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ABSTRACT
Understanding interests expressed through user’s search
query is a task of critical importance for many internet ap-
plications. To help identify user interests, web engines com-
monly utilize classification of queries into one or more pre-
defined interest categories. However, majority of the queries
are noisy short texts, making accurate classification a chal-
lenging task. In this demonstration, we present queryCate-
gorizr, a novel semi-supervised learning system that embeds
queries into low-dimensional vector space using a neural lan-
guage model applied on search log sessions, and classifies
them into general interest categories while relying on a small
set of labeled queries. Empirical results on large-scale data
show that queryCategorizr outperforms the current state-
of-the-art approaches. In addition, we describe a Graphical
User Interface (GUI) that allows users to query the system
and explore classification results in an interactive manner.

Keywords
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Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis; Language parsing and understanding

1. INTRODUCTION
Search engines are used by billions of online users every

day as a tool to promptly find desired information. In or-
der to capture and more easily act upon very clear intent
that the users channel through queries, query classification
is a task of critical importance to search engines. Here,
one aims to classify textual queries into one or more pre-
defined interest categories, such as “finance”, “sports”, or
“technology”. This allows search companies to better un-
derstand user intentions, improve user experience through
better personalization, provide more relevant search results
and targeted recommendations, and optimize organization
of content. However, query categorization poses difficult,
quite different challenges than standard text classification,
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as queries are usually very noisy and short, with major-
ity containing less than three words [1]. In addition, large
number of possible queries induces very sparse feature space
for bag-of-words (BOW) encoding schemes, which limits ap-
plicability of standard BOW-based approaches. To reduce
sparsity, some authors proposed to expand the feature space
using features computed from documents retrieved when is-
suing a query [1]. However, this introduces additional la-
tency, which often represents an unacceptable overhead.

To address these issues we take a radically new approach
to query categorization by using distributed language mod-
els, motivated by their recent success in a number of natural
language processing (NLP) tasks [3, 4]. In the context of
NLP, distributed models are able to learn word representa-
tions in a low-dimensional continuous vector space using a
surrounding word context in a sentence, such that seman-
tically similar words are close to each other in the embed-
ding space [3]. However, directly applying these models to
the problem of query categorization is a challenging task.
Finding distributed representations of queries, as opposed
to words, brings unique challenges unlike those found in
everyday NLP problems. Contrary to everyday language,
where words, sentences, and language rules are clearly de-
fined, in search queries there is no notion of “a sentence of
queries” or the surrounding context, that would be equiva-
lent to a natural language domain for which the distributed
language models were developed. We address these issues
and propose a novel method that exploits the fact that user
queries are recorded with the timestamp in search logs, from
which we create“query sentences”using logged user sessions.
This allowed us to apply language models and learn query
representations in a low-dimensional space where semanti-
cally similar queries are nearby. As a result, and in contrast
to BOW approaches, related queries have a high similarity
score even if they do not have any common terms.

Abovementioned state-of-the-art language models are un-
supervised, and to use their strengths in the query classifica-
tion task we propose their semi-supervised extension. Semi-
supervised methods [6] are typically used when majority of
the training data, in our setting queries, are unlabeled. Such
methods aim at achieving high accuracy on the labeled data
and ensuring some statistical dependence on unlabeled ex-
amples. The proposed algorithm can be placed under such
framework. Using a limited number of labeled queries and
large amount of unlabeled data, the method learns“category
vectors” in the same space as queries, which simplifies the
classification to a nearest-neighbor search in the joint space.
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In this demonstration we also describe implementation
steps of the deployed query categorization system, called
queryCategorizr. These include details about data acqui-
sition, representation learning, and classification. We also
present a graphical user interface (GUI) which enables ser-
vice that takes a query as input and outputs related query
categories. In addition, the service can retrieve search
queries semantically similar to the input query. Our key
contributions are summarized below:

• We provide the first application of distributed lan-
guage models to semi-supervised query categorization,
where we propose to learn distributed query and cat-
egory representations in a joint space that compactly
captures their semantic information;

• We trained the model using more than 12 billion search
sessions collected on Yahoo servers, resulting in highly
effective classification method. The queryCategorizr
system achieves 86% precision with high recall;

• We provide user interface coupled with sophisticated,
cutting-edge back-end technology to demonstrate ef-
fectiveness of our approach.

2. PROBLEM SETUP
Let us assume we are given search logs of N users dur-

ing a period of T months, comprising Q unique queries.
In search logs, every query q is recorded along with its
timestamp t. For each user ui we collect data in the form
Di = {(qi, ti), i = 1, . . . , Ni, t1 < t2 < . . . < tNi}, where Ni
represents number of queries that user ui generated. Given
data set D = ∪Ni=1Di, the objective is to find representation
of queries that appeared in the data, such that semantically
similar queries are nearby in the embedding space.

We consider the task of query classification, where we
aim to classify queries into a pre-defined category taxon-
omy. In our work, we leverage top 2 levels of an in-house
interest taxonomy, amounting to 150 categories. These cat-
egories cover a variety of topics, such as “sports/baseball’,
“finance/mortgage”, or“entertainment/movies”. To map the
queries into one or more interest categories, we propose to
learn query and category representations in a joint, low-
dimensional space using semi-supervised neural language
models applied to historical search logs.

3. BACK-END SYSTEM
In this section we discuss the queryCategorizr system, and

describe server-side components that learn query representa-
tions from data set D and classify queries into the taxonomy.

3.1 Data sessionization
The user log data set D was sessionized and processed into

session data set S containing S search sessions. A search ses-
sion is defined as an uninterrupted sequences of web search
activity, where a session ends when a user was inactive for
more than 30 minutes [2].

More specifically, and without loss of generality, session
s = (q1, . . . , qM ) ∈ S is an uninterrupted sequence of M
queries (analogous to a sentence in NLP), and each query
q consists of L words, q = (w1, . . . , wL). In the case of
repetitive queries, e.g., s = (q1, q2, q3 = q2, q4 = q2, q5),
repetitions were de-duplicated, resulting in s = (q1, q2, q5).
Lastly, sessions containing only one query were discarded.
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Figure 1: Skip-gram model variants

3.2 Model training
We assume D is processed into session data S = ∪Ss=1Ss.

Given Ss = {(qi, ti), i = 1...Ni, t1 < . . . < tNs}, where Ns
represents number of queries in session s, the objective is
to find query representation such that semantically similar
queries are nearby in the feature space. For this purpose we
extend ideas originating from recently proposed language
models, as described in the remainder of the section.

The skip-gram model [3] learns representations of
queries in a low-dimensional space in an unsupervised fash-
ion, using a query session as a “sentence” and the queries
within as “words”, to borrow the terminology from NLP do-
main. The representations are learned by maximizing the
objective function L over the entire set of sessions S, as

L =
∑
s∈S

∑
qm∈s

∑
−b≤i≤b,i6=0

log P(qm+i|qm). (3.1)

Probability P(qm+i|qm) of observing a neighboring query
qm+i given current query qm is defined using the soft-max,

P(qm+i|qm) =
exp(v>qmv′qm+i

)∑Q
q=1 exp(v>qmv′q)

, (3.2)

where vq and v′q are the input and output vector representa-
tions of query q of dimensionality d, and b defines the length
of the context for query sequences.

As illustrated in Figure 1a and equation (3.2), skip-gram
uses central query qm to predict b queries that come before
and b queries that come after it in the search session. Thus,
queries that often co-occur and queries with similar contexts
(i.e., with similar neighboring queries) will have similar rep-
resentations as learned by the model.

Semi-supervised skip-gram (SS-SG) assumes that
some queries from the training data D are labeled with cate-
gories from the taxonomy. Then, we assign a vector to each
category, and leverage query contexts in sessions to jointly
learn query vectors and category vectors in the same feature
space. To this end, given the labeled queries, we extend Ds
to obtain data set Dl where categories were imputed into
sessions. In particular, labeled queries were accompanied by
assigned categories, and every time a vector of labeled cen-
tral query qm is updated to predict the surrounding queries,
vectors of categories assigned to qm are updated as well.

More formally, assuming central query qm is labeled with
Cm of C categories in total, ζm = {c1, . . . , cCm}, the semi-
supervised skip-gram learns query and category representa-

200



Figure 2: Nearest neighbors for query “looney tunes”

tions by maximizing the following objective function L,∑
s∈S

∑
qm∈s

∑
−b≤i≤b,i6=0

(
log P(qm+i|qm) +

∑
c∈ζm

log P(qm+i|c)
)
.

(3.3)
Probability P(qm+i|c) of observing query qm+i given label c
of the current query qm is defined using the soft-max,

P(qm+i|c) =
exp(v>c v′qm+i

)∑Q
q=1 exp(v>c v′q)

. (3.4)

The SS-SG model is illustrated in Figure 1b.

3.3 Classification
In order to classify an unlabeled query qu we perform the

following operations: 1) lookup vector representation of qu;
2) lookup vectors for all C categories; 3) calculate cosine
similarity between category vectors and query qu, and label
the query with the category that has the highest similarity.

Handling out-of-vocabulary queries. To classify a
query not seen during training, we segment it using Condi-
tional Random Field [5]. Then, its representation was ob-
tained as a sum of vectors which correspond to the segments.

4. FRONT-END SYSTEM
To build GUI for the queryCategorizr system, we con-

sidered modern web application standards and employed a
browser-heavy approach with HTML/CSS/JavaScript code,
as well as a light API layer in Python.

4.1 Architecture
Cutting-edge front-end technologies were employed in de-

velopment of the interface, enabling the creation of a fast,
robust web application. The project uses Node1 as an I/O
serving layer with Ember-CLI2 (powered by Broccoli3), pro-
viding a lightning-fast asset pipeline to support constant-
time rebuilds and compact build definitions. Ember-CLI
also allowed us to write next-generation JavaScript code
compliant with upcoming ECMAScript 6 language specifica-
tions4 by enabling a built-in transpiler5 to convert ES6 syn-
tax to ES5.1-compliant AMD (RequireJS6) modules. NPM7

1http://nodejs.org/, all URLs last accessed in January 2015
2http://www.ember-cli.com/
3https://github.com/broccolijs/broccoli
4https://people.mozilla.org/ jorendorff/es6-draft.html
5https://github.com/esnext/es6-module-transpiler
6http://requirejs.org/
7https://www.npmjs.com/

Figure 3: Categorization of input query “bank of america”

and Bower8 package managers were utilized in concert to
bring in external library dependencies. Lastly, JQuery9 was
used to perform AJAX requests to retrieve data from the
SS-SG model via the API layer written in Python.

4.2 Implementation
Our choice of front-end technologies was derived from the

goal of creating a Single Page Application (SPA) to han-
dle business logic effectively on the client-side of the sys-
tem, without the need to pass page assets back and forth to
the server-side of the application after the initial page load.
EmberJS10 serves as the primary backbone of the project,
providing an opinionated MVC framework with hierarchical
routing and two-way data binding to the DOM. We utilized
Ember-idiomatic UI components, such as tables and selects,
that bring feature-rich client interaction to these classic web
elements. Bootstrap11 provided responsive layouts, as well
as stylized inputs and buttons to give the application a clean,
aesthetically-pleasing interface.

4.3 Design
Primary design choices for user interface revolved around

data exploration. The UI of queryCategorizr is shown in
Figures 2 and 3. It is composed of three major components:
a query input box, results box, and a drop-down menus to
select different functionalities. The demo works by typing in
queries in the query input box. Depending on the selected
functionality, searching for a query in the application reveals
1) the list of highly relevant queries identified by the SS-SG
model; or 2) interest categories for a given query. Results
are updated immediately, together with relevance scores, as
a user types in a query or clicks on one from the results
list. This allows the user to view results as quickly as pos-
sible with near-instant feedback on their queries. We also
created a user experience that allows data relations to be
investigated on an iterative basis. By clicking on retrieved
queries/interests from the results table, the user can easily
evolve their initial query into a series of relevant inquiries.

5. EVALUATION
We learned query representations using more than 12 bil-

lion search sessions extracted from search logs collected on
Yahoo servers. For the purposes of SS-SG training a limited
portion of queries were manually labeled by human editors,
resulting in approximately 2,000 labeled queries per category
from the interest taxonomy.

The semi-supervised skip-gram model was optimized us-
ing stochastic gradient ascent, suitable for large-scale prob-

8http://bower.io/
9http://jquery.com/

10http://emberjs.com/
11http://getbootstrap.com/
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Figure 4: Queries categorized into “automotive” category

lems. However, computation of gradients ∇L in (3.1) and
(3.3) is proportional to the vocabulary size Q, which is com-
putationally expensive for our application as Q could easily
reach tens of millions queries. As an alternative, we used
negative sampling approach proposed in [3], which signifi-
cantly reduces the computational complexity of the training.

Vector representations were trained for 60 million most
frequent queries found in the search logs. Training was done
using a machine with 256GB of RAM memory and 24 cores.
Dimensionality of the embedding space was set to D = 300,
while context neighborhood size was set to 5. Finally, we
used 10 negative samples in each vector update.

In the first experiment we verified that the semi-
supervised algorithm maps semantically similar queries close
to each other in the embedding space, and also close to the
best-matching categories. This is illustrated in Figure 4,
where we show nearest queries to the vector of “automotive”
category (size of a query in the word-cloud is proportional
to the cosine similarity). We can see that SS-SG grouped
semantically related queries into the same part of the space,
while keeping them close to the appropriate category vector.

To better quantify the value of our approach, we evalu-
ated the proposed semi-supervised algorithm on the labeled
query set using 5-fold cross-validation. We compared semi-
supervised-based classification to the logistic regression (LR)
and linear support vector machine (SVM) classifiers that use
BOW features. We also compared to LR and SVM where we
used features learned by unsupervised SG to represent the
labeled queries. We report the results in Table 1, where we
can see that classification using the SS-SG method achieved
higher precision than the competing methods, while at the
same time maintaining competitive recall measure.

6. DEMONSTRATION
Our demonstration system consists of three critical com-

ponents: 1) front-end user interface; 2) back-end service that
processes all user requests; and 3) back-end server that per-
forms classification and query similarity calculations. Dur-

Table 1: Precision and recall of different methods

Method Precision Recall

LR-BOW 0.71 0.66
SVM-BOW 0.74 0.65
LR-SG 0.80 0.64
SVM-SG 0.82 0.62
SS-SG 0.86 0.63

ing the demonstration, we will showcase two functionali-
ties mentioned previously: 1) finding semantically similar
queries; and 2) classifying queries into interest categories.
We will first go over the set of queries prepared in advance
to demonstrate strengths and weaknesses of the queryCate-
gorizr system. Then, we will ask users to test capabilities of
queryCategorizr using their own queries12.

7. CONCLUSION
In this paper we described queryCategorizr, a state-of-the-

art system for understanding of user search queries. The sys-
tem includes functionalities such as finding semantically sim-
ilar queries and categorizing queries into interest categories,
useful in a number of online applications. We demonstrated
the benefits of the system via graphical user interface in
which users freely explors system capabilities in an intuitive
manner. In the future, we plan to expand the system by in-
corporating embedded representations of other user events,
such as clicked ads or read articles.
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