
Geosocial Search: Finding Places based on Geotagged
Social-Media Posts

Barak Pat
Technion – Israel Institute of

Technology, Haifa Israel
barakpat@cs.technion.ac.il

Yaron Kanza
Jacobs Institute, Cornell Tech,

New York, USA
kanza@cornell.edu

Mor Naaman
Jacobs Institute, Cornell Tech,

New York, USA
mor@jacobs.cornell.edu

ABSTRACT
Geographic search—where the user provides keywords and
receives relevant locations depicted on a map—is a popular
web application. Typically, such search is based on static
geographic data. However, the abundant geotagged posts in
microblogs such as Twitter and in social networks like Insta-
gram, provide contemporary information that can be used to
support geosocial search—geographic search based on user
activities in social media. Such search can point out where
people talk (or tweet) about different topics. For example,
the search results may show where people refer to “jogging”,
to indicate popular jogging places. The difficulty in imple-
menting such search is that there is no natural partition of
the space into “documents” as in ordinary web search. Thus,
it is not always clear how to present results and how to rank
and filter results effectively. In this paper, we demonstrate
a two-step process of first, quickly finding the relevant areas
by using an arbitrary indexed partition of the space, and
secondly, applying clustering on discovered areas, to present
more accurate results. We introduce a system that utilizes
geotagged posts in geographic search and illustrate how dif-
ferent ranking methods can be used, based on the proposed
two-step search process. The system demonstrates the ef-
fectiveness and usefulness of the approach.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

Keywords
Geographic search, geosocial, socio-spatial, geo-tagged tweets,
social media, microblog, local search

1. INTRODUCTION
In online social networks and microblogging applications,

such as Instagram and Twitter, users frequently publish geo-
tagged posts. In such posts, textual content is associated

Copyright is held by the International World Wide Web Conference Committee
(IW3C2). IW3C2 reserves the right to provide a hyperlink to the author’s site if the
Material is used in electronic media.
WWW ’15, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742847

with a location, hence, large sets of geotagged posts provide
up-to-date information regarding where specific terms are
commonly mentioned. Such data can be used for geosocial
search, to find locations with associated search terms.

The results of a geosocial search reflect term usage in dif-
ferent locations. For well known geographical entities with
a distinct name, such as “Highline” (see Fig. 1) or “Bryant
Park”, in New York City, there are many posts containing
these terms in the location of the entity. Thus, such searches
can accurately indicate the entity on a map, and they pro-
vide indication to the validity of the approach. There are,
however, other types of search that do not refer to a spe-
cific entity. A search for “jogging”, for example, can indicate
good jogging places (see Fig. 2). A search for “sunset” helps
finding popular sunset viewpoints (see Fig. 3). A search for
“Empire State Building” indicates not just the location of
the building but also popular locations from which there is
a good view of the building.

Some searches are essentially abstract, e.g. a search for
“romantic walk”, in the sense that the search is about how
people feel in a place or what they say about the place and
not about a geographical property of the entity. Another
example is of a search for “overpriced” and it is interesting
to see not only where this term is being used but also with
which other terms it appears, to know what is overpriced.

The examples above demonstrate that a geosocial search
is different from traditional geographical search and it has a
merit of its own—not as a replacement of ordinary search but
as a tool for researchers, tourists and even for local residents
who want to discover places associated with given terms.

In a search it is essential to provide results instantly. Thus,
to deal with large amounts of data, an index should be used.
This causes one of the difficulties in implementing a geoso-
cial search—there are no “documents” or other natural log-
ical atomic units to be indexed and ranked. On the one
hand, without such units, we cannot build and use an in-
verted index. On the other hand, defining such units by
partitioning the indexed area arbitrarily raises the concern
that the partition will affect the result in an unpredicted
way by returning areas that are too big or too small.

In this paper we present a search system that copes with
the lack of documents by partitioning the area into cells
and indexing the cells. In a search, relevant cells are re-
trieved. Then, posts in these cells and their surrounding are
clustered, and the boundaries of the clusters are presented,
to provide more accurate results. Our system demonstrates
that this approach is effective—results are retrieved fast over
millions of messages, with good accuracy.

231



Figure 1: The user interface, in a
search for “highline”

Figure 2: “Jogging” places Figure 3: “Sunset” viewpoints

Figure 4: The top 10 most frequent keywords in a
search for “lion”, in different areas

Another challenging issue is how to rank and filter re-
sults. A common approach is to use a heat map [9]. How-
ever, a heat map is different from ranking and it does not
find relevant places—it mainly shows the activity level in
different places and not the percentage of relevant posts in
these places. We, in comparison, implemented three differ-
ent ranking methods and our system allows users to examine
the effect of these different ranking methods on the result.

2. RELATED WORK
Recently, there has been a growing interest in search based

on social-media data. Some systems used only the textual
content of posts, e.g. [8]. Other systems utilized only lo-
cations of posts in their search. Ferrari et al. [5] and Xia
et al. [10] showed how to detect hotspots and hyper-local
events in a city, based on Twitter posts. A data model for
combining social data and spatial data was proposed in [4].

Several projects considered locations and textual content
combined. Kling et al. [7] showed how to classify posts into
urban topics related to various activities. Ahern et al. [1]
analyzed textual tags of geo-referenced photos and showed

how to visualize representative tags on a map. The Live-
hoods project [3] used geo-tagged posts to find boundaries
between neighborhoods. Neighborhoodbuzz1 presents popu-
lar terms in specified locations. Note that they find popular
terms for given locations while we search for locations for
given terms. For a study of the correlation between loca-
tions and content in microblogs see [6].

The MapD 2 system and TweetMap3 (which is built on top
of MapD) provide search capabilities over geotagged tweets,
however, these systems employ a “brute-force approach” and
require a huge computation power while our system can run
on an ordinary computer. Furthermore, they only present
relevant tweets on a map and do not apply ranking or a
search for relevant areas.

3. GEOSOCIAL SEARCH
We elaborate now on geosocial search. In geosocial search,

the user inserts search terms and sees the results depicted
on a map. In our system, the search area is partitioned into
cells and there are two retrieval steps—a step of retrieving
relevant cells and a step of presenting more precise polygonal
areas, as search results. The system provides the ability
to see the cells discovered in the first step of the retrieval,
depicted in red, the areas discovered in the second step,
depicted in blue, or both the cells and the polygonal areas.
See a screenshot of the system in Fig. 1.

The system provides the capability of advanced search
where the user can limit the search to return only posts sent
during hours of the day, e.g. to compare good jogging places
during daylight time with good jogging places during the
night. The system also provides the capability of limiting
the search to certain days of the week, e.g., to limit the
search to posts sent during weekends.

The system employs three ranking methods, namely Global
Ratio, Local Ratio and Harmonic Mean. The user interface
allows changing the upper and lower thresholds, for each
ranking method, to control the presentation by adding or
discarding results.

1http://neighborhoodbuzz.knightlab.com/
2http://mapd.csail.mit.edu
3http://worldmap.harvard.edu/tweetmap/

232

http://neighborhoodbuzz.knightlab.com/
http://mapd.csail.mit.edu
http://worldmap.harvard.edu/tweetmap/


We now elaborate on these ranking scores. Consider posts
where each post has a location and a textual content. The
area of the search is partitioned into cells and each post is
associated with the cell containing it. A search query q is
a list of search terms. We refer to a post that contains the
search terms q as relevant post.

• Global ratio: To each cell we assign a score which is
the ratio of the number of relevant posts in the cell to
the total number of relevant posts in the repository.

• Local ratio: To each cell we assign a score which is the
ratio of the relevant posts in the cell to the number of
all posts in the cell.

• Harmonic mean: To each cell we assign the harmonic
mean of the local ratio and the global ratio.

The global ratio gives high scores to places with many rele-
vant posts, and thus it prefers places in which there is high
activity. This may be desired in some cases, but may fail to
find relevant places with low activity. The local ratio finds
places in which the percentage of relevant posts is high. This
approach is useful to find relevant placed even if their activ-
ity level is low, but it may give low scores to highly popular
places. We, thus, also apply a ranking which is the harmonic
mean of the local ratio and the global ratio. Our system al-
lows changing the upper threshold and the lower threshold,
for each one of the ranking methods, to test the effect of the
ranking on the result.

When viewing the results, the user can click on the pre-
sented areas to see the ten most frequent terms, in relevant
posts, in the clicked area. The user can also view a small
sample of ten relevant tweets in that area. For example,
Fig. 4 presents the frequent keywords in places returned by
a search query “Lion”. In one place the frequent words are
“King”and“Broadway”so this place relates to the Lion King
Broadway show. In the other place the frequent terms are
“Sea” and “Zoo” so this place relates to sea lions in a zoo.
Evidently, the frequent words may help users understand
the nature of the discovered places.

4. SYSTEM ARCHITECTURE
The system is designed as a client-server web application.

The client (front-end) is an interactive web application that
allows users to pose queries and define constraints. It vi-
sually presents the results on a map. We use the Google
Maps API for presenting discovered places on a map, and
by using Ajax, the client can present results gradually. See
an illustration of the front end in Fig. 1.

The back-end tier is responsible for the indexing of posts
and for processing search queries. The system architecture
is presented in Fig. 5. Next we elaborate on the components
of the system.

4.1 Dataset
The dataset currently indexed by the system comprises 45

million geotagged tweets and Instagram posts. These posts
are all in the area of New York City and were collected as
part of the CityBeat project [10]. In our system, indexing
the data took about 2 hours, hence, indexing can be done
frequently, say every several days, to reflect recent changes.

Figure 5: System architecture

4.2 Back End
Given a search query, the back-end module finds the rele-

vant areas and sends the results to the client, in GeoJSON
format (see http://geojson.org/). The back-end is built
on top of an Apache Tomcat server and it uses the Apache
Lucene engine. Lucene provides an inverted index that is
used for efficient retrieval of relevant posts. Thus, our con-
tribution is of showing how to use the inverted index effec-
tively for geosocial search.

Before indexing the posts, the system partitions the entire
search area into cells, to form a grid. Each cell has height of
350 meters and width of 250 meters, however, this is config-
urable and can be changed. The cells are numbered. Each
post is associated with the cell in which its geotag is located,
and has a unique identifier (post-id) that comprises the cell
number and its number within the cell. Hence, when given
a post-id we can immediately know in which cell this post
is. There is an additional index that allows retrieving posts
by their post-id.

In the inverted index there is an entry for each term with a
pointer to a list of posts containing that term. The lists are
sorted by post-id, so based on the way post-ids were defined,
the posts in each list are sorted according to the cell number.
Within a cell, the posts are sorted by their number in the
cell. Thus, we can process a query cell by cell. The system
also stores for each cell the number of posts in the cell, for
the computation of the local ratio.

Given a search query, the retrieval process is by computing
the local ratio and global ratio for the cells. The initial step
is to determine which posts are relevant, for the given query.
Note, however, that our goal is to find relevant areas, not to
retrieve the most relevant posts.

4.2.1 Computing Relevant Cells
Using the inverted index, the system counts for each cell

the relevant posts, by intersecting the lists of posts of the

233

http://geojson.org/


query terms. For example, given a query “Central Park”,
the index is used to get to the list of “Central” and the
list of “Park”. It gets the posts with “Central”, from the
first list, and the posts of “Park” from the second list. The
intersection of these lists provides a list L of posts referring
to “Central” and “Park”. Note that L is sorted by post-id
and hence sorted by cells. A naive approach to find how
many posts of L there are in each cell is by a linear scan
over L. However, L can be a long list. So, we apply a more
efficient search, as follows.

The system conducts a binary search over L to find where
in L end the posts of Cell 1 and start the posts of Cell 2.
Then, it applies a binary search to find where in L end the
posts of Cell 2 and start the posts of Cell 3, and so on.
In each search, it uses the information from the previous
searches. For L of size N and k cells, the complexity of such
search is O(k log N

k
), instead of the O(N) complexity of a

linear scan of L. This allows the system to know how many
relevant posts there are in each cell, to compute the local
ratio and the global ratio of each cell.

To support selection of posts according to time constraints,
we apply the specified time constraints as filtering conditions
when traversing the lists. The times of posts and the con-
straints are translated to numerical values, to improve the
efficiency of the filtering action. In the retrieval, cells with
less than 5 relevant posts are ignored to reduce noise (this
is a configurable parameter of the system).

After computing the global ratio, local ratio and harmonic
mean for the cells, the system needs to choose which cells to
initially present to the user. (The user can view additional
results by changing the sliders, afterwords.) To do so, the set
T of 10 cells with the highest score is selected, for each one of
the three measures. However, there may be big differences
in the scores among these 10 selected cells. So, we apply the
following approach. We compute the sum of scores of the 10
selected cells of T . Then, we select the top cells among the
cells of T whose sum exceeds 80% of the sum of scores. For
example, suppose the sum of scores is 100 and the first cell
has a score of 82. Then we return just this cell because by
itself its score already exceeds 80% of the sum of scores. If
the 4 top scores are 35, 28, 22, 10 then the cells with scores
35, 28, 22 are selected because their scores exceed 80% of
the sum of scores. This reduces “noise” caused by cells with
relatively low scores. Note that by combining selected cells
from all three methods we present results from areas with
different levels of activity.

4.2.2 Computing Relevant Areas
After finding the relevant cells, the next task is the clus-

tering of messages to present results with higher accuracy
and finer granularity than that of the grid. Intuitively, the
result area should be as small as possible but with as many
relevant posts as possible. The computation is by applying
the following steps. First, adjacent cells are merged to create
cell groups. This is somewhat similar to bottom-up hierar-
chical clustering of cells. Secondly, for each group of cells,
the system applies the OPTICS clustering algorithm [2] over
the posts of these cells. If there are much too many posts
in the cells, the algorithm is applied over a uniform repeat-
able sample of the messages. The algorithm receives two
parameters—MinPts, which we set to 4, and ε which we
took to be the length of a cell divided by the square root
of the number of posts in the most dense cell in the group

(to reflect the relative distance between points in this cell).
OPTICS creates a hierarchy of clusters, so the third step
is to choose among the clusters of the hierarchy the set of
clusters that maximize Number of messages in clusters√

Area·(log number of clusters+1)
. (Clus-

ters whose area is too small are ignored, to prevent noise.)
By that, we try to maximize the total number of clustered
messages, while minimizing the overall area of the clusters
and the number of clusters.

5. DEMONSTRATION
Our demonstration illustrates geosocial search over 45 mil-

lion posts in the area of New York City. A video of different
searches using the system is available via the following link:
https://www.youtube.com/watch?v=LZJeLhZ3h90. In this
video, the search system (the back-end) is deployed on an
Amazon Web Service (AWS) server with 15GB of main mem-
ory and 8 cores, using a Linux 14.04 Ubuntu operating sys-
tem. We show how the system can provide relevant infor-
mation easily, efficiently and accurately. We demonstrate
different types of search, the effect of temporal filters and
the effect of different ranking methods on the search results.

6. ACKNOWLEDGMENTS
This research was supported in part by the Israel Science

Foundation (Grant 1467/13), by the Israeli Ministry of Sci-
ence and Technology (Grant 3-9617) and by the National
Science Foundation CAREER award 1446374.

7. REFERENCES
[1] S. Ahern, M. Naaman, R. Nair, and J. H.-I. Yang.

World explorer: Visualizing aggregate data from
unstructured text in geo-referenced collections. In
Proc. of JCDL, 2007.

[2] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander. Optics: Ordering points to identify the
clustering structure. ACM Sigmod Record, 28(2), 1999.

[3] J. Cranshaw, R. Schwartz, J. I. Hong, and N. M.
Sadeh. The livehoods project: Utilizing social media to
understand the dynamics of a city. In ICWSM, 2012.

[4] Y. Doytsher, B. Galon, and Y. Kanza. Querying
geo-social data by bridging spatial networks and social
networks. In Proc. of 2nd ACM LBSN, 2010.

[5] L. Ferrari, A. Rosi, M. Mamei, and F. Zambonelli.
Extracting urban patterns from location-based social
networks. In Proc. of the 3rd ACM LBSN, 2011.

[6] I. Grabovitch-Zuyev, Y. Kanza, E. Kravi, and B. Pat.
On the correlation between textual content and
geospatial locations in microblogs. In GeoRich, 2014.

[7] F. Kling and A. Pozdnoukhov. When a city tells a
story: Urban topic analysis. In SIGSPATIAL, 2012.

[8] B. O’Connor, M. Krieger, and D. Ahn. Tweetmotif:
Exploratory search and topic summarization for
twitter. In ICWSM, 2010.

[9] I. Weber and V. R. K. Garimella. Visualizing
user-defined, discriminative geo-temporal twitter
activity. In ICWSM, 2014.

[10] C. Xia, R. Schwartz, K. E. Xie, A. Krebs, A. Langdon,
J. Ting, and M. Naaman. CityBeat: real-time social
media visualization of hyper-local city data. In
Proc. of WWW Conference, 2014.

234

https://www.youtube.com/watch?v=LZJeLhZ3h90

	Introduction
	Related Work
	Geosocial Search
	System Architecture
	Dataset
	Back End
	Computing Relevant Cells
	Computing Relevant Areas


	Demonstration
	Acknowledgments
	References



