
queryCategorizr: A Large-Scale Semi-Supervised
System for Categorization of Web Search Queries

Mihajlo Grbovic†, Nemanja Djuric†, Vladan Radosavljevic†,
Narayan Bhamidipati†, Jordan Hawker‡, Caleb Johnson‡

†Yahoo Labs ‡Yahoo, Inc.
{mihajlo, nemanja, vladan, narayanb, hawkerj, calebj}@yahoo-inc.com

701 First Avenue, Sunnyvale, CA, USA

ABSTRACT
Understanding interests expressed through user’s search
query is a task of critical importance for many internet ap-
plications. To help identify user interests, web engines com-
monly utilize classification of queries into one or more pre-
defined interest categories. However, majority of the queries
are noisy short texts, making accurate classification a chal-
lenging task. In this demonstration, we present queryCate-
gorizr, a novel semi-supervised learning system that embeds
queries into low-dimensional vector space using a neural lan-
guage model applied on search log sessions, and classifies
them into general interest categories while relying on a small
set of labeled queries. Empirical results on large-scale data
show that queryCategorizr outperforms the current state-
of-the-art approaches. In addition, we describe a Graphical
User Interface (GUI) that allows users to query the system
and explore classification results in an interactive manner.

Keywords
Query categorization; word2vec; query embeddings.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis; Language parsing and understanding

1. INTRODUCTION
Search engines are used by billions of online users every

day as a tool to promptly find desired information. In or-
der to capture and more easily act upon very clear intent
that the users channel through queries, query classification
is a task of critical importance to search engines. Here,
one aims to classify textual queries into one or more pre-
defined interest categories, such as “finance”, “sports”, or
“technology”. This allows search companies to better un-
derstand user intentions, improve user experience through
better personalization, provide more relevant search results
and targeted recommendations, and optimize organization
of content. However, query categorization poses difficult,
quite different challenges than standard text classification,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742850.

as queries are usually very noisy and short, with major-
ity containing less than three words [1]. In addition, large
number of possible queries induces very sparse feature space
for bag-of-words (BOW) encoding schemes, which limits ap-
plicability of standard BOW-based approaches. To reduce
sparsity, some authors proposed to expand the feature space
using features computed from documents retrieved when is-
suing a query [1]. However, this introduces additional la-
tency, which often represents an unacceptable overhead.

To address these issues we take a radically new approach
to query categorization by using distributed language mod-
els, motivated by their recent success in a number of natural
language processing (NLP) tasks [3, 4]. In the context of
NLP, distributed models are able to learn word representa-
tions in a low-dimensional continuous vector space using a
surrounding word context in a sentence, such that seman-
tically similar words are close to each other in the embed-
ding space [3]. However, directly applying these models to
the problem of query categorization is a challenging task.
Finding distributed representations of queries, as opposed
to words, brings unique challenges unlike those found in
everyday NLP problems. Contrary to everyday language,
where words, sentences, and language rules are clearly de-
fined, in search queries there is no notion of “a sentence of
queries” or the surrounding context, that would be equiva-
lent to a natural language domain for which the distributed
language models were developed. We address these issues
and propose a novel method that exploits the fact that user
queries are recorded with the timestamp in search logs, from
which we create“query sentences”using logged user sessions.
This allowed us to apply language models and learn query
representations in a low-dimensional space where semanti-
cally similar queries are nearby. As a result, and in contrast
to BOW approaches, related queries have a high similarity
score even if they do not have any common terms.

Abovementioned state-of-the-art language models are un-
supervised, and to use their strengths in the query classifica-
tion task we propose their semi-supervised extension. Semi-
supervised methods [6] are typically used when majority of
the training data, in our setting queries, are unlabeled. Such
methods aim at achieving high accuracy on the labeled data
and ensuring some statistical dependence on unlabeled ex-
amples. The proposed algorithm can be placed under such
framework. Using a limited number of labeled queries and
large amount of unlabeled data, the method learns“category
vectors” in the same space as queries, which simplifies the
classification to a nearest-neighbor search in the joint space.

199



In this demonstration we also describe implementation
steps of the deployed query categorization system, called
queryCategorizr. These include details about data acqui-
sition, representation learning, and classification. We also
present a graphical user interface (GUI) which enables ser-
vice that takes a query as input and outputs related query
categories. In addition, the service can retrieve search
queries semantically similar to the input query. Our key
contributions are summarized below:

• We provide the first application of distributed lan-
guage models to semi-supervised query categorization,
where we propose to learn distributed query and cat-
egory representations in a joint space that compactly
captures their semantic information;

• We trained the model using more than 12 billion search
sessions collected on Yahoo servers, resulting in highly
effective classification method. The queryCategorizr
system achieves 86% precision with high recall;

• We provide user interface coupled with sophisticated,
cutting-edge back-end technology to demonstrate ef-
fectiveness of our approach.

2. PROBLEM SETUP
Let us assume we are given search logs of N users dur-

ing a period of T months, comprising Q unique queries.
In search logs, every query q is recorded along with its
timestamp t. For each user ui we collect data in the form
Di = {(qi, ti), i = 1, . . . , Ni, t1 < t2 < . . . < tNi}, where Ni
represents number of queries that user ui generated. Given
data set D = ∪Ni=1Di, the objective is to find representation
of queries that appeared in the data, such that semantically
similar queries are nearby in the embedding space.

We consider the task of query classification, where we
aim to classify queries into a pre-defined category taxon-
omy. In our work, we leverage top 2 levels of an in-house
interest taxonomy, amounting to 150 categories. These cat-
egories cover a variety of topics, such as “sports/baseball’,
“finance/mortgage”, or“entertainment/movies”. To map the
queries into one or more interest categories, we propose to
learn query and category representations in a joint, low-
dimensional space using semi-supervised neural language
models applied to historical search logs.

3. BACK-END SYSTEM
In this section we discuss the queryCategorizr system, and

describe server-side components that learn query representa-
tions from data set D and classify queries into the taxonomy.

3.1 Data sessionization
The user log data set D was sessionized and processed into

session data set S containing S search sessions. A search ses-
sion is defined as an uninterrupted sequences of web search
activity, where a session ends when a user was inactive for
more than 30 minutes [2].

More specifically, and without loss of generality, session
s = (q1, . . . , qM ) ∈ S is an uninterrupted sequence of M
queries (analogous to a sentence in NLP), and each query
q consists of L words, q = (w1, . . . , wL). In the case of
repetitive queries, e.g., s = (q1, q2, q3 = q2, q4 = q2, q5),
repetitions were de-duplicated, resulting in s = (q1, q2, q5).
Lastly, sessions containing only one query were discarded.

…	   …	  qm-‐b	  

qm	  

qm-‐1	   qm+1	   qm+b	  

Projec(on	  

m-‐th	  query	  

queries	  within	  a	  session	  

(a) Unsupervised

c1	   ck	  …	  
m-‐th	  query	  categories	  

…	   …	  qm-‐b	  

qm	  

qm-‐1	   qm+1	   qm+b	  

Projec3on	  

m-‐th	  query	  

queries	  within	  a	  session	  

(b) Semi-supervised

Figure 1: Skip-gram model variants

3.2 Model training
We assume D is processed into session data S = ∪Ss=1Ss.

Given Ss = {(qi, ti), i = 1...Ni, t1 < . . . < tNs}, where Ns
represents number of queries in session s, the objective is
to find query representation such that semantically similar
queries are nearby in the feature space. For this purpose we
extend ideas originating from recently proposed language
models, as described in the remainder of the section.

The skip-gram model [3] learns representations of
queries in a low-dimensional space in an unsupervised fash-
ion, using a query session as a “sentence” and the queries
within as “words”, to borrow the terminology from NLP do-
main. The representations are learned by maximizing the
objective function L over the entire set of sessions S, as

L =
∑
s∈S

∑
qm∈s

∑
−b≤i≤b,i6=0

log P(qm+i|qm). (3.1)

Probability P(qm+i|qm) of observing a neighboring query
qm+i given current query qm is defined using the soft-max,

P(qm+i|qm) =
exp(v>qmv′qm+i

)∑Q
q=1 exp(v>qmv′q)

, (3.2)

where vq and v′q are the input and output vector representa-
tions of query q of dimensionality d, and b defines the length
of the context for query sequences.

As illustrated in Figure 1a and equation (3.2), skip-gram
uses central query qm to predict b queries that come before
and b queries that come after it in the search session. Thus,
queries that often co-occur and queries with similar contexts
(i.e., with similar neighboring queries) will have similar rep-
resentations as learned by the model.

Semi-supervised skip-gram (SS-SG) assumes that
some queries from the training data D are labeled with cate-
gories from the taxonomy. Then, we assign a vector to each
category, and leverage query contexts in sessions to jointly
learn query vectors and category vectors in the same feature
space. To this end, given the labeled queries, we extend Ds
to obtain data set Dl where categories were imputed into
sessions. In particular, labeled queries were accompanied by
assigned categories, and every time a vector of labeled cen-
tral query qm is updated to predict the surrounding queries,
vectors of categories assigned to qm are updated as well.

More formally, assuming central query qm is labeled with
Cm of C categories in total, ζm = {c1, . . . , cCm}, the semi-
supervised skip-gram learns query and category representa-

200



Figure 2: Nearest neighbors for query “looney tunes”

tions by maximizing the following objective function L,∑
s∈S

∑
qm∈s

∑
−b≤i≤b,i6=0

(
log P(qm+i|qm) +

∑
c∈ζm

log P(qm+i|c)
)
.

(3.3)
Probability P(qm+i|c) of observing query qm+i given label c
of the current query qm is defined using the soft-max,

P(qm+i|c) =
exp(v>c v′qm+i

)∑Q
q=1 exp(v>c v′q)

. (3.4)

The SS-SG model is illustrated in Figure 1b.

3.3 Classification
In order to classify an unlabeled query qu we perform the

following operations: 1) lookup vector representation of qu;
2) lookup vectors for all C categories; 3) calculate cosine
similarity between category vectors and query qu, and label
the query with the category that has the highest similarity.

Handling out-of-vocabulary queries. To classify a
query not seen during training, we segment it using Condi-
tional Random Field [5]. Then, its representation was ob-
tained as a sum of vectors which correspond to the segments.

4. FRONT-END SYSTEM
To build GUI for the queryCategorizr system, we con-

sidered modern web application standards and employed a
browser-heavy approach with HTML/CSS/JavaScript code,
as well as a light API layer in Python.

4.1 Architecture
Cutting-edge front-end technologies were employed in de-

velopment of the interface, enabling the creation of a fast,
robust web application. The project uses Node1 as an I/O
serving layer with Ember-CLI2 (powered by Broccoli3), pro-
viding a lightning-fast asset pipeline to support constant-
time rebuilds and compact build definitions. Ember-CLI
also allowed us to write next-generation JavaScript code
compliant with upcoming ECMAScript 6 language specifica-
tions4 by enabling a built-in transpiler5 to convert ES6 syn-
tax to ES5.1-compliant AMD (RequireJS6) modules. NPM7

1http://nodejs.org/, all URLs last accessed in January 2015
2http://www.ember-cli.com/
3https://github.com/broccolijs/broccoli
4https://people.mozilla.org/ jorendorff/es6-draft.html
5https://github.com/esnext/es6-module-transpiler
6http://requirejs.org/
7https://www.npmjs.com/

Figure 3: Categorization of input query “bank of america”

and Bower8 package managers were utilized in concert to
bring in external library dependencies. Lastly, JQuery9 was
used to perform AJAX requests to retrieve data from the
SS-SG model via the API layer written in Python.

4.2 Implementation
Our choice of front-end technologies was derived from the

goal of creating a Single Page Application (SPA) to han-
dle business logic effectively on the client-side of the sys-
tem, without the need to pass page assets back and forth to
the server-side of the application after the initial page load.
EmberJS10 serves as the primary backbone of the project,
providing an opinionated MVC framework with hierarchical
routing and two-way data binding to the DOM. We utilized
Ember-idiomatic UI components, such as tables and selects,
that bring feature-rich client interaction to these classic web
elements. Bootstrap11 provided responsive layouts, as well
as stylized inputs and buttons to give the application a clean,
aesthetically-pleasing interface.

4.3 Design
Primary design choices for user interface revolved around

data exploration. The UI of queryCategorizr is shown in
Figures 2 and 3. It is composed of three major components:
a query input box, results box, and a drop-down menus to
select different functionalities. The demo works by typing in
queries in the query input box. Depending on the selected
functionality, searching for a query in the application reveals
1) the list of highly relevant queries identified by the SS-SG
model; or 2) interest categories for a given query. Results
are updated immediately, together with relevance scores, as
a user types in a query or clicks on one from the results
list. This allows the user to view results as quickly as pos-
sible with near-instant feedback on their queries. We also
created a user experience that allows data relations to be
investigated on an iterative basis. By clicking on retrieved
queries/interests from the results table, the user can easily
evolve their initial query into a series of relevant inquiries.

5. EVALUATION
We learned query representations using more than 12 bil-

lion search sessions extracted from search logs collected on
Yahoo servers. For the purposes of SS-SG training a limited
portion of queries were manually labeled by human editors,
resulting in approximately 2,000 labeled queries per category
from the interest taxonomy.

The semi-supervised skip-gram model was optimized us-
ing stochastic gradient ascent, suitable for large-scale prob-

8http://bower.io/
9http://jquery.com/

10http://emberjs.com/
11http://getbootstrap.com/

201



toyota
honda
nissan

mercedes_benz
hy
un
da
i

bmw
kia subaruaudi

lexus

edmunds

mazda

volkswagen

bmw_usa
acura

infiniti

honda_cars
m
its
ub
is
hi

vw

mercedes

volvo

range_rover

nissan_altima

truecar

scion

kia_optima

land_rover

honda_accord
kia_sorento

ho
nd
a_
cr
v

honda_civic

toyota_tacoma
toyota_com

subaru_forester_2014

hyundai_sonata

toyota_cars

lexus_is_2014

toyota_camrynissan_rogue

fiat

toyota_corolla

hyundai_santa_fe

honda_pilot

honda_com

nissan_cars

toyota_rav4

hyundai_genesis

nissan_versa

kia_soul

hyundai_elantra

nissan_murano

toyota_prius

nissan_juke

toyota_highlander

mazda_6
nissan_pathfinder

acura_mdx

mercedes_cla

mazda_3

subaru_outback

scion_frs
mbusa

kia_dealer_locator

true_car

m
its
ub
is
hi
_c
ar
s

mazda_cx_5

volvo_cars

jaguar_cars

ni
ss
an
_m

ax
im
a

hy
un
da
i_
ca
rs

toyota_recall

kia_cadenza_2014

toyota_corolla_2014

fiat_500

audi_q5

2014_toyota_highlander

ni
ss
an
_l
ea
f

bmw_x5

toyota_dealers
lexus_rx_350

nissan_com

m
er
ce
de
s_
us
a

toyota_highlander_2014

vo
lk
sw
ag
on

honda_fit

subaru_brz

audi_usa
mazda_cx5

nissan_rogue_2014

kia_sportage

2014_toyota_corolla

honda_dealers

bm
w
_c
ar
s

kia_cars

2014_nissan_rogue
mazda_cars

lexus_cars

honda_accord_2014

audi_q7

kia_com

bmwusa

in
fin
iti
_q
50

honda_odyssey

range_rover_evoque

toyota_sienna

subaru_wrx

volkswagen_passat
honda_crv_2013

prius

honda_crv_2014

toyota_fj_cruiser

hyundai_tucson

m
er
ce
de
s_
be
nz
_c
la
_2
01
3

mercedes_benz_usa

20
14
_h
on
da
_a
cc
or
d

consumer_reports_cars

kia_optima_2014

honda_odyssey_2014

toyota_venza
honda_civic_2013

2013_honda_accord

fj_cruiser

2014_mazda_3

toyota_dealer_locator

mazda_cx_9

kia_rio

toyota_avalon

le
xu
s_
co
m

acura_rdx_2014

ni
ss
an
_s
en
tra

kia_forte

nissan_frontier

hyundai_accent

subaru_impreza

2014_infiniti_q50

suzuki_cars

honda_dealer_locator

nissan_dealers

to
yo
ta
_r
av
4_
20
14

infiniti_g37

co
st
co
_a
ut
o_
pr
og
ra
m

toyota_sequoia

audi_a6

honda_pilot_2014

toyota_4runner

nissan_usa

infiniti_cars

ho
nd
a_
rid
ge
lin
e

bmw_x1

toyota_rav4_2013

subaru_forester
2014_kia_optima

acura_mdx_2014

subaru_legacy

ho
nd
a_
ac
co
rd
_2
01
3

hyundai_dealers

range_rover_sport

hundai

bmw_com

subaru_dealer_locator

scion_tcbenz

acura_tl

hyundai_veloster

toyota_dealer

ra
v4

infinity_car

acura_dealer_locator

20
14
_h
on
da
_c
iv
ic

bm
w
_x
3

volkswagen_jetta

suburu
infiniti_g35

co
m
pa
re
_c
ar
s

volvo_xc90

honda_pilot_2013

honda_dealership

honda_element
toyota_yaris

honda_dealer

hyndai

tru
e_
ca
r_
pr
ic
in
g

toyota_camry_2013

mitsubishi_outlander

honda_odyssey_2013

nissan_xterra

ki
a_
op
tim

a_
20
13

infiniti_qx56

hyndai2013honda_crosstour

toyota_tacoma_2014

audi_a3

subaru_recall_2013

hyundai_equus

acura_rdx_2013

nissan_armada

volkswagon_com

nissan_dealer_locator

mazda_com

subaru_crosstrek_2013

nissian

subaru_crosstrek_2014

subaru_com

toyota_land_cruiser

lexus_suv
jetta

toyota_camry_2014
m
bu
sa
_c
om

car_reviews

vw_com

nissan_sentra_2013

volvo_s60

nissan_pathfinder_2014

toyota_suv

hyundai_genesis_coupe

acura_com

20
14
_h
on
da
_c
rv

toyota_tacoma_2013

infinity_auto

mazda_usa

2014_cars

landrover

mazda_3_2014

2014_honda_fit

volkswagen_tiguan

honda_civic_2014

isuzu

audi_com

toyota_corolla_2013

lexus_dealers

nissan_dealer

kia_dealers

mercedes_suv

acura_rdx

scion_xb

toyota_matrix

toyota_avalon_2014

kia_soul_2014

camry

nissan_rogue_2013

best_cars_2013

infiniti_fx35

acura_tsx

kia_motors

20
13
_k
ia
_o
pt
im
a

best_suv

nissan_juke_2013

mitsubishi_lancer

au
di
_s
uv

best_cars_2014

crossover_vehicles

hyundia

mazda_5

nissan_pathfinder_2013
bmw_3_series

kia_soul_2013

nissan_altima_2013

bmw_suv

vw_beetle

hy
un
da
i_
co
m

2013_toyota_avalon

acura_ilx

2014_kia_sorento

toyota_scion

2014_acura_mdx

ca
r_
br
an
ds

vo
lvo
_x
c6
0

m
az
da
_c
x_
7

to
yo
ta
_r
av
_4

honda_usa

exterior_colors

honda_suv

infiniti_suv

honda_crz

toyota_sienna_2014

ni
ss
an
_q
ue
st

in
fin
ity
_c
ar
s

vw_passat

toyota_celica

vw_jetta

lexus_es_350

juke

bmw_5_series

audi_cars

kia_sorento_2014

toyota_usa

rav_4

vw_usa

corolla

bmw_dealers

nissan_cube

kia_cadenza

nissan_suv

fia
t_
ca
rs

altima

hyundai_2012 corolla_2014

iih
s

audi_q3

longo_lexus

accura

passat

q50

mazda3

ni
ss
an
us
a

rav4_2013

nisan

kia_suv

volvo_c30

lexus_is_350

2014_lexus

xterra

m
az
da
_c
x9

toyata

land_cruiser

elantra

veloster

volvo_suv

m
ax
im
a

used_bmw

acura_suv

infiniti_com

vw_golf

honda_crx

ho
nd
a_
cr
_v

lexus_is_2015

mazda_tribute

kia_sorrento

yaris

to
yo
ta
_u
se
d_
ca
rs

mazda_suv

pr
iu
s_
c

m
in
i_
us
a

scion_cars

mazada

honda_fit_2013

to
yo
ta
_f
j

4r
un
ne
r

vw_dealers

lexus_rx

suzuki_sx4

nisson

vw_cars

vw
_c
c

new_car_deals

infiniti_usa

ni
ss
a

lexus_2014

toyato

scion_xd

2014_honda

lexus_usa

vw_gti

dch_honda
honda_cars_usa

hy
an
da
i

small_cars

infinit

hundai2013

awd_cars

madza

us
ed
_b
m
w
_c
ar
s

lexus_gx

bmw_2014

honda_truck bmw_528i

best_suvs

au
to
na
tio
n_
ho
nd
a

mazda6

venza

hyundi

huyndai

infinti

kia_usa

volvo_dealers

tiguan

jetta_tdi

veloster_2013

bmw_lease

civic_si
le
xu
s_
rx
30
0

2014_kia

toyta

hunday

used_subaru

fiat_usa

toyot

mazda5

cx5

masdaused_lexus

subura

hond

hyunda 20
14
_c
rv

q7

2013_lexus

us
ed
_a
ud
i

toyoya

le
xa
s

kia_car

hundi

cx_5

vw_tdi

lexus_com_usa

2014_infiniti
is
25
0

qx
60

bm
w
_3
28
d

totota

vw
us
a

cu
be
_c
ar

vo
lvo
_v
70

rx350

kia_sol

hu
nd
a

hona

fiat_com

vovlo

subru

nisssicon

ml_350

buik

mazda2

kia_k9

hinda

hu
nd
ia

kias

subaro

az
er
a

gl
_4
50

hondai

m
er
ce
ds

ac
ru
a

audie

camery

hy
ua
nd
i

kia_truck
luxus

lexu

cr_v

xc90

adui

infinitiusa

touota

lexux

tayota

bmwx3 ho
nd
i

kia_irvine

luxes

es350

bmw_525

auid

Figure 4: Queries categorized into “automotive” category

lems. However, computation of gradients ∇L in (3.1) and
(3.3) is proportional to the vocabulary size Q, which is com-
putationally expensive for our application as Q could easily
reach tens of millions queries. As an alternative, we used
negative sampling approach proposed in [3], which signifi-
cantly reduces the computational complexity of the training.

Vector representations were trained for 60 million most
frequent queries found in the search logs. Training was done
using a machine with 256GB of RAM memory and 24 cores.
Dimensionality of the embedding space was set to D = 300,
while context neighborhood size was set to 5. Finally, we
used 10 negative samples in each vector update.

In the first experiment we verified that the semi-
supervised algorithm maps semantically similar queries close
to each other in the embedding space, and also close to the
best-matching categories. This is illustrated in Figure 4,
where we show nearest queries to the vector of “automotive”
category (size of a query in the word-cloud is proportional
to the cosine similarity). We can see that SS-SG grouped
semantically related queries into the same part of the space,
while keeping them close to the appropriate category vector.

To better quantify the value of our approach, we evalu-
ated the proposed semi-supervised algorithm on the labeled
query set using 5-fold cross-validation. We compared semi-
supervised-based classification to the logistic regression (LR)
and linear support vector machine (SVM) classifiers that use
BOW features. We also compared to LR and SVM where we
used features learned by unsupervised SG to represent the
labeled queries. We report the results in Table 1, where we
can see that classification using the SS-SG method achieved
higher precision than the competing methods, while at the
same time maintaining competitive recall measure.

6. DEMONSTRATION
Our demonstration system consists of three critical com-

ponents: 1) front-end user interface; 2) back-end service that
processes all user requests; and 3) back-end server that per-
forms classification and query similarity calculations. Dur-

Table 1: Precision and recall of different methods

Method Precision Recall

LR-BOW 0.71 0.66
SVM-BOW 0.74 0.65
LR-SG 0.80 0.64
SVM-SG 0.82 0.62
SS-SG 0.86 0.63

ing the demonstration, we will showcase two functionali-
ties mentioned previously: 1) finding semantically similar
queries; and 2) classifying queries into interest categories.
We will first go over the set of queries prepared in advance
to demonstrate strengths and weaknesses of the queryCate-
gorizr system. Then, we will ask users to test capabilities of
queryCategorizr using their own queries12.

7. CONCLUSION
In this paper we described queryCategorizr, a state-of-the-

art system for understanding of user search queries. The sys-
tem includes functionalities such as finding semantically sim-
ilar queries and categorizing queries into interest categories,
useful in a number of online applications. We demonstrated
the benefits of the system via graphical user interface in
which users freely explors system capabilities in an intuitive
manner. In the future, we plan to expand the system by in-
corporating embedded representations of other user events,
such as clicked ads or read articles.

8. REFERENCES
[1] E. Gabrilovich, A. Broder, M. Fontoura, A. Joshi,

V. Josifovski, L. Riedel, and T. Zhang. Classifying
search queries using the web as a source of knowledge.
ACM Transactions on the Web, 3(2):1–28, April 2009.

[2] D. Gayo-Avello. A survey on session detection methods
in query logs and a proposal for future evaluation. Inf.
Sci., 179(12):1822–1843, May 2009.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages
3111–3119, 2013.

[4] J. Turian, L. Ratinov, and Y. Bengio. Word
representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 384–394. Association for
Computational Linguistics, 2010.

[5] X. Yu and H. Shi. Query segmentation using
conditional random fields. In Proceedings of the First
International Workshop on Keyword Search on
Structured Data, KEYS ’09, pages 21–26, 2009.

[6] K. Zhang, J. T. Kwok, and B. Parvin. Prototype vector
machine for large scale semi-supervised learning. In
Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1233–1240.
ACM, 2009.

12Demonstration video is available online at the following
URL: http://youtu.be/RSQ7mK-xpH8

202




