration they are evaluating, can be defined
entirely in code, essentially following the ideas of DevOps
and IaC. As argued in [4], this renders the process repro-
ducible, modularizable, flexible, and testable using stan-
dard software engineering techniques. Common components
among benchmarks can be easily shared and provisioning
configurations from a large provisioning service community
can be reused to efficiently describe the benchmark installa-
tion.
Logically, a benchmark definition requires the informa-

tion depicted in the simplified UML class diagram in Fig-
ure 2. Every benchmark definition must specify one or more
client VMs, which are brought into the expected configura-
tion state via executing one or more provisioning configura-
tions. Both, the definition of client VMs and provisioning
configurations follow the established notions of standard IaC

Benchmark
Definition

Timeout

Schedule

Cloud VM
Configuration

Result Model

Provisioning
Configuration

1..**

*

1..*

1
1..*

<<enum>>
Result Type

* 1*

1

1

*

Figure 2: Structure of a Benchmark Definition

tooling (e.g., Vagrant1 and Opscode Chef2). In addition, ev-
ery benchmark definition requires one or more result models,
which capture the type of outcome (i.e., either nominal, or-
dinal, interval, or ratio scale) a benchmark will deliver. Fi-
nally, benchmarks optionally also contain a schedule (bench-
marks without a schedule are only triggered manually by the
experimenter) and a timeout, after which the execution of a
benchmark is terminated no matter whether it is finished or
not. This timeout prevents potentially costly resource leaks
caused by unforeseen exceptions during the execution.

CWB defines an interface to handle the interaction with
user-defined benchmarks. Each benchmark must implement
a callback (i.e., a piece of code following a defined conven-
tion, which can be invoked by the CWB server) to start
executing. Further, benchmarks should use the provided
CWB client library to notify state updates (e.g., when the
benchmark run is completed or a failure has occurred and
submit results back to the CWB server. The client library
is transparently installed via a pre-defined provisioning con-
figuration.

As the provisioning code is logically separated from the
definition of the cloud VMs, it is easy to set up a large array
of benchmarks that evaluate different cloud configurations,
and be confident that the code and setup of each benchmark
is in fact identical except for the facets that the experimenter
specifically wants to vary.

2.3 Executing Benchmarks
Figure 3 illustrates the interactions when a new bench-

mark execution is triggered by the experimenter or the sched-
uler. For simplicity, we focus on a successful execution here
(i.e., neither provisioning nor benchmark execution fails,
and the benchmark finishes before the defined timeout is
exceeded). For further detail regarding the executional be-
havior, we refer to the benchmark state model presented in
our accompanying paper [8].

A provider plugin in the business logic asynchronously
acquires cloud resources (typically cloud VMs, but it may
also comprise of cloud specific features such as dedicated
block storage or dynamically mapped IP addresses). As soon
as the business logic has managed to establish a remote shell
connection to the cloud VM, it starts orchestrating the VM
provisioning via the remote shell connection. Thereby, each
cloud VM fetches its role dependent configurations from the
provisioning service and applies them.

At this point, the benchmark is entirely prepared for ex-
ecution and asynchronously started via a remote shell com-
mand. This command invokes a defined callback on the VM

1https://www.vagrantup.com/
2https://www.chef.io/

240

https://www.vagrantup.com/
https://www.chef.io/

Figure 3: Executing a Benchmark

that any benchmark has to implement. Once the actual
benchmark workload is completed, the benchmark should
notify this state update to the CWB server via the client li-
brary. The benchmark results are then postprocessed, which
typically involves textual result extraction, and submitted to
the CWB server as individual metrics or as a collection of
metrics via a CSV file. After completed work, the cloud
VM notifies the state update to the CWB server in order to
trigger all resources being released.

2.4 System Implementation
The CWB web application is implemented using the Ruby

on Rails3 framework. One of the fundamental distinctions
between CWB and related work is that it strives to reuse
as much existing DevOps tooling as possible, so that exper-
imenters can build upon existing community artifacts (e.g.,
for provisioning configurations) and knowledge. Hence, it
integrates Cron as the scheduler, Vagrant as the VM envi-
ronment management tool, and Opscode Chef as the provi-
sioning tool.
Vagrant was chosen to represent cloud VM configurations

using an established Ruby-based domain specific language
(DSL). It abstracts cloud provider APIs, provisioning or-
chestration, and the execution of remote shell commands.
The DSL exposes all relevant configuration options in a
declarative and easy-to-understand manner. Vagrant pro-
vides open source plugins for all relevant IaaS providers.
The CWB web interface integrates a minimal web IDE with
syntax highlighting for the Vagrant DSL.
Choosing Opscode Chef with a dedicated Chef server as

provisioning service provides us with a flexible way to in-
stall and configure benchmark components in a reusable
manner by exploiting Chef attributes. Experimenters can
reuse software components (e.g., database installation and
setup code) in terms of cookbooks from the worldwide Chef
community, and easily share benchmark infrastructure code
with others. Furthermore, Chef integrates particularly well
with Vagrant. The attribute passing mechanism from Va-
grant to Chef allows to build configurable and thus reusable
benchmark cookbooks. Since both, Chef and Vagrant, use
an internal Ruby DSL, they not only ensure language con-
sistency across the project but also offer the capabilities of a
fully featured programming language that is exploited with
the use of variables and utility functions.
The current version of CWB is available as an open source

project on Github4, including samples and installation in-
structions for an automated installation using Vagrant.

3http://rubyonrails.org/
4https://github.com/sealuzh/cloud-workbench

3. DEMONSTRATION
During the demonstration we will show how a sample

benchmark is defined, scheduled, and executed with Cloud
WorkBench. We use the CPU test of the SysBench5 tool
suite that calculates prime numbers up to a configurable
maximum workload.

Defining the Benchmark Cookbook: We will show the
key extracts of the provisioning code that is captured in a
Chef cookbook and covers the installation and configuration
of SysBench. The entire code being responsible for installing
SysBench is shown in Listing 1. This code snippet exempli-
fies the cross-platform capabilities of IaC-based benchmark
installation. Adding additional platforms is easy and of-
ten supported by Chef utilities out-of-the-box such as here
where package "sysbench" is automatically translated to
the respective package manager command of the underlying
platform (e.g., apt-get install -y sysbench on Debian or
yum install -y sysbench on CentOS).

case node["platform_family"]
when "debian"

Update package index
include_recipe "apt"

end

package "sysbench" do
action :install

end

Listing 1: SysBench Benchmark Installation via Chef

Specifying Cloud Resources: Once we have shown how
the SysBench installation is described in a Chef cookbook,
we switch to the CWB web interface for the cloud VM con-
figuration. We will demonstrate how theCWB web interface
facilitates creating variations of a previously defined bench-
mark by cloning an existing benchmark definition.

Figure 4 shows the cloud VM configuration for the sam-
ple benchmark which is intended to run in the Amazon
EC2 cloud. This so called Vagrantfile specifies the desired
cloud resources, references the SysBench Chef cookbook,
and passes optional benchmark parameters for provisioning.
The first section in Figure 4 defines that the VM to be used
should be launched in the Amazon EC2 cloud, within a Eu-
ropean data center, on a micro instance type, and with a
bare Ubuntu 14.04 VM image.

Parametrizing the SysBench Provisioning: The sec-
ond section in Figure 4 references the SysBench cookbook
via add_recipe and takes advantage of the optional bench-
mark configuration parameters. Hereby, within the sys-

bench namespace, it is explicitly specified that SysBench
uses the CPU test mode, sets the workload to 2000 (i.e.,
calculating calculate prime numbers up to 2000), and runs
in a single thread. Via the cli_options parameter, arbi-
trary command line arguments that are supported by the
SysBench tool can be passed as key-value pairs.

Scheduling the Benchmark: We will demonstrate how
to create and activate a schedule that periodically triggers
executions of the SysBench benchmark using the cron ex-
pression syntax6. In our example, the expression 15 0,12

* * * triggers a new execution of the benchmark a quarter

5http://manpages.ubuntu.com/manpages/utopic/man1/
sysbench.1.html
6http://linux.die.net/man/5/crontab

241

http://rubyonrails.org/
https://github.com/sealuzh/cloud-workbench
http://manpages.ubuntu.com/manpages/utopic/man1/sysbench.1.html
http://manpages.ubuntu.com/manpages/utopic/man1/sysbench.1.html
http://linux.die.net/man/5/crontab

Figure 4: Cloud VM Configuration for SysBench

past midnight and lunchtime, every day of the month, every
month of the year, and every day of the week.

Executing the Benchmark: We will manually start the
execution of the previously adapted benchmark and demon-
strate how CWB supports the experimenter in tracking the
current status of the benchmark execution. Figure 5 gives
an overview over a successfully finished execution of the Sys-
Bench benchmark. The top bar summarizes the current sta-
tus of the execution (i.e., finished), the duration of the actual
benchmark (i.e., less than a minute), and the duration of the
entire execution (i.e., 3 minutes) including preparation and
termination. Preparation includes the VM startup time and
time to provision (i.e., install and configure) the benchmark,
and termination includes post-processing and submission of
benchmark results. The timeline underneath the top bar vi-
sualizes the key events of an execution in a comprehensible
manner.

Showing the Results: Finally, the resulting metric that
was generated in the previous execution will be shown. For
further analysis of the results, the metrics associated to a
benchmark definition can be downloaded as a CSV file.
The demonstration is available as a screencast on Youtube7.

4. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 610802
(CloudWave).

5. REFERENCES
[1] M. Cunha, N. Mendonça, and A. Sampaio. A

Declarative Environment for Automatic Performance
Evaluation in IaaS Clouds. In 6th IEEE International
Conference on Cloud Computing (CLOUD), 2013.

[2] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart,
K. D. Bowers, and M. M. Swift. More for Your Money:

7http://youtu.be/0yGFGvHvobk

Figure 5: Finished SysBench Benchmark Execution

Exploiting Performance Heterogeneity in Public
Clouds. In Proceedings of the 3rd ACM Symposium on
Cloud Computing (SoCC’12), 2012.

[3] L. Gillam, B. Li, J. O’Loughlin, and A. Tomar. Fair
Benchmarking for Cloud Computing Systems. Journal
of Cloud Computing: Advances, Systems and
Applications, 2013.

[4] M. Hüttermann. DevOps for Developers. Apress, 2012.

[5] D. Jayasinghe, J. Kimball, S. Choudhary, T. Zhu, and
C. Pu. An Automated Approach to Create, Store, and
Analyze large-scale Experimental Data in Clouds. In
14th IEEE International Conference on Information
Reuse and Integration (IRI), 2013.

[6] P. Leitner and J. Cito. Patterns in the Chaos - a Study
of Performance Variation and Predictability in Public
IaaS Clouds. CoRR, abs/1411.2429, 2014.

[7] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical Report 800-145, National
Institute of Standards and Technology (NIST), 2011.

[8] J. Scheuner, P. Leitner, J. Cito, and H. Gall. Cloud
WorkBench - Infrastructure-as-Code Based Cloud
Benchmarking. In Proceedings of the 6th IEEE
International Conference on Cloud Computing
Technology and Science (CloudCom’14), 2014.

[9] M. Silva, M. Hines, D. Gallo, Q. Liu, K. D. Ryu, and
D. Da Silva. CloudBench: Experiment Automation for
Cloud Environments. In IEEE International Conference
on Cloud Engineering (IC2E), 2013.

242

http://youtu.be/0yGFGvHvobk

	Introduction
	System Overview
	Architecture
	Benchmark Definition
	Executing Benchmarks
	System Implementation

	Demonstration
	Acknowledgments
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150313085226
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150313085226
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryList_V1
 qi2base

