
Dataset Descriptions for Optimizing Federated Querying

Angelos Charalambidis
Institute of Informatics and

Telecommunications, NCSR
‘Demokritos’, Athens, Greece
acharal@iit.demokritos.gr

Stasinos Konstantopoulos
Institute of Informatics and

Telecommunications, NCSR
‘Demokritos’, Athens, Greece
konstant@iit.demokritos.gr

Vangelis Karkaletsis
Institute of Informatics and

Telecommunications, NCSR
‘Demokritos’, Athens, Greece
vangelis@iit.demokritos.gr

ABSTRACT
Dataset description vocabularies focus on provenance, ver-
sioning, licensing, and similar metadata. VoID is a notable
exception, providing some expressivity for describing sub-
sets and their contents and can, to some extent, be used for
discovering relevant resources and for optimizing querying.
In this poster we describe an extension of VoID that pro-
vides the expressivity needed in order to support the query
planning methods typically used in federated querying.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed databases

General Terms
Algorithms

Keywords
RDF store histograms; RDF vocabulary

1. INTRODUCTION
Repository federation and distributed querying are key

technologies for the efficient and scalable deployment of se-
mantic technologies. Although supported by most major
triple stores and formalized in the new edition of the SPARQL
specification, we have not yet reached the point where fed-
eration is transparent to the user: it is the client appli-
cation’s responsibility to declare which remote data source
each query fragment should be dispatched to.

One major issue that needs to be addressed in order to
achieve efficient and transparent federated querying, is the
construction of the query plan that guides query execution:
Given a query, there are many plans that a database system
can consider to process it and retrieve the answer. All those
plans are equivalent in the sense that will return the same
answer, but they vary in their cost, that is the resources and
the amount of time that they need to run. Query optimiza-
tion, i.e., selecting the most cost-efficient plan, is absolutely

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742779.

essential for database systems as the cost difference between
two equivalent plans can be enormous. Query optimization
has been studied in a variety of contexts and from many
different angles [1], but the literature converges to solutions
involving: (a) a search space of query plans; (b) a cost func-
tion that assigns a cost to each plan in the search space,
intuitively corresponding to an estimation of the resources
need to execute the plan; and (c) an enumeration algorithm
that searches among the possible query plans and selects the
one with the least cost.

Since retrieving data from the disk is a crucial factor in
cost, cost functions typically refer to statistics regarding the
cardinality of query patterns, i.e., the number of tuples that
match a given pattern, and the selectivity of joins, i.e., the
ratio of the cardinality of a pattern that can be joined on
certain column against another pattern. Such statistics are
stored in histograms, data structures that are typically an in-
ternal part of the database index. In conventional databases,
this internal structure never needs to receive an explicit rep-
resentation or be serialized and communicated. This in-
cludes distributed databases, where the central node con-
trols the way data is distributed and also maintains such
histograms; or where distributed histograms are communi-
cated in implementation-specific serializations.

Recent developments in and federated querying, however,
create new use cases where distributed systems are less tightly
integrated. In an increasingly popular scenario, also sup-
ported by the new SPARQL specification, a federated query-
ing engine concentrates and serves to applications multiple
remote data sources. Such scenarios are becoming increas-
ingly common in the context of services that federate Se-
mantic Web and Linked Open Data.

In such a system, and regardless of any optimization per-
formed internally to each data source, the federation server
maintains the statistics needed to identify data sources that
contain relevant data and to optimize the distribution of the
various sub-queries among them. The approaches proposed
to acquire and maintain such statistics include executing
queries, or otherwise imposing a database workload, in order
to update histograms or updating histograms by observing
the client-requested query workload.

An important development that came with Semantic Web
systems’ adopting histogram-based query optimizers, was
that what originally was an internal structure of the database
system, started becoming explicit: federated querying sys-
tems such as SPLENDID [2] and ANAPSID [3] use explicit
data source descriptions, represented in RDF using the VoID
vocabulary as well as probing the data source with ASK

17



queries. Whereas for SPLENDID probing is a fall-back
mechanism in the absence of VoID descriptions, for ANAP-
SID it is a way of complementing VoID descriptions with
further information needed for its operation.

The work presented here is the SEVOD vocabulary, the
extension of the VoID vocabulary needed in order to fully
represent the various histogram models found in the liter-
ature. Adopting SEVOD will provide Semantic Web data
stores with an explicit interface between query optimization
and histogram statistics maintenance, such that (a) current
systems are fully supported and can represent the full his-
togram structure they are maintaining or consuming; and
(b) the new use case is supported, where data stores pub-
licly expose histogram statistics, which can be consumed
and used by the federated querying systems that incorpo-
rate them into their federations.

2. THE SEVOD VOCABULARY
In the poster we will present Sevod, which extends VoID to

provide the expressivity needed in order to support the query
planning methods typically used in federated querying. The
vocabulary can be downloaded from its namespace URL,
http://www.w3.org/2015/03/sevod

More specifically, Sevod introduces the svd:Partition
class, a set of void:Dataset instances that are a parti-
tion of another void:Dataset instance. This is done by
using the property svd:part to link the svd:Partition
instance with the instances that make up the partition and
the property svd:partitions to link it with the instance
that is partitioned by them. All fillers of this property
must also be fillers of the void:subset property of the
void:Dataset instance that fills the svd:Partition in-
stance’s svd:partitions property. This allows expressing
information about triples that cannot be in a dataset.

Furthermore, Sevod introduces multi-dimensional buck-
ets that cover joins of triple patterns. A svd:Join in-
stance connects two void:Dataset instances with an in-
teger value that is (or estimates or approximates) the se-
lectivity of the join of these datasets. The triple element
that is joined is denoted by the specific subpropery of the
svd:joins property used to link the svd:Join instance
with the void:Dataset instances.
svd:Join instances link to the void:Dataset instances

they join using one of the following three properties, depend-
ing on the triple element they join on: svd:joinSubject,
svd:joinPredicate, and svd:joinObject

The svd:selectivity property links a svd:Join in-
stance with an the instance of svd:SelectivityValue
that is (or estimates or approximates) the selectivity of the
join denoted by the svd:Join instance. We define the range
of the svd:selectivity property to be a class instead
of simple numerical fillers. In this manner, we encapsu-
late statistics under a class that can be extended to cover
application-specific requirements. In order to ensure com-
patibility, we further require that svd:SelectivityValue
instances must have an rdf:value property and that this
property has as value an xds:integer. Other, application
specific, properties may be defined as needed for extensions
of this class.

3. CONCLUSIONS
Sevod is used in the Semagrow Stack,1 an infrastructure

for deploying a SPARQL federation endpoint that automat-
ically breaks up queries into fragments, each comprising one
or more query patterns, and dispatches each fragment only
to those data sources that hold triples satisfying patterns in
the fragment. In this manner we allow client applications to
execute queries without having to declare where each query
fragment should be dispatched. Besides alleviating the ef-
fort for the endpoint client, this also allows to (transparently
to the client) dynamically adapt remote querying policies in
order to balance load or to circumvent temporarily unavail-
able services. Furthermore, we do not impose any central
management requirements and can operate in the context
of a loose federation of repositories; several of which might
be public endpoints that are not even aware of partaking in
the federation.

In the future, we are planning to develop a histogram pub-
lishing mechanism that will allow the federated endpoints
to provide Sevod metadata to the federation server by se-
rializing their internal query optimization structures. This
will improve the accuracy of the statistics while retaining
the dynamic federation nature of the SemaGrow Stack. In
our envisaged scenario, it will be sufficient to provide an
endpoint URL and the federation optimizer will be able to
automatically retrieve accurate Sevod descriptions from the
endpoints. Naturally, the federation server will still need
to monitor query feedback in order to dynamically adjust
the granularity of the descriptions that it keeps, in order
to strike a balance between the accuracy of the statistics
and the storage space they require. However, it will not be
necessary either to impose querying overheads for discover-
ing statistics or to lag behind updates before the histograms
have had the opportunity to converge to the new data dis-
tributions.

Acknowledgements
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement No. 318497. For
more details please see http://www.semagrow.eu

4. REFERENCES
[1] Chaudhuri, S.: An overview of query optimization in

relational systems. In: Proceedings of the 17th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ’98). (1998) 34–43

[2] Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint
federation exploiting VOID descriptions. In: Proc. 2nd
Intl Workshop on Consuming Linked Data (COLD
2011), Bonn, Germany, Oct 2011. Volume 782 of CEUR
Workshop Proceedings. (2011)

[3] Acosta, M., Vidal, M.E., Lampo, T., Castillo, J.,
Ruckhaus, E.: ANAPSID: an adaptive query processing
engine for SPARQL endpoints. In: Proc Intl Semantic
Web Conference. LNCS 7031, Springer (2011)

1Please see http://www.semagrow.eu for more details

18




