Rapido: A Sketching Tool for Web API Designers

Ronnie Mitra

Director of API Design
CA Technologies

ronnie.mitra @gmail.com

ABSTRACT

Well-designed Web APIs must provide high levels of usability and
must “get it right” on the first release. One strategy for
accomplishing this feat is to identify usability issues early in the
design process before a public release.

Sketching is a useful way of improving the user experience early in
the design phase. Designers can create many sketches and learn
from them.

The Rapido tool is designed to automate the Web API sketching
process and help designers improve usability in an iterative fashion.

Keywords
API, design, sketching, REST, Web API, usability

1. INTRODUCTION

Over the years, a number of books, papers and talks have been
published to provide design guidance for Web API Designers.

The expert advice in this domain often highlights three important
characteristics for well-designed APIs:

e APIs should provide ‘just enough’ functionality to meet
user requirements
APIs should follow a user-centered design approach

APIs should not break existing applications

This advice presents an interesting challenge for the modern API
designer. They must create interfaces that provide good user
experiences within the constraint of limiting breaking changes.

Joshua Bloch illustrates this challenge in one of his maxims for
good design: “Public APIs, like diamonds, are forever. You have
one chance to get it right so give it your best.” [1]

This paper introduces sketching as a method for improving API user
experiences in the design phase, before implementation. It also
introduces a tool called Rapido that has been created to facilitate the
act of sketching web APIs.

2. SKETCHING

An implicit but important part of many design processes is the
sketching phase. Sketching has been proposed as a formal
component of many design processes including interaction design
[2], mechanical design [3] and engineering[4].

In broad terms, a sketch is a form of design that includes relatively
less detail than a formal design. Sketches carry connotations of
being formed quickly and effortlessly.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author's site if the Material is used in electronic media.

WWW 2015 Companion, May 18-22, 2015, Florence, Italy.

ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2743040

1509

They often capture abstract thoughts from a designer’s mind and
can be used to record experimentation with new ideas that might
otherwise be forgotten.

In his book “Sketching User Experiences”, Bill Buxton highlights
the importance of sketching in all design processes and identifies
that sketching is central to design thinking and learning[5]. Buxton
also explains how sketches can be used to improve the user
experience within an interaction design context by allowing
designers to produce many experimental concepts that are
iteratively refined in pursuit of the best final concept.

For the Web API designer, sketching offers a method to achieve
rapid design iterations at the beginning of a design process. By
creating a sketch, reviewing it and applying the lessons learned to a
new sketch a designer can identify and solve usability problems in
the early phases of design.

When incorporated into a design process that includes user testing
and prototype development, the designer can improve the odds that
the overall user experience will be improved.

There are many ways to produce sketches, but we will focus on four
popular sketching methods and discuss the benefits and limitations
of each.

2.1 Drawing
A simple and accessible method for sketching is to put pencil to
paper, marker to whiteboard or digital pen to canvas.

Drawing can be a powerful way of representing the memories or
abstractions of the human mind. While the quality level of a
drawing may differ depending on the artist’s level of artistic skill,
the use of a drawing to communicate an idea is as central to the
human experience as spoken language[6].

2.1.1 Benefits

One of the great advantages to drawing a sketch is the ease with
which one can start.

Almost every designer should be capable of effortlessly creating a
doodle. This simple act doesn’t require strenuous thought regarding
the process of drawing. But, these rough sketches can provide a
sufficient level detail to capture the important aspects of an early
phase design regardless of their aesthetic appeal.

The human proficiency for drawing simple images and the speed at
which a low fidelity drawing can be rendered makes it easy for the
sketch artist to draw many sketches in a short time, disposing of
sketches as they go.

For example, a designer considering a CRUD API might initially
draw the low fidelity sketch depicted in figure 1 using simple boxes
and lines.

Figure 1 - Drawing a CRUD API Sketch

Another of the drawing method’s great strengths is that it fosters
experimentation within the sketching process. Designers that start
with a blank canvas are free to experiment with new ideas and
concepts in a limitless fashion, bounded only by the physical or
digital constraints of the specific medium they choose.

For example, a designer might sketch interfaces with new features
that do not conform to existing standards, or interfaces that defy an
existing understanding of system and implementation limits.

The freedom to innovate and capture new ideas and concepts with
little effort are powerful features of the drawn sketch.

2.1.2 Limitations

Unless the designer is using a specific drawing tool, drawn sketches
are ill-suited for API implementation. For example, it is difficult to
introduce enough fidelity into the sketch for a useful
implementation and the medium itself cannot easily be translated to
machine code.

In addition, the freedom to draw and experiment on a page can be as
limiting as it is beneficial. The blank page provides no guidance for
designers who have little experience in API design. The designer
who draws a sketch must understand the basic rules that
characterize their chosen API style in order to draw an effective
interface sketch.

Capturing a high level of detail can also be difficult when drawing a
sketch. While, drawing is well-suited to capturing the important
abstract entities and relationships of an interface, it is difficult to
capture higher fidelity information. For example, listing operations,
parameters and message bodies for an interface can easily become a
labour intensive exercise without some form of tooling.

2.2 Writing

While the drawn sketch is a visual representation of the designer’s
abstract idea, a ‘written’ sketch is a literal representation.

The actual language used for the sketch can take many forms. For
instance, a designer familiar with the Ruby programming language
might sketch their HTTP based API in Ruby code. The same
designer might also sketch their API is pseudo-code when
describing it in an email on a mailing list.

2.2.1 Benefits

As with drawing, writing is a common method for humans to
communicate and store abstract ideas. We are inherently driven to
describe abstract concepts either visually or literally [6], so the act
of writing out early designs of the API is a natural and easy
sketching method to adopt.

Written sketches become particularly powerful when programming
languages are used. Designers not only get the benefit a sketch that
can be communicated in a common, standardized language, but also
gain an API that can be invoked. This can greatly increase the
testability and socialization of the interface as well as reduce the
prototype implementation time.

1510

Writing or coding an API is a natural way to build powerful
prototypes and can be an effective option for sketching as well.

2.2.2 Limitations

Although writing an API in a programming language can improve
its implementability, designers who take this approach may quickly
find themselves focusing on very detailed implementation decisions
rather than the abstract design decisions that should be the focus in a
sketching phase.

In addition, when sketching an API design in a programming
language, designers can become focused on solving the problems of
correct syntax, error handling and code readability that are
important for implementation instead of the abstract design
problems related to the interface.

Writing an API as a first step can also present disposability
problems. Designers may grow emotionally attached to the code
they have crafted and they may re-use code between sketch
iterations rather than starting over with a new idea.

Even worse, if the programming language used to sketch the API is
the same language that will be used for implementation, the line
between sketch, prototype and build is easily blurred. Maintaining a
low-fidelity, disposable sketch in this type of circumstance is very
difficult.

2.3 UML

The UML (Unified Modeling Language) is an existing and widely
used standard for modeling object oriented software systems. The
UML addresses five views of software architecture and can be used
to model abstract systems like Web APIs [9].

When used for sketching, UML offers a specialized form of both
the drawing and writing methods.

Student Record
/students/

+records : Collection

+rzad() : GET
+create(record): POST

1

Student Record
Istudents/studentiD}
+firstName : String
+aastName : String
+2ddress : Location

+rzad() : GET
+update(record): PUT

Figure 2 UML Diagram for an object based AP

2.3.1 Benefits

A great feature of UML is that it is formally defined and offers a
predictable syntax. This modeling standardization has made it
possible for UML based tooling to emerge aiding the process of
UML creation. In addition, some UML tools can auto-generate
application code based on the model, improving the
implementability of a UML based sketch.

Another advantage of UML is that it does not prescribe how an API
should be designed. In fact, any network-based architecture should
be able to be depicted with this sketching method, providing a high
level of experimentability for designers.

2.3.2 Limitations

However, UML's flexibility also presents a usability challenge for
API designers[7]. The modeling language is designed for general
use and not for the specific domain of Web API design.

For example, URLs, query parameters, HTTP nomenclature, media
types and vocabularies must all be mapped to the class, property
and method taxonomy of a UML class diagram. Designers must
gain enough expertise with the UML language to be able to apply it
to their own domain problems.

One solution to this problem might be to implement a domain
specific modeling language that uses UML. For example, the
Object Constraint Language (OCL) was originally an extension of
UML designed for object oriented analysis and design[10].
However, as of this writing a popular UML based Web API
language has not emerged.

In addition, the syntax of UML presents a socialization problem. A
UML based sketch cannot be shared with others unless they also
possess the appropriate level of UML knowledge to understand it,
limiting the appeal of UML as a sketching method.

A designer who is competent with UML will be able to quickly
translate abstract thought to a conceptual version of the APIL
However, learning the modeling language while designing an
interface can present a difficult challenge.

Finally, some UML users use the modeling language primarily as a
method for code generation or documentation of production
code[7]. This perception of UML as a programming or
documentation language may limit the designer’s desire to use the
modeling language for informal sketching.

2.4 Interface Description Editors

There is an emerging set of service description formats that attempt
to describe Web and REST APIs. The list of description formats is
constantly evolving, but at the time of this writing popular choices
include WADL, Swagger, RAML and Blueprint [8].

Service description formats are not usually designed specifically to
support sketching activities, but their ability to document and
describe relevant details of an interface makes them a natural fit.

Ultimately, using a format language to sketch an API is akin to
sketching in code. It shares all of the characteristics, benefits and
limitations that were highlighted in section 3.2.

However, in recent years many service description formats have
been released with editing tools to support them. These tools offer a
high level of usability to designers and make the process of
sketching an API much easier. For example, an API can be
described in the Blueprint description format using a web based
editor provided by the format authors [12] (See Figure 3).

Rintrest
Shopping Cart Resources

=
Figure 3 - Apiary.io: an editor for the Blueprint language

2.4.1 Benefits

Service description editors are powerful because they are designed
to support the task of rapid interface description composition.
Although designers must learn the format and syntax of the
particular description language, editors with high levels of usability
will facilitate that task during the design effort.

The best service description format tools provide a complete
ecosystem or workflow that makes it easy to move from the sketch
phase to implementation. This means that designers can easily turn
their best sketches into working prototypes.

In addition, the low cost of creation combined with the ease at
which text can be stored makes this method well suited for
disposability. A designer can easily perform many iterations of a
sketch design by starting over again

2.4.2 Limitations

Utilizing a service description format that is specifically designed to
describe interfaces makes many design tasks easier, but it also
makes it difficult for designers to go beyond the model that the
description format author has created.

While designers can experiment with interfaces that conform to the
syntax of the format in use, they are constrained by the features that
the format provides. This leads to the design of interfaces that
reflect the format designer’s mental model.

Also, many format languages are closely associated with runtime
API engines and products. This can reduce the implementability if
the designer and implanter do not share the same tool ecosystem.

Finally, many interface description editors lack the holistic visual
depiction of the interface model that is provided in the drawing or
UML sketching methods. This lack of visualization can make it
more difficult for designers and reviewers to perceive the transitions
and relationships between elements of the interface.

3. RAPIDO

Rapido[11] is an experimental tool designed to facilitate web API
sketching with both visual and literal methods. The goal of the
experiment is to build a tool that helps designers create sketches
quickly and with just enough detail to capture important API design
features.

The Rapido tool is purposefully designed to constrain the designer
to a relatively low-fidelity sketch when compared to methods such
as written programming languages or service description editors.
For example, designers can only define static responses, cannot
implement conditional or error handling and cannot edit protocol
header information.

A Rapido user typically follows these steps when creating a new
sketch:

1. Create a sketch project

2. Define a vocabulary

3. Sketch the API

4. Model response data

5. Export an API description

With the exception of the first project creation step, each step in the
sketch process can be re-visited or skipped entirely as there are no
dependencies between stages.

3.1 Project Creation

To begin the act of sketching an API in Rapido, the designer must
first create a new sketch project. At this stage, the designer must
decide what style of API will be sketched.

At present time, Rapido supports two API styles called “CRUD”
and “Hypermedia” respectively. The “CRUD” style is useful for
web based interfaces that are primarily object based, while the
“Hypermedia” style allows designers to sketch APIs with
hypermedia controls.

3.2 Vocabulary Definition

A unique feature of the Rapido sketching process is that designers
begin by creating a vocabulary for their API. The vocabulary is
made of the words that are expected to appear frequently in the
interface.

For example, when sketching an API for a system of student records
we might start by including words such as ‘student’, ‘report’ and
‘course’.

Répido! "9~ 2

List all of the words that will be significant for the users of
your API.

Your API Vocabulary
These might be words used i the URL, nthe body or i the request

home parameters.

Manage ALPS Vocabularies.
students d .

student
location
report
course

Figure 4 - Vocabulary Editor

Beginning with a list of relevant words allows the API designer to
think about the interface in its most abstract terms. At this stage the
designer can consider the interface based on the objects, activities
and relationships that it is composed of without solving the problem
of how these concepts are connected or implemented.

The words that are defined in this vocabulary stage are used in the
later sketching phase automatically as type-ahead hints. This not
only promotes consistency of the API’s vocabulary, it also reduces
the typing effort for the Rapido user.

It is important to note that the semantics of this vocabulary are not
captured in the tool. The words are simply a list of strings and the
sketching functions of Rapido cannot take advantage of the
meanings of words in this list.

3.3 Sketching CRUD APIs

The CRUD sketching canvas reflects an object, URI and HTTP
method view of a web APIL. This perspective of API design should
resonate with most designers as these components form the building
blocks of the CRUD API conceptual model.

When sketching a new CRUD style API, the designer is presented
with a blank canvas and a single root node (see Figure 5). By
clicking on the root node, the designer is able to create the first
resource of the CRUD APL

Répido! 0~

O

Figure 5 — The blank CRUD canvas

A ‘wizard’ for resource creation is presented and the designer can
enter the URI, allowed methods and query parameter details for this
resource (see Figure 6). Once created, the Rapido tool provides a

1512

visual representation of the resource that includes its descriptive
name, URI and allowed methods.

Create A Resource

Basic Properties

Studehts
students in { and } if you want it to be a dynamic resource. For example:

student

Cancel

Figure 6 - Creating CRUD Objects

Designers can also compose parent-child relationships between the
resources they create. The simplest way to do this in the Rapido
tool is by clicking on the ‘plus’ icon of an existing resource. The
child resource creation workflow is identical to the wizard described
earlier, except for the fact that the URI field is pre-populated with
the parent resource’s URI. The designer is free to append to this
pre-populated URI or overwrite it completely.

For example, we might sketch a collection of student records as a
resource with a URI of “/students”. We could also sketch a child
resource of students that points to a specific student record. This
child resource could have a URI of “/students/student 1.

The serialization of parent-child relationships in the URI is not a
formal standard for CRUD style APIs. However, it is a regularly
used convention and is recommended in many best practices guides
for REST design. The URI pre-population feature is included based
on an assumed popularity of this convention amongst CRUD style
API designers.

‘‘‘‘‘

-
:
® IO

Figure 7 - Modeling object relationships

The CRUD sketching canvas is intended to let Rapido users
immediately conceptualize the object and relationship model of the
API. The structural elements of the API are exposed, providing an
opportunity for designers to play with the API holistically and
experiment with different conceptual models.

At this level of fidelity, none of the request or response message
details are accessible for viewing or editing. This is by design. The
goal is to discourage designers from investing too much time in a
high fidelity sketch at the beginning of the design process.

3.4 Sketching Hypermedia APIs

A different type of canvas is presented to hypermedia API
designers. In Rapido, a hypermedia API is sketched as an informal
state diagram.

State diagrams can be useful for designing and conceptualizing
hypermedia applications. Zuzak, Budiselic and Delac suggest that
“transferring resource representations for transitioning agents from
one state to another, suggests the usage of a state transition system
formalism” [13]. Amundsen and Richardson recommend drawing a

state machine as an early step in a hypermedia API design process
[14].

When a designer begins a hypermedia sketch in Rapido, they are
presented with a single home state from which they may create
transitions to new application states. All application states can have
transitions to other application states. The goal in this canvas is to
quickly sketch a web of state transitions (see Figure 8).

| Student Records ~

Rapido

®

S AN

®
N\ O

‘

Figure 8 - Sketching a hypermedia API

The particular method for creating transitions differs depending on
the media type that has been selected during project creation.
Rapido currently has support for the Collection+JSON and HAL
media types only, but the goal is to extend support to other types in
the future.

For example, when sketching a CollectiontJSON API we can
create a transition to a new child item by stepping though a wizard
that is specific to the CollectiontJSON specification. We can
choose what type of link we want, where it should be located and
what the target should be (see Figure 9). In turn, the state diagram
contains visual cues that are relevant to this media type. The
different types of Collection+JSON links can be differentiated by
colour and pattern.

Create a Collection+JSON Link
What kind of link?

Addacnidten | Creatoaink | creatoa query

(©)
sy I

Figure 9 - Creating new Collection+JSON transitions

The fidelity of the hypermedia sketch canvas is intended to be low.
In this view, designers can model the states and transitions, but
cannot edit or view the response messages themselves. Further, the
designer cannot model conditional logic or decision based state
changes.

The Rapido canvas is meant to support quick, low fidelity sketches
that require a minimum of effort and investment.

1513

3.5 Editing API Message Data

Although the CRUD and hypermedia canvases do not support
message level editing, designers are able to “zoom in” to a
particular state or resource if they wish to sketch the message data.

Rapido’s message editor is a simple text based editor with usability
aides for JSON, HAL and Collection+JSON editing. This includes
syntax highlighting and type-ahead hints for the supported formats
(see Figure 10).

Designers are free to construct any text based response for the
response or state node that they have chosen. While the editor may
signal the validity of the data entered based on the media type’s
specification, it does not prevent the user from saving arbitrary data.

This allows designers to sketch the response data in broad strokes,
capturing important ideas without being bound by the rules of
syntax.

home

The default start state.

“collection": {
"items": [

Figure 10 - Editing response data

In addition, designers of hypermedia APIs are able to use a short
hand syntax to create transitions between states. When a string
contains a token delimited by the strings “$(“ and “)”, a state
transition is automatically created. This facility allows designers to
impact the low-fidelity canvas view of the system while sketching
higher fidelity details.

A downside to providing a message editing facility is that it
requires additional investment on the part of the API designer. This
added design effort can reduce the disposability of the sketch.

3.6 Implementability

Rapido sketches can be exported into either the WADL or Blueprint
service description formats. This makes it possible to use the
implementer’s preferred editor or tooling to create prototypes based
on the sketch.

Répido! CRUP sehoolRecoras «

AP Blueprint

Figure 11 - Exporting a Rapido sketch

3.7 Benefits

The main strength of the Rapido tool is that it combines the holistic,
low-fidelity, visual properties of the drawing method with the
higher-fidelity literal properties of the writing method.

The visual nature of the sketching canvas also affords designers the
ability to “play” with their designs, experimenting with different
types of transitions and relationships.

Finally, the lack of support for dynamic responses, logical flows and
message header detail may discourage designers from investing too
much time in the sketch resulting in improved levels of
disposability.

3.8 Limitations

While the low-fidelity of the Rapido tool helps designers create
many disposable sketches, it prevents them from -capturing
important detailed characteristics of their APIs such as security
controls, error handling and logical behavior.

Another challenge is that the focus on specialized support for
CRUD conventions and hypermedia formats hinders broader
experimentation. For example, it is difficult to use Rapido to design
a new hypermedia media type or a new message format.

In addition, the current set of media types and service description
formats is limited. This limits the usefulness of the tool to
communities of users who use these particular formats. Hopefully
in the future additional media types and formats will be supported.

Finally, many of the design decisions made for the Rapido tools are
based on assumptions and hypothesis about user behaviour. In
practice, the sketching needs of API designers may not be
accurately reflected in the interaction design of the tool.

4. CONCLUSION

API designers who are interested in producing high quality
interfaces should consider incorporating a sketching method into
their design process.

While there are many different ways to sketch an API, the Rapido
tool attempts to consolidate the benefits from the most popular
methods to provide a sketching process with good disposability,
experimentability, socializability and learnability.

By unbundling the sketching experience from the design, prototype
and implementation experience Rapido attempts to provide a higher
quality sketching experience for designers.

1514

REFERENCES

Joshua Bloch. 2006. How to design a good API and why it
matters. In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and
applications (OOPSLA '06). ACM, New York, NY, USA,
506-507. DOI=10.1145/1176617.1176622
http://doi.acm.org/10.1145/1176617.1176622

Bill Verplank. 2009. Interaction Design Sketchbook.

David G. Ullman, Stephen Wood, David Craig. The
importance of drawing in the mechanical design process.
Computers & Graphics 14, 2 (1990), 263--274.

Drawing Gym, Teaching Engineers to Draw.:
http://www.ucl.ac.uk/drawing-gym/. Accessed: March 9",
2015

Bill Buxton. 2007. Sketching User Experiences: Getting the
Design Right and the Right Design. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Neil Cohn. 2012. Explaining ‘I Can’t Draw’: Parallels
between the Structure and Development of Language and
Drawing.

Marian Petre. 2013. UML in practice. In Proceedings of the
2013 International Conference on Software

Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA,
722-731.

Ole Lensmar. An Overview of REST Metadata Formats:
http://apiux.com/2013/04/09/rest-metadata-formats/.
Accessed: March 8", 2015.

Grady Booch, James Rumbaugh, and Ivar Jacobson. 1999. The
Unified Modeling Language User Guide. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA.

[10] The Object Constraint Language: Precise Modeling With Uml
(Addison-Wesley Object Technology Series) (13 October
1998) by Jos B. Warmer, Anneke G. Kleppe

[11] Ronnie Mitra, Rapido: http://www.rapidodesigner.com

[12] Apiary. http://apiary.io/. Accessed: March 9", 2015

[13] 1. Zuzak, 1. Budiselic, and G. Delac. 2011. A FINITE-STATE
MACHINE APPROACH FOR MODELING AND
ANALYZING RESTFUL SYSTEMS.

[14] M. Amundsen, L. Richardson. 2012. RESTFul Web APIs.
O’Reilly Media.

[6]

[7]

(8]

(%]

