
Model-driven Testing of RESTful APIs

Tobias Fertig
tobias.fertig@t-online.de

Peter Braun
peter.braun@fhws.de

Faculty of Computer Science, University of Applied Science
Würzburg-Schweinfurt, Sanderheinrichsleitenweg 20, Würzburg, Germany

ABSTRACT
In contrast to the increasing popularity of REpresentatio-
nal State Transfer (REST), systematic testing of RESTful
Application Programming Interfaces (API) has not attrac-
ted much attention so far. This paper describes different
aspects of automated testing of RESTful APIs. Later, we
focus on functional and security tests, for which we apply a
technique called model-based software development. Based
on an abstract model of the RESTful API that comprises re-
sources, states and transitions a software generator not only
creates the source code of the RESTful API but also creates
a large number of test cases that can be immediately used
to test the implementation. This paper describes the pro-
cess of developing a software generator for test cases using
state-of-the-art tools and provides an example to show the
feasibility of our approach.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools; H.3.5 [On-
line Information Services]: Web-based services

General Terms
Languages; Measurement; Verification

Keywords
REST; API; Model-driven Development; Model-driven Tes-
ting

1. INTRODUCTION
Nowadays, the amount of web services is continuously in-

creasing. Many of these web services are using the architec-
tural style for distributed systems called REpresentational
State Transfer (REST), which was suggested by Roy Fiel-
ding in [6]. The proliferation of RESTful web services is evi-
dence for the efficiency of his architectural style. REST com-
plies with the modern requirements for web-based and mo-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2743045.

bile applications. Therefore, Application Programming In-
terfaces (APIs) following Fielding’s approach are becoming
more and more popular for developers.
In contrast to developing RESTful APIs and following

Fielding’s constraints, there is a lack of information about
quality assurance for RESTful services. This can mislead
developers, e.g. reducing the level of quality assurance once
they are running out of time, which can then cause side
effects for all clients using the API.
There are two ways to improve the quality of RESTful

APIs. Firstly, quality assurance has to be present in litera-
ture about development of RESTful services, i.e. it has to be
extended by how to test those. Secondly, quality assurance
needs to take advantage of automated test case generation,
which will lead to higher test coverage. Furthermore, devel-
opers will no longer have to write test cases manually.
This paper aims at the latter way and introduces an ap-

proach for automated test case generation via Model Dri-
ven Testing (MDT). There are two possibilities to perform
MDT: If the API under test was developed by Model Driven
Software Development (MDSD), there exists a model that
can be used for automated test case generation. If that is not
the case, the MDT approach still needs a model. The testers
will then have to produce their own model or Domain Spe-
cific Language (DSL) in order to describe the existing API
for the generators. Both ways are applicable with MDT.
We will prove that MDT is a reasonable approach for tes-

ting REST and that it is worthwhile to move further in
this direction. We defined the following requirements our ap-
proach should fulfill in order to pass the evaluation: Firstly,
the generated amount of test cases has to be very high, in
order to justify the effort compared to developing test cases
manually. A high number of test cases is of course not a goal
on its own, but must result in a high level of code covera-
ge. Furthermore, the model should only contain information
about the design of the API under test and should not con-
tain any explicit information about testing. Thus, even de-
velopers without any knowledge about quality assurance are
able to generate all possible test case. Moreover, it has to be
possible to test several combinations of arguments, headers
and login data to benefit even more compared to manual
testing.
The paper is structured as follows: In Chapter 2 we will

discuss other approaches dealing with testing RESTful APIs.
Chapter 3 will explain the important aspects of testing REST.
In Chapter 4 the scope of our whole research project will be
described. Furthermore, our generators and their develop-
ment will be introduced. In order to prove the success of

1497

MDT we will give an example of evaluation in Chapter 5.
Chapter 6 will contain a short summary followed by an out-
look on future works.

2. RELATED WORK
This section will summarize some related works about tes-

ting RESTful APIs, using either a classic approach or auto-
mated generation of test cases.
Several approaches to simplify testing RESTful APIs exist.

Commonly used tools like JUnit1, NUnit and other xUnit
frameworks aim at unit-testing. Their tight-coupling with
the implementation language of the subject under test ma-
kes it difficult to use them for testing web-services. The-
refore, many teams are searching for techniques to impro-
ve testing such services. One approach is SoapUI2, a tool
which can configure test cases for web-services by using a
Service-Oriented-Architecture. The fact that it can mainly
be configured via its graphical interface makes it difficult to
enable an automated test case generation. Thus, it did not
fulfill our requirements.
Another approach improving the development of test ca-

ses for RESTful services is Haleby’s REST-assured3. He de-
veloped a framework for rapidly writing test cases for any
RESTful API. The syntax of his tool follows the so-called
when-then-rule. Moreover, every test case can be configured
by using a fluent interface4. As this speeds up only manual
testing, we decided not to use it since we had already de-
veloped test cases using the JUnit framework, which were
used as templates during software generation.
Furthermore, we discovered an approach using automated

test case generation. Test-the-REST (TTR) is an HTTP
testing tool especially designed for testing RESTful web-
services. Chakrabarti et al. explain their tool in [3]. It is
based on XML-files configuring the required test cases. In
their sixth section they mention that they could generate
over 40,000 test cases with TTR. The development team
using their pilot decided to continue using it as they could
eliminate plenty of bugs. Chakrabarti’s validation was one
of the reasons for us to focus on MDT for testing REST-
ful APIs. His work proved that it is possible to develop an
automated test case generation for RESTful APIs. Howe-
ver, their approach still requires too much knowledge about
testing to configure all test cases via XML. This additional-
ly knowledge is, however, contradictory to our predefined
requirements for the evaluation of our approach.

3. TESTING RESTFUL APIS
After the outline of related work the different kinds of

test cases required for testing REST will be discussed in
this chapter.

3.1 Functional Testing
Although testing the functional parts of RESTful APIs is

one of the most basic steps, we will nevertheless summarize
its most important aspects. A correct response body should
contain the representation of the requested resource, using
the requested media type or at least a valid HTTP Error
Code Message. On the one hand, response headers have to be
1 www.junit.org/
2 www.soapui.org/
3 code.google.com/p/rest-assured/
4 www.martinfowler.com/bliki/FluentInterface.html

valid HTTP headers and on the other hand, they also have
to match the given status code of the response. Furthermore,
we determined every header to be tested in its own test case,
thereby fulfilling the convention that a test case should focus
on one single aspect only. Due to the similarity of each of
those test cases, MDT is very useful. It can be exhausting
for a human developer to write hundreds of similar test cases
differing in only one line. The developer would try to speed
up via copy and paste, which then often causes bugs. MDT
fixes this problem as it is even easier to write generators
when test cases are very similar.
Apart from checking headers and bodies of responses there

has to be a validation of returned URLs. Every URL should
point to an existing location since even a single broken link
can cause the hypermedia mechanism to fail. Following Fiel-
ding’s constraint of self-descriptive messages, at least one
useful message has always to be returned by the server. We
decided against crawling through returned URLs and are in-
stead only checking the first level. Any URL found at deeper
levels will usually be checked by the test cases for another
endpoint.

3.2 Security Testing
Dealing with security often leads to topics like cross-site-

scripting (XSS) or SQL-injection, but there are even simp-
ler aspects we need to check. If a developer tests their web
service they should at least write some test cases for aut-
horization. Thus, there will be a few test cases covering on-
ly some combinations of states for username and password.
This is due to the huge amount of time needed for manually
checking all possible combinations. Username and password
can each have the states VALID, INVALID or MISSING,
so there are nine different combinations testable. Here, we
recognized the same facts as in Section 3.1: MDT is again
very useful regarding the similarity between the test cases.
We can generate one test case for every combination just
by using one additional for-loop to iterate over all possible
combinations. Furthermore, we can test the authorization
functionality of every single endpoint provided by the API.
We can, therefore, detect whether an authorization is miss-
ing on any endpoint.
On our first attempt, we reduced the security testing to

checking all possible combinations of states. However, we
strongly recommend to also do some penetration testing on
your web services. For further information about penetration
testing, see Antunes’ and Vieira’s work in [1].

3.3 Performance Testing
There are several tools aiming at performance testing for

example Apache JMeter5. In order to use MDT for perfor-
mance testing additional information in the model is needed.
The distribution of different HTTP requests is therefore re-
quired to describe different user behavior. The tester should
at least receive information about the shortest and longest
duration supplementary to the average duration as result of
the performance tests. Moreover, the duration of the whole
performance test has to be configured. Since it is only pos-
sible to make a performance statement about the API if the
test has been running long enough, this value should at least
be set to 60 minutes.

5 jmeter.apache.org

1498

3.4 Behavior Testing
Testing the behavior of RESTful APIs often is a subjective

task. According to [7] there are different ways of responding
to a request. Furthermore, some developers prefer conditio-
nal requests defined in [8] to assure that resources can only
be updated or deleted if the client has knowledge about the
latest state of the resource. All different kinds of behavior of
a given RESTful API have to be tested so that clients using
this API can be sure that the API acts like promised. It is
no big deal to provide all these similar test cases for each
endpoint with MDT.

3.5 REST Compliance
We have to mention that we did not focus on this to-

pic in our first iteration of research as we wanted to prove
the usability of MDT for testing REST first. In his blog
[5] Fielding criticizes that many existing APIs are called
RESTful although they do not adhere to his constraints. He
mentions Hypermedia As The Engine Of Application State
(HATEOAS) as one of the most violated constraints. An ap-
proach covering every aspect of testing RESTful APIs has
to check the compliance to Fielding’s constraints.

4. MODEL-BASED TESTING
In this section we describe the scope of our whole research

project. It will also contain information about the framework
we used to develop our generators.

4.1 Scope of research project
Our research group aims at the improvement of develo-

ping RESTful services. There are many APIs called REST-
ful although their developers violated Fielding’s constraints.
Using a model driven approach enables development teams
with less experience about REST to comply with these cons-
traints.

Backend with
Persistency

Test Cases

Mobile
Application

Model

Figure 1: Provided scope of our research project.

Figure 1 shows the scope of our research project. The idea
was to develop a DSL to describe a required RESTful API.
The generators will then use this description to generate an
entire backend including persistence. Moreover, to achieve a
high test coverage, all test cases will be generated. Finally, in
order to improve the development of mobile applications, the
communication layer for communication with the backend
will also be generated.
At the beginning of our project Schreibmann focused on

the MDSD of the API including persistence [9]. After relea-
sing his model we started to work on the MDT approach.
However, the part for mobile applications is still listed on
our to-do list.
A short example on how to use the model for describing

an API can be seen in Listing 1. After a few basic confi-

gurations, e.g. the definition of the base path or choosing a
security mechanism, the description of resources begins. We
enabled an inheritance mechanism to extract common set-
tings like media types or identifiers. The attributes of every
resource can be listed in curly braces. Listing 1 contains on-
ly one resource description, however, the required API can
contain as many resources as required.

Listing 1: Describing an API using our model.
BasePath "api"
Security {

Authentication by HTTPBasic
}
AbstractResource Base {

Long id as key
MediaType "application/json"

}
Resource User extends Base {

String userName
String password
String firstName

}

4.2 Xtext and Xtend
There are different tools for MDSD and we decided to use

the most common ones: Xtext6 and Xtend7. For a detailed
description of how to use both we recommend Bettini’s book
[2].
Xtext is a framework used for implementing programming

languages or DSLs. By using Xtext, we can design a model
for RESTful APIs and generate our test cases based on the
given description. The framework provides all required tools
like parsers, linkers or compilers for the designed DSL. On-
ly a short Xtext file is required to define the grammar for
describing RESTful APIs.

Listing 2: An Xtend syntax example.
'''

public void «getMethodName()»() {
«IF authorizationHeader.equals("")»
generateAuthorizationHeader();
«ELSE»
setAuthorizationHeader(authorizationHeader);
«ENDIF»

}
'''

Xtend is a Java dialect that can be used for implementing
code generators within Xtext. We used Xtend to provide
templates for our test cases. Furthermore, we can generate
Java code which looks like manually written code due to
the fact that Xtend supports white spaces and intending.
Listing 2 gives a short example for explaining the syntax of
Xtend. The three single quotation marks are used to define
the included code as a template. Later Xtend will generate
Java code from it by keeping the defined intending and whi-
tespace. Within the French quotation marks it is possible
to use If-Else or For-Each statements what enables iterating
over collections and generating Java code based on the con-
tent of the collections. The whole code in-between French
6 www.eclipse.org/Xtext/documentation.html
7 www.eclipse.org/xtend/documentation.html

1499

quotation marks is Xtend code and will be executed before
the Java code is generated. For a more detailed documenta-
tion of the whole Xtend syntax we recommend the official
Xtend guide.

4.3 Test Case Templates
We recognized the similarities between the different kinds

of test cases in our existing unit test cases. Thanks to the
template mechanism provided by Xtend we had the possibi-
lity to use those templates for the generation of test cases.
One main structure can be extracted from the tests: If requi-
red there will always be a preparation of target URLs and
used resources first. Hence, the preparation in the template
has to be configurable. Afterwards the request will be built
and executed. In doing so, there can be different headers
for every request, e.g. different authorization information.
As before, the template needs another placeholder for those
headers. After the execution of the request each test case
has to evaluate one single aspect of the given response. The
assert statement at the end of the test case has therefore to
be flexible, too.
We decided to use different templates for each kind of

HTTP request. This is due to the fact that some request
types like GET and DELETE do not need a resource atta-
ched to the request body while others like PATCH, POST or
PUT do. Furthermore, we also decided to provide different
templates for the same kind of HTTP request to achieve
a separation for different purposes. For example there is a
template for default DELETE requests and one for condi-
tional DELETE requests. In general, we decided to provide
an extra template for conditional requests.
Listing 3 defines our default template for GET requests.

All similar parts of the test cases are hard coded into the
templates. All varying parts are adjusted with Xtend using
French quotation marks. In Listing 3 it can be seen that
the name of the test case is also written in French quotati-
on marks. This is to provide meaningful names even within
the generated test cases what simplifies evaluating the test
reports.

Listing 3: Default template for GET requests.
'''

@Test
public void «spec.methodName»() {

CloseableHttpResponse response = getHttpClient()
.setTargetUrl(«spec.targetUrl»)
«IF spec.authHeader.equals("")»
.setNoAuthHeader()
«ELSE»
.setAuthHeader("«spec.authHeader»"))
«ENDIF»
.executeGetRequest();

«FOR command: spec.preAssert»
«command»;
«ENDFOR»
«spec.assertion»;
}
'''

4.4 Test Case Specifications
In Listing 3 the name of the variable spec can be seen. This

variable represents a specification builder we designed to im-
prove extensibility and changeability. We added a field in our
specification variable for every placeholder in the templates.
We can build different collections of specifications with a
class implemented as a fluent interface. Thus, it is easy to
add multiple specification objects and finalize the collection
with a call to the build() method. We developed methods to
build specifications for every possible test case scenario.
Due to the possibility of iterating over collections within

Xtend templates we created methods for generating a col-
lection containing all necessary test case specifications. This
is used to check whether a response to a given request con-
tains the status code, the headers and the body defined in
the RESTful API. Our generators will use these collections
to generate all required test cases.
If the requirements for a specific HTTP request change,

only the settings in the SpecificationsBuilder class have to
be adjusted. Every test case used for checking the behavior
of the concerned endpoints can be regenerated and will fit
into the new requirements.

4.5 Test Case Generators
After introducing the test case templates and the specifi-

cations for configuring them, the generators are still missing.
There are different generator classes, one for every topic un-
der test. There are generators for authorization test cases
and classes for equivalence class and boundary testing. We
also implemented generators to provoke internal server er-
rors while testing. Moreover, we added some to cover the
405 - Method Not Allowed error. There are many possibi-
lities and topics a generator can be written for. We also
generated test cases for semantic purposes, e.g. attributes
limited to numbers greater than zero. Another advantage
of automated test case generation is the possibility to test
all combinations of attributes, e.g. while testing query me-
thods or endpoints for partial updates via PATCH request
[4]. The generation of all possible combinations is achieved
by an algorithm based on binomial coefficients.

Listing 4: An example for generating test cases.
'''
«FOR authHeader: unauthorizedAuthorizations»

«FOR spec: specBuilder.buildUnauthorized()»
«spec.setAuthHeader(authHeader)»
«testCases.generateGET(specification)»

«ENDFOR»
«ENDFOR»
'''

Listing 4 shows the code for generating about 30test ca-
ses. The outer collection unauthorizedAuthorizations con-
tains combinations of username and password which should
result in a 401 - Unauthorized response. The inner collecti-
on contains all specifications required to check whether the
headers, the status code and the body of the response match
an unauthorized response. If one takes into account that this
happens for every endpoint of the API a rather small API
with ten endpoints would then result in 300 test cases.
Due to our design we can easily change the specifications

for unauthorized test cases and all created test cases will be
updated. It is also possible to wrap our code from Listing 4

1500

in an additional for-loop if multiple test cases for each single
aspect are required.

5. EXPERIMENTAL VALIDATION
After describing our generators we will give an experimen-

tal validation in this section. We will determine the API
under test and afterwards validate our approach.

5.1 The API under test
The approach for generating RESTful APIs developed in

our research project was published by Schreibmann in [9].
Through testing his generated code we were able to determi-
ne whether MDT is a reasonable alternative to test systems
generated by MDSD. Moreover, we could validate if it is
possible to apply MDT to RESTful APIs.

User
username: String
password: String
firstName: String
lastName: String
birthday: Long
tweets: List<Message>

Follower
followers: List<User>

Message
body: String
header: String
followers: List<User>
tags: List<Tag>

Tag
name: String
group: String

Figure 2: Class diagram of resources.

With his model we described the resources of a simple API
shown in Figure 2. Associations in the class diagram easily
show which class is contained in the collection attributes. We
decided to use only four resources enabling us to determi-
ne a formula to approximate the minimum amount of test
cases. Schreibmann’s model provides the ability to define
ranges for every attribute. Ranges for numbers define valid
intervals while ranges for strings define its size. Regarding
character strings, a semantic condition can be defined, too.
Via semantic condition, the API ensures that the defined
string will always represent for example an email address or
URL.

5.2 Information in the model
Whether an existing model is used for MDT or not, the

model should not contain any information about quality ass-
urance. This was one of the requirements for our approach
in order to pass the evaluation.

Listing 5: A resource with attribute ranges.
Resource resource extends Base {

String ("5" ... "15") email attribute1
String url attribute2
Long (100L ... 1000L) attribute3

}

The model implemented by Schreibmann in [9] provides
enough information for MDT to generate test cases. The
model contains information about ranges which can be used
for equivalence or boundary tests. Listing 5 shows how to

specify ranges and semantic information for attributes. The
names of the resources and their attributes can also be ex-
tracted. Even semantic tests are possible due to the semantic
conditions for attributes of type string. In case of unboun-
ded attributes no ranges have to be defined. This applies to
the semantic information, too.
However, we had to disregard our defined rule about ad-

ditional information in order to enable performance testing.
There has to be a possibility to define the distribution of the
varying HTTP requests in order to simulate different user
behavior. Moreover, the duration of the performance test
has to be adjustable. However, for better compliance with
our predefined requirements we defined these settings as op-
tional. If performance tests are irrelevant or the tester has
not enough experience with them they can just skip these
settings. No performance test cases will then be generated.

5.3 Minimum amount of test cases
In Section 1 we defined that our approach has to ensure

that the amount of generated test cases has to be at least
high enough so that it cannot be done manually. Only then
is the effort to implement the DSL and the generators ju-
stified. We generated a complete set of test cases for our
reference API to validate MDT. Within our first iteration
about 14,000 test cases could be generated for the user re-
source containing six attributes. About 20,000 test cases we-
re generated for the whole API. After the generation we were
able to count the amount of different test cases depending
on the attributes of a resource. Moreover, we counted the
default test cases which are generated for every endpoint.
Based on these numbers we created Formula 1 to approxi-
mate the minimum amount of test cases depending on the
amount of attributes n.

f(n) =
n∑

k=0

(
n

k

)
∗ 160 + 740 (1)

The first addend of Formula 1 represents the number of
test cases depending on the amount of attributes a resource
contains. We covered all possible combinations of attributes
in order to test endpoints for queries or partial updates. We
provided about 160 different test cases using all combina-
tions. The second addend represents our default test cases.
We provoked different errors and checked the authorization
functionality on every endpoint what adds up to 740 test
cases.
With this rough approximation the minimum amount of

test cases for a resource containing only one attribute results
in 1060 test cases. A real API will contain a lot of resources
with more than one argument. Thus, our approach passes
the first criteria mentioned in 1. However, we strongly re-
commend running the test cases at night since our systems
could run about 200 test cases per minute. Therefore, even
an API containing only one resource with one attribute will
need five minutes to complete all test cases.

5.4 Result
Since of TTR generated about 42,000 test cases for a reali-

stic API, we proved the success of MDT as it created 20,000
test cases for a very small API. Furthermore, there were
some bugs which were only discovered because of testing
all possible combinations of authorizations or attributes in
queries.

1501

Another advantage is that the model needs no additional
information. A developer with knowledge about RESTful
APIs can easily define their API and does not need any
special knowledge about how to test REST. This is an im-
portant fact especially with the lack of information about
testing REST in literature, we mentioned in Section 1.
There are many debates about how to test a system gene-

rated by MDSD. We recommend to consider MDT as a tool
for quality assurance when using MDSD due to the success
of testing our API with MDT. If there already is a com-
plete model or DSL for developing a system no high efforts
are needed to generate test cases with the given informa-
tion. Nevertheless, we recommend an efficiency check with
alternative approaches in case of a missing model.

6. SUMMARY
This paper described an approach for MDT of RESTful

APIs. Actually, two reasons exist why testing RESTful web
services can fail. Firstly, there is a lack of information about
how to test REST both in literature and in the world wi-
de web. Secondly, if projects are running out of time their
managers often tend to reduce quality assurance instead of
reducing the amount of functionality provided. The aim of
this paper was to encourage the use of tools to automatical-
ly generate all required test cases. As this generation does
not need any additional time the profit of reducing quality
assurance will disappear. The time for gathering knowledge
about testing REST will furthermore be reduced if the team
can use an existing approach.
At the beginning we summarized related works to pro-

ve the need of automated test case generation. Afterwards
we explained the different kinds of testing which have to be
taken into account for quality assurance of RESTful APIs.
After this consideration we introduced our model driven ap-
proach. We designed some test case templates using place-
holders and specification classes to fill those placeholders
during the generation process. Each generator class focuses
on one kind of testing REST. Before filling the templates
with concrete information it generates the required specifi-
cations. If requirements change, only the specification classes
will be affected. The evaluation based on a RESTful API ge-
nerated by MDSD was successful as we could generate over
20,000 test cases for an API containing only four resources.
Furthermore, no additional information about testing was
needed in the model, only about describing the API under
test.
After we proved the usability of MDT for testing RESTful

APIs there are multiple tasks to focus on in future work. In
Section 3.5 we mentioned that we did not focus on REST
compliance yet. In our next steps we have to focus on this
topic in order to enable test cases on a more abstract le-
vel. Moreover, the importance of extended testing if an API
complies with Fielding’s constraints cannot be denied since
Fielding published [5] on his blog. However, the other to-
pics on testing REST, e.g. security testing or performance
testing offer plenty of testable alternatives, too. Within our
approach we did not provide any penetration testing which
could also be extended.
Another possible direction is aiming at a framework which

offers an independent model to describe any existing REST-
ful API. The process of generation should be divided into
two steps, one for gathering information about returned er-
ror messages and one for the final generation of test cases

using the given information of the model and the gathered
information of the first step.

7. REFERENCES
[1] N. Antunes and M. Vieira. Penetration testing for web

services. Computer, 47(2):30–36, Feb 2014.
[2] L. Bettini. Implementing Domain-Specific Languages

with Xtext and Xtend. EBL-Schweitzer. Packt
Publishing, Limited, 2013.

[3] S. Chakrabarti and P. Kumar. Test-the-REST: An
approach to Testing RESTful web-services. In Future
Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, 2009. COMPUTATIONWORLD
’09. Computation World:, pages 302–308, Nov 2009.

[4] L. Dusseault, L. Lab, and J. Snell. RFC 5789, PATCH
Method for HTTP, 2010.

[5] R. Fielding. REST APIs must be hyper-text driven.
http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven.

[6] R. Fielding. REST: Architectural Styles and the Design
of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. RFC 2616,
Hypertext Transfer Protocol – HTTP/1.1, 1999.

[8] R. Fielding and J. Reschke. RFC 7232, Hypertext
Transfer Protocol – HTTP/1.1: Conditional Requests,
2014.

[9] V. Schreibmann. Design and Implementation of a
Model-Driven Approach for RESTful APIs. In Proc.
Fifth IEEE Germany Students Conference 2014
Passau, 2014.

1502

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150316124256
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 5
 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150316124256
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 5
 6
 5
 6

 1

 HistoryList_V1
 qi2base

