
Ajax API Self-adaptive Framework for End-to-end User
Xiang Li1, 2, Zhiyong Feng1, 2, Keman Huang1, 2, Shizhan Chen*, 1, 2

1Tianjin Key Laboratory of Cognitive Computing and Application
2School of Computer Science and Technology, Tianjin University

{xiguozi, zyfeng, keman.huang, shizhan}@tju.edu.cn

ABSTRACT
Web developers often use Ajax API to build the rich Internet
application (RIA). Due to the uncertainty of the environment,
automatically switching among different Ajax APIs with similar
functionality is important to guarantee the end-to-end
performance. However, it is challenging and time-consuming
because it needs to manually modify codes based on the API
documentation. In this paper, we propose a framework to address
the self-adaption and difficulty in invoking Ajax API. The Ajax
API wrapping model, consisting of the specific and abstract
components, is proposed to automatically construct the
grammatical and functional semantic relations between Ajax
APIs. Then switching module is introduced to support the
automatic switching among different Ajax APIs, according to the
user preference and QoS of Ajax APIs. Taking the map APIs, i.e.
Google Map, Baidu Map, Gaode Map, 51 Map and Tencent Map
as an example, the demo shows that the framework can facilitate
the construction of RIA and improve adaptability of the
application. The process of selection and switching in the
different Ajax APIs is automatic and transparent to the users.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques — Automatic
Programming; D.2.3 [Software]: Software Engineering—Coding
Tools and Techniques.

Keywords
Ajax API, End-user Development, Self-adaption, Dynamic
Components Composition

1. INTRODUCTION
In Web 2.0, because of the asynchronous nature and high

interactivity, Ajax [1] is extremely popular for the Web
application developing. Moreover, with the trend of Open API,
more and more Ajax application providers open their Ajax APIs
based on their application to third parties. However, it is
challenging and time-consuming for the Ajax API discovery,
invoking and runtime switching. Taking the usage of the popular
map application as a typical scenario, when a user wants to embed
a map into his application, he must find an available map API
over the Internet. And then he has to study the API documentation.
Also, he must be a JavaScript and Ajax literate. Above of these
result in a steep learning curve.

* is corresponding author

Copyright is held by the International World Wide Web Conference Committee
(IW3C2). IW3C2 reserves the right to provide a hyperlink to the author’s site if
the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742834.

Furthermore, once the user completes his map-based application,
however the API cannot be invoked or it is updated, he has to
repeat previous complex work again to guarantee his application’s
availability. Overall, the difficulty of finding an available API,
time-consuming process of studying API document, high learning
threshold for user, and complexity of API adaption makes it
challenging to construct high-quality application based on Ajax
API.

 Recently, some researches on mashup [4] and dynamic web
service selection [5], aim at wrapping and organizing of SOAP or
RESTful APIs, and designing mechanisms for invocation and
composition. However, because invoking pattern is different
between Ajax API and SOAP or REST API, these mechanisms
cannot be directly applied on Ajax APIs. In [2], the authors
propose a method that can discovery and recommend APIs
conveniently according to the syntax relations of classes and
methods. But it is not helpful to invoke and switch APIs. In [6],
[3], researchers utilize abstract interfaces to complete self-
adaptive switching in syntax layer. Due to the lack of semantic
information of API, they build abstract interfaces by manual
programming. And when different APIs are switched by those
frameworks, these frameworks cannot solve the problem of
parameters adaptions.

Our paper constructs a self-adaptive framework for the
automatic switching among different Ajax APIs to guarantee the
RIA’s availability in the long-time running. First, the wrapping
module is introduced to construct the Ajax API’s semantic-aware
model based on its documentation, which consists of the specific
component (SC) and the abstract component (AC). Then the
switching module is constructed to support the automatically
replacement of the disable Ajax API, including the alternative
candidate selection and the parameter adaption. Finally, the
demonstration on the map API application shows that our
framework can effectively support the self-adaption between
different APIs and facilitate the usage of the APIs.

The rest of the paper is organized as follows: Section 2
introduces our self-adaptive framework and section 3 shows the
details of the implementation. Section 4 presents the
demonstration of our framework. Section 5 concludes our work.

2. SELF-ADAPTIVE ARCHITECTURE
Figure 1 gives the overview architecture of our Self-Adaptive

Ajax API Framework (SAAAF). The SAAAF locates between the
original Ajax APIs and the end users. In order to facilitate its
description, we introduces four different denotations as follows:

a) Abstract application: is consisted of abstract components
in specific order. It is a mapping to requirement of end users.

b) Concrete application: is executive code of Ajax
application that is built by more suitable Ajax API.

211

c) Specific component (SC): is an encapsulation for a
function and some objects from an Ajax API. The specific
component is an executive unit and has a specific semantics.

d) Abstract component (AC): is semantic abstract of specific
components and represents semantics of the specific components.

As shown in the Figure 1, when the end user needs to invoke
one Ajax API to create an RIA, he/she will send their request to
the framework. Then the wrapping Ajax API module is used to
wrap the SCs and ACs to construct the Ajax application resource
library based on the API’s documentation. The SCs represent the
full-fledged callable components with specific functional
semantics. They wrap functions and objects from the original
Ajax API according to their grammatical relations. The ACs
represent the functional semantics in SCs, and an AC corresponds
to one or more SCs. The Ajax API switching module will
construct the concrete application for the end-user. During the
long-time running, if the used API becomes invalid due to the
dynamic environment, the switching module could switch the
Ajax API to the one with the same function and make the
switching process transparent for the end-users.

Fig. 1: Architecture of the Self-Adaptive Ajax API framework

2.1 Wrapping Ajax API module
Based on the documentations of the Ajax APIs, we can

extract the name, parameters, return of the function as well as the
invoking relation between objects and functions. Therefore, the
SC can be formally defined as follows:

SC = <object_set, function, parameter_set, code> (1)

where object_set is a set of objects which is indispensable to
invoke the function, function is one specific functionality in the
API document, parameter_set is a set of parameters for the
function and object_set, code is executive code of JavaScript.

Obviously, an original Ajax API can be wrapped into many
SCs. Furthermore, for each SC, we can add the semantic
annotation based on DBpedia according to the methodology
shown in [7]. Then the SCs with similar functional semantics will
be organized into an AC. Due to the space limitation, the detail
for the wrapping is left out. Table 1 shows the wrapping example
of SC and AC.

Table 1. Example of the specific and abstract component

Specific Component
Abstract Component

{ Id:2,
APIid:1,
Object_set:[{name:”map”,class:”BMap
.Map”},{name:”navigation”,class:”BM
ap.NavigationControl”}],
Function:”addControl”,
Parameters:””,
Code:”map.addControl(….)..”,
Ab_Component_ID:2}

{Id:2
Functional
semantics:”Navigation
Control Map”
}

2.2 Switching Ajax API module
The switching Ajax API module consists of three sub-module,

including request handler, decision maker and effector. It will
support the selection and the composition of SCs to fulfill the
user’s request, as well as the automatic switching between
different Ajax APIs.

SCs’ Selection and Composition: Firstly, the request
handler accepts a user’s request, and then gets the information of
abstract application based on URL and sends this information to
decision maker and effector. The decision maker selects one API
according to the given information and sends the decision to
effector. The effector gets indispensable SCs according to both
ACs of abstract application and selected Ajax API. Then, the
effector assembles the executive codes from SCs to produce initial
concrete application.

Algorithm 1: Semantics-based Parameters Replacement.

Input: LPSC is a list of parameters of selected SCs;

SPVAA is a set of parameters values for an abstract
application;

CCA is codes of the initial concrete application;

Output: C’ is codes with values of parameters

1. V_set = SPVAA;

2. P_list=LPSC;

3.C=CCA

4. foreach(p ∈P_list) //p is one parameter in the P_list

5. foreach(v∈V_set) //v is one parameter value in the V_set

6. if(p.semantic_annotation==v.semantc_annotation)

7. replace p.name with v.value in the C

8. end foreach

9. end foreach

10. if(∃p is not replaced && ∃v is not used)

11. create SPARQL with p.sem_anno and v.sem_anno

12. send SPARQL to the DBpedia to query the values

13. replace p in C with values from DBpedia

14.Return C’

212

Automatic Switching: If the Ajax API becomes invalid due
to the update or policy change, the wrapping Ajax API module
will select another SC with the same functionality to replace the
disable one. Here we simply select the one with the same
functional semantics and the highest QoS. Other methodologies
about how to select the optimized replacement [8] can be easily
integrated into our framework. As we already added semantic
annotations to parameters of every SC, the most important task
left is to map existing inputs into the selected SC’s parameters.

Algorithm 1 shows the detail of our semantics-based
parameters replacement. Line 01~03 initialize variables, line
04~09 fill in parameters based semantic annotations, line 11-13
get necessary values from DBpedia by SPARQL, line 14 generate
the integrated concrete application.

3. IMPLEMENTATION
Our Ajax API self-adaptive framework is implemented based

on Node.js (http://nodejs.org/) and Apache Wink RESTful web
Service (http://wink.apache.org/). MongoDB (http://www.mongo
db.org/) is used as the database of framework for the Ajax
application resource library.

The wrapping Ajax API module stores SCs and ACs to Ajax
application resource library. The wrapping Ajax API module
consists of an API’s document crawler, an API’s document
analytic program, SCs generator and semantic annotation adder.
The SCs generator stores SCs into the MongoDB. The semantic
annotation adder utilizes DBpedia spotlight
(https://github.com/dbpedia-spotlight/dbpedia-spotlight).

For the switching module, as shown in Figure 2, the effector
is divided into the data collector and the code generator; the
request handler and decision maker is implemented by RESTful
Web Services:

Fig. 2: Architecture of switching Ajax API platform

 a) Request handler

Request handler gets the ID of abstract application and
sends it to decision maker and data handler.

b) Decision maker

Decision maker gets the ID of abstract application, and then
queries which APIs can be used and selects one Ajax API
according to the rank of their QoS.

c) Data handler

Data handler requests the ID of selected Ajax API to
decision maker. And it queries MongoDB to get codes and
parameters of specific components.

d) Code generator

Code generator combines each codes of SC by ACs order to
generate an initial concrete application. It fills in parameters in
the initial concrete application. Therein, code generator utilizes
the DBpedia SPARQL endpoint (http://dbpedia.org/sparql) to
query necessary parameters’ values.

4. DEMONSTRATION

4.1 Ajax API Document Wrapping
Figure 3 shows the user interface of our wrapping Ajax API

module. It can crawl the specific API document over Internet
based on the given URL. Also it supports users to submit the API
documents directly. According to the method discussed in Section
2, when the document is available, the module will analyze and
extract information of functions and objects from the document,
acquire the syntax relations between functions and objects,
generate executive codes and store SCs into the database, and
finally add semantic annotations to SCs and organize them into
ACs.

Fig. 3: User interface of the Wrapping Ajax API Module. The top
center part allows users to submit the Ajax API document or input
its URL. The bottom left is the specific components extracted from
the document and the bottom right is the abstract components
generated based on the specific components.

4. 2 Ajax API Switching
In Figure 4, taking the map applications as an example, we

use Tencent Map to create a map-based application which is the
basic map with navigation control, maptype control and scale
control. We can visit through “http://127.0.0.1/map?Aappid=1” to
get the application. When errors occur in the Tencent Map API,
our framework detects the failure and replaces Tencent Map API
with 51 Map API，which has the highest QoS among another
four map APIs. Note that this switching process is transparent to
the end-user, which means that the end-user can still visit the
same URL to fetch the application and get the same user-
experience while the map has been changed into 51 Map API
instead.

213

Fig. 4: Effect of our demo in a map application. Notes that when
our framework detects the failure of current used API, it can
switch to the available one transparently.

4. 3 Using Ajax API in the Mashup

Fig. 5: Creating a Mashup. Notes that use our framework can
invoke Ajax API conveniently in the mashup and return the best
Ajax API automatically every time.

We create a simple mashup that can get city weather and
show it in the map. The mashup is consisting of a weather query
API (http://www.weather.com.cn/data/sk/101030100.html) and a
map API which is given by our framework. To invoke the map
API in the mashup, as shown in Figure 5, we only need two steps,
as follows:

a) Include a JS in the mashup as follows.

“<script src="http://127.0.0.1/map?number=3&format=js">”

b) Add a invoking function such as “getApp(temp)”. The
“temp” is acquired from weather query API.

Obviously, if the initial map API becomes invalid during the
long-time running, it will automatically transfer to another
available one so that the mashup can keep available and the
developer doesn’t need to manually replace the unavailable API at
present.

The screencast of our demonstration is available at
https://www.youtube.com/watch?v=vSl3s76Nj8Q&feature=youtu
.be.

5. Conclusion
Our Ajax API self-adaptive framework is a tool for building

a mashup, which makes the automatically switching between
Ajax API candidates transparent to the end-user. A wrapping
module is introduced to automatically analyze the API
documentation, which can wrap and store Ajax API codes in
syntax layer as specific components, as well as enrich semantics
information and organize the specific components into abstract
components. The switching module is presented to select and
compose the specific components into mashup to fulfill the user’s
request, as well as to automatically and transparently replace the
unavailable API with available one. The demonstration shows that
our framework can effectively facilitate the understanding of the
API document, the automatic switching between APIs as well as
the usage in the mashup.

In the future, we continue to extend the mechanism for
encapsulating, and adapting Ajax APIs. We will also design
optimal methods to capture user requirements.

6. ACKNOWLEDGEMENTS
This work is supported by the National Natural Science

Foundation of China grant 61373035, 61173155, the Tianjin
Research Program of Application Foundation and Advanced
Technology grant 14JCYBJC15600, and the National High-Tech
Research and Development Program of China grant
2013AA013204.

7. REFERENCES
[1] Garrett, J.J. Ajax: A New Approach to Web Applications,

2005,http://www.adaptivepath.com/publications/essays/archiv
es/000385.php.

[2] W. Chan, et al., Searching connected API subgraph via text
phrases, Proc. Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, ACM, 2012, pp. 1-11.

[3] S. Lingyan, et al., A QoS-based Self-adaptive Framework for
OpenAPI, Proc. 2011 Seventh International Conference on
Computational Intelligence and Security (CIS), 2011, pp.
204-208.

[4] L. Xuanzhe, et al., Composing Data-Driven Service Mashups
with Tag-Based Semantic Annotations, Proc. 2011 IEEE
International Conference on Web Services (ICWS), 2011, pp.
243-250.

[5] S. Nakajima, An Architecture of Dynamically Adaptive PHP-
based Web Applications, Proc. 18th Asia Pacific Software
Engineering Conference (APSEC) , 2011, pp. 203-210.

 [6] E. Khanfir, et al., A Web Service Selection Framework Based
on User's Context and QoS, Proc. 2014 IEEE International
Conference on Web Services (ICWS), 2014, pp. 708-711.

[7] Z. Zhen, et al., Semantic Annotation for Web Services Based
on DBpedia, Proc. IEEE 7th International Symposium on
Service Oriented System Engineering (SOSE), 2013, pp. 280-
285.

[8] H. Keman, et al., Recommendation in an Evolving Service
Ecosystem Based on Network Prediction, Automation
Science and Engineering, IEEE Transactions on, vol. 11, no.
3, 2014, pp. 906-920.

214

