
BrowserCloud: A Personal Cloud for Browser
Session Migration and Management

Junjie Feng
Department of Computing and Information Systems

The University of Melbourne
Victoria, Australia

fed@student.unimelb.edu.au

Aaron Harwood
Department of Computing and Information Systems

The University of Melbourne
Victoria, Australia

aharwood@unimelb.edu.au

ABSTRACT
Web browsers are de facto clients for an ever-increasing range of
web applications. At the same time, web users are accessing these
applications from a wide range of devices. This paper presents a
solution for runtime browser session migration and management,
called BrowserCloud, which allows a user to securely manage
multiple browsers from a personal or third-party Cloud service,
migrate snapshots of active browser sessions between browsers
over different devices, using a robust security module. The design
of BrowserCloud is based on browser extensions/plugins that can
preserve and restore browser session state, and a PHP server that
stores browser sessions securely. We have tested our
implementation over a range of increasingly complex web
applications, including WebRTC and HTML5 video. To the best
of our knowledge, our implementation is the most robust and
secure approach to runtime browser session management to date.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed Systems;
D.3.2 [Software]: Language Classifications - JavaScript; E.3
[Data]: Data Encryption;

General Terms
Application

Keywords
Browser Session Migration, Personal Cloud, WebSocket, Browser
Extension, Security Module

1. INTRODUCTION
Web browsing is a ubiquitous daily activity for many people. For
some time, “bookmarks” were enough to meet a user’s
expectation of browsing mobility. Nowadays, each user owns
multiple browsers running with different browser software
(Chrome, Firefox, Safari, and Internet Explorer), different
hardware devices (Home PC, Workplace PC, mobile phone) and
different operating systems (Windows, Linux, Mac OS, Android,
iOS). Emerging web technology (HTML5, CCS3 and Web 3.0)
and high speed Internet give web applications similar power and
capabilities to conventional desktop applications. In another
direction, the browser is being increasingly used as a thin client to
a range of Cloud-based applications. Most web applications today,
including Cloud-based applications, are session-oriented and as a

result, standard bookmarks are no longer sufficient to satisfy the
expectation of browsing mobility. To support a much richer user
experience within this emerging browser-based paradigm, we
propose the capability for a user to remotely manage multiple
browser instances and seamlessly migrate an active browser
session between browsers, using e.g. a personal or third-party
Cloud service. In this paper we present our real-world
implementation of such a service, which we call BrowserCloud.

Consider, for example, eBay users who are selling items, and that
may check order and payment history regularly. Each time they
revisit their order history, they may ordinarily click through a
number of web pages to arrive at the order history page. Using a
bookmark of the web URL in a second browser is insufficient to
arrive at the order history page directly, because related cookies
are needed to pass through the eBay login authentication. Rather,
migration of the entire session state is needed. This is an example
of more common problem that arises when people try to share a
bookmark to web content that is session state dependent. Consider
another case, where a user is enjoying a YouTube video, but has
to shut down the PC shortly. She may like to continue the video
on her smart phone, but would have to search for the video, and
move the video time-line to where she left off. A service that
could seamlessly migrate the active YouTube video from the PC
to the mobile phone, continuing the video stream from where it
left off, would be much more convenient.

1.1 Our Contributions
To address the limitations of bookmarks, and increase browsing
mobility, we propose BrowserCloud, which was designed and
developed to allow a user to centrally control multiple browsers,
and seamlessly migrate active browser sessions in a secure way.
We present a detailed description of our system and its operation.
We tested our system on a range of websites, with PC and mobile
browsers, and varying website complexity, which highlights a
number of interesting and problematic cases. We also present
measurements of performance of session migration in terms of
latency and data transfer. Furthermore, we present our robust
implementation of security that allows BrowserCloud to be run by
a third-party service provider in such a way that a user’s session
data is kept confidential.

1.2 Paper Organization
Section 2 provides a high level description of our proposed
system. Section 3 provides the details of its implementation.
Section 4 shows our testing and performance measurements.
Sections 5 and 6 discuss related work and make concluding
remarks.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author's site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2743043

1491

2. PROPOSED SYSTEM
This section begins by presenting the primary challenges and
objectives of browser session migration and management,
followed by the architecture and design of BrowserCloud.

2.1 Challenges and Objectives
Capturing a browser session is significantly more challenging than
saving a web URL as a “bookmark”, because of the following
reasons:

Cookies - Browsers do not store cookies separately for each
browser session and therefore simply migrating all cookies within
a browser could include cookies for unrelated sessions and result
in unnecessary overhead, security and privacy concerns. How to
separate and migrate related cookies is the first challenge.

DOM - Browser session migration should also include the web
page DOM elements and attributes, which could be modified by
human input and web scripts, after a web page is loaded.
Retrieving and migrating these updated DOM elements and
attributes is the second challenge. Such DOM elements and
attributes include window scroll bar position, web form input
fields, audio/video current-time attributes, and others.

Security - Most browser sessions contain confidential information
(e.g. ID card, credit card numbers), but the SSL protocol only
secures communication channels between clients and servers.
These servers or databases can potentially be hacked. Robust
protection of this information is the third challenge.

Mobility - With the rapid growth of smart phone users, browsing
mobility should be extended to mobile devices [1]. Migration of
browser sessions between desktops and mobile devices, is the
fourth challenge.

BrowserCloud successfully addresses all of the above challenges
transparently to web developers and end-users. Beyond this,
BrowserCloud also provides the following properties:

Remote Management - BrowserCloud allows a user to monitor
multiple remote browsers’ real-time activities, and manage any
connected browsers’ running sessions, from a central point.

Transparency - BrowserCloud does not require any change to
existing websites or technical skills from end-users. It can
automatically capture snapshots of running browser sessions,

transfer session files to the server, and restore sessions to any
target browser.

Scalability/Openness - BrowserCloud was developed based on
open source and widely used programing languages – JavaScript
and PHP, WebSocket protocol and cryptographic algorithms –
RSA, SHA3, SHA236 and AES. By developing browser
extensions/plugins, any browsers can join BrowserCloud.

Multi-user - A single BrowserCloud server can be shared by
multiple users, each of which can connect and manage multiple
browsers at the same time. Each user owns a private space in the
BrowserCloud server to store browser sessions.

2.2 Architecture and Design
The architecture of BrowserCloud includes two main elements:
BrowserCloud client and BrowserCloud server. The
BrowserCloud client is a JavaScript-based browser
extension/plugin, which consists of a background process that
provides access to browser APIs, and a popup window that
interacts with end-users. The BrowserCloud server is a PHP
script, which is responsible for user registration, login
authentication, and browser session storage.
Please see Figure 1 for the process of a runtime browser session
migration. In our discussion we use an example case, that a user
would like to migrate a running Commonwealth Bank Netbank
login session as a demo.

Firstly, by installing the BrowserCloud client extensions/plugins
on both the Desktop Chrome and Android Firefox browsers, a
BrowserCloud icon/menu is added to the browsers’ toolbar
section. The user registers an account at the Chrome browser (1),
and logs in at the Firefox browser (2). Secondly, the user logs in
to the Commonwealth Bank Netbank at the Chrome browser, and
submits a request to save the Netbank login session (3); the
equivalent of bookmarking. The BrowserCloud client takes a
snapshot of the Netbank login session and transfers it to the
BrowserCloud server (3.1). Following, the user sends a request to
restore the Netbank login session to the Firefox browser (4). The
BrowserCloud server receives the request, locates the session files
and sends them to the Firefox browser (4.1). Finally, the
BrowserCloud client of the Firefox browser loads the Netbank
login session into a new tab (4.2), and the Netbank login session
continues exactly the same as where it was saved.

Figure 1. Overview of BrowserCloud

1492

3. IMPLEMENTATION
The implementation of BrowserCloud is fundamentally based on a
communication module, which provides persistent connections
between BrowserCloud clients and the server. The browser
session migration module allows each BrowserCloud client to
capture and transfer browser sessions over the established
connections. Additionally, a robust security module provides
security assurance to the whole session migration process. See
Figure 1 Sample Code A and B for the key attributes and methods
that BrowserCloud implements.

3.1 Communication Establishment
BrowserCloud implements WebSocket as the communication
protocol between the BrowserCloud server and BrowserCloud
clients (see Figure 1), primarily because the WebSocket protocol
provides a persistent connection between two parties, and either of
them can initiate data transfer at any time. The BrowserCloud
server runs as a WebSocket server, and listens on a specified port
for WebSocket connection requests at all times. To establish a
WebSocket connection, each BrowserCloud client starts by
sending a regular HTTP request, which includes a WebSocket
handshake request, to the BrowserCloud server. The
BrowserCloud server accepts the WebSocket request by returning
a WebSocket handshake response. Once the WebSocket
handshake is completed, the initial HTTP connection is upgraded
to a WebSocket connection, which utilizes the same underlying
TCP/IP protocol. A WebSocket connection allows the client and
server to send data back and forth in full-duplex mode. This
feature allows BrowserCloud clients to exchange instant update
messages containing the browsers’ real-time activity information.
It also allows BrowserCloud clients to send command messages
for browser session save and restore processes at any remote
browsers.

Additionally, WebSocket allows the BrowserCloud server and
clients to transfer unlimited data over the connection channel.
Data is minimally framed, with a small header (4-12 bytes),
followed by a payload. A single message could optionally be split
across several data frames. This feature allows the BrowserCloud
server and clients to transfer browser session files, which
generally consist of large Strings.

3.2 Browser Session Migration
BrowserCloud allows a user to save and restore browser sessions
between any connected browsers. In the browser session save
process, the BrowserCloud client completes the following tasks:

1. Maintain relationship between sessions/tabs and domains.
2. Identify the browser where sessions/tabs are running.
3. Save cookies for each session/tab.
4. Save modified and hidden DOM attributes.
5. Save the tab object.
6. Take a timestamp as the unique ID.
7. Transfer session files to the BrowserCloud server.
8. Close saved sessions/tabs.

In the browser session restore process, the BrowserCloud client
completes the following tasks:

1. Receive session data from the BrowserCloud server.
2. Restore cookies.
3. Create a new tab with the URL.
4. Restore DOM elements and attributes.
5. Delete restored session files.

3.2.1 Maintaining the relationship between a
browser session/tab and its domains
Within a browser, cookies are not stored separately for each
browser session/tab. Simply migrating all cookies within a
browser results in unnecessary data transfer and security issues.
For example, with both PayPal and Hotmail login sessions
running in a browser, migrating all cookies to the target browser
for only Hotmail session migration will also provide the target
browser with the logined PayPal session.

However, only migrating cookies that share the same domain as
the URL of the session/tab has problems as well. For example, in
the event of Commonwealth Netbank login authentication, it
utilizes a server with a domain, which is different to the primary
commbank.com.au, for login authentication purposes. In this
case, only migrating cookies with domain commbank.com.au
will omit the actual authentication cookies.

In order to collect all related cookies for a specified browser
session/tab, ideally browsers should provide an API that returns a
collection of cookies for each browser session/tab. However, such
API does not exist for Chrome and Firefox at this time of writing.
BrowserCloud overcomes this challenge by implementing three
Chrome APIs: (1) chrome.tab.getAllInWindow()
initializes a collection of domains for each browser session; (2)
chrome.webRequest.onResponseStarted.addListe
ner() updates a domain collection when it receives a web
request; (3) chrome.tabs.onRemoved.addListener()
removes a domain collection when a session/tab closes.

3.2.2 Save cookies for each session/tab
Cookies are client-side files that contain user information, and are
significant components of a browser session. In the process of
cookie preservation, the BrowserCloud client implements the
following tasks: (1) filtering which returns only needed cookies,
(2) conversion which makes cookies ready for transfer and
storage, and (3) encryption which ensures information security.

3.2.3 Save modified and hidden DOM attributes
Except for cookies, there is also a need to capture the runtime
DOM elements and attributes, since human inputs and
JavaScript/VB scripts could add/edit/delete DOM elements and
attributes, after a web page is loaded. However, saving the whole
web page source code does not solve this problem, because some
DOM elements and attributes are hidden from the source code.
For example, HTML5 video/audio's currenttime attribute and web
form post-filled values cannot be found within the source code.
BrowserCloud overcomes this challenge by injecting and
executing JavaScript in web pages.

In the process of DOM preservation, the BrowserCloud client
implements three tasks: (1) extraction which retrieves the
modified and hidden DOM elements, (2) encoding which
transforms special characters into a valid ASCII format, and (3)
encryption which ensures information security.

3.2.4 Save the Tab object
Each session/tab within a browser is a Tab object, which contains
a browser-wide unique TabID, index, URL, title, and other data.
A Tab object's TabID is unique within a browser, index represents
its order in the browser, URL represents the link of the
session/tab, and title represents the name of the web page. In the
process of Tab preservation, BrowserCloud client accesses the
Tab object through the Chrome API chrome.tabs.get()
with a valid TabID as the parameter.

1493

3.2.5 Send to the BrowserCloud server
On completion of the above steps, the background process of the
BrowserCloud client has three encrypted String objects, which are
Cookies String, DOM String and Tab String. A time stamp is
taken at this time, and used as the unique ID for the session/tab.
The ID and three String objects are joined together in the structure
of “Session ID # Tab String # Cookies String # DOM String”.
This single, large String is sent to the BrowserCloud server
through the established WebSocket channel. The BrowserCloud
client closes the saved session/tab at the end of the session save
process, in order to prevent conflicts when the session/tab is
restored in another browser.

3.2.6 Restore sessions/tabs
When a user submits a browser session/tab restore request through
the popup interface, the selected sessions/tabs' IDs and the target
browser name are sent to the BrowserCloud server. The server
locates the session/tab files, and sends them to the target browser
through the established WebSocket channel. The background
process of the target BrowserCloud client decrypts the session/tab
files, and restores cookies, the tab object, DOM elements and
attributes in order. On completion of browser session restoration,
the restored session files are deleted from the server, in order to
prevent conflicts when a user tries to restore the same browser
session/tab in multiple browsers.

3.3 Security
The security and privacy of a user’ browser sessions/tabs is
essential, because most browser sessions/tabs contain a user'
sensitive information, such as login sessions, personal
information, credit card details, and much more. BrowserCloud
implements a robust security module, which shares the same idea
as Apple’s recently announced iOS 8 security [2]. A user’s secret
key for browser session file encryption is never known by the
server. That means even the server will not be able to read the
user’s session data.
BrowserCloud’s security module is designed, based on
cryptographic hash functions, secret-key encryption and public-
key encryption, in order to prevent sniffing attacks, session
hijacking attacks, replay attacks, server-side attacks, and similar
kinds of attacks at the server.

3.3.1 Key generation
The BrowserCloud server generates an RSA (cryptosystem) key
pair consisting of an RSA public key and an RSA private key,
when initialized. The plain text encrypted by the RSA public key
can only be decrypted by the corresponding RSA private key.
BrowserCloud utilizes public-key encryption to transfer a user’s
secret keys over the WebSocket channels.

BrowserCloud client generates two secret keys and initialization
vectors (IV) in the registration and login processes, based on the
user’s email address and password. The plain text encrypted by a
secret key can only be decrypted by the same secret key. An IV is
an arbitrary string/number that is utilized with a secret key for
data encryption, and makes it more difficult for a hacker using a
dictionary attack to find patterns and break a cipher.
BrowserCloud implements secret-key encryption for data transfer
and browser session storage.

Each BrowserCloud client has two secret keys and IVs. The first
secret key consists of the password's SHA3 output as the secret
key 1 and the email's SHA3 output as the IV 1. The second secret
key consists of the password's SHA256 output as the secret key 2
and the first 16 characters of IV 1 as the IV 2. BrowserCloud

implements both SHA3 and SHA256 hash functions in secret key
generation to protect the user’s password, since hash functions are
one-way processes, having hash outputs would not be able to
determine the original string (password). Additionally, because
there is no relationship between SHA3 and SHA256 outputs, only
having one hash output would not be able to retrieve the other
one. [3]

3.3.2 Security in the registration process
In the registration process, the BrowserCloud client authenticates
the BrowserCloud server, and transfers the secret key 2 and IV 2
to the server through public-key encryption. At the beginning, a
BrowserCloud client requests the BrowserCloud server's RSA
public key. Following, the user encrypts its secret key 2 and IV 2
with the RSA public key, and sends the cipher text to the server.
Finally, the server decrypts the cipher text with its RSA private
key, and retrieves the user's secret key 2 and IV 2. If there is no
existing user, a new account is created for the user. The
registration process prevents unauthorized servers, since the RSA
public-key encryption makes sure that only the authorized server
with the RSA private key will be able to decrypt and retrieve the
user's secret key 2 and IV 2.

3.3.3 Security in the login process
In the login process, the BrowserCloud server and client
authenticate each other through a challenge message. At first, the
BrowserCloud client generates the same two secret keys and IVs,
which are the same as what it gets in the registration process,
because SHA3 and SHA256 hash functions are applied to the
same user’s inputs (email address and password). Secondly, the
BrowserCloud client sends a login request with its email address
to the BrowserCloud sever. Thirdly, the server retrieves the user's
secret key 2 and IV 2 from its array of Users, and creates a
random string. Following, the server generates a challenge
message by encrypting the random string with user's key 2 and IV
2, and sends the challenge message to the BrowserCloud client. In
the end, the client decrypts the challenge message, and responses
to the server with the decrypted string. If the decrypted string
matches the random string, the login authentication is passed. The
utilization of challenge–response authentication prevents the login
process from unauthorized servers, unauthorized clients, and
replay attacks.

3.3.4 Security in communication and storage
After a BrowserCloud client register and login successfully, it
utilizes secret key 2 and IV 2 to encrypt command messages
between the BrowserCloud server and itself, but utilizes secret
key 1 and IV 1 to encrypt its browser sessions/tabs files. Since the
secret key 1 and IV 1 are never sent to the server, the server will
not be able to decrypt and read the user’s session data. In the case
that the secret key 2 is stolen, the secret key 1 is still secure, and
hackers are still unable to determine the secret key 1 to decrypt
sessions/tabs files.

4. TESTING
The performance of BrowserCloud can be measured and
evaluated from different perspectives – the kinds of browser
sessions it can migrate, the size of browser session files, and the
process time of migration. We have tested BrowserCloud on
various popular websites and we report our results in the
following two sections.

4.1 Feasibility Testing
BrowserCloud has been tested against the following test cases, to
identify the kinds and complexities of browser sessions that can

1494

and cannot be migrated between browsers with different public IP
addresses. Possible failure reasons, barriers and solutions are
discussed in detail.

Table 1. Test Cases of Browser Sessions Migration

No S Testing Web Pages D

1

L http://ptv.vic.gov.au/projects/ L

L
http://ptv.vic.gov.au/projects/
http://ptv.vic.gov.au/about-ptv/ R1

L http://ptv.vic.gov.au/projects/ R2

R2 http://ptv.vic.gov.au/projects/ R1

R1
R2

http://ptv.vic.gov.au/projects/
http://ptv.vic.gov.au/about-ptv/ L

L http://www.boc.cn/sourcedb/whpj/ R1

2

L

https://login.live.com/

R1

https://www.my.commbank.com.au/

https://www.paypal.com/

https://www.facebook.com/

3

Migrate playing YouTube video:
https://www.youtube.com/watch?v=UDXU
DehUgIQ
Migrate playing HTML5 video:
http://conference.aifs.gov.au/
Migrate filled web form:
https://www.mymyki.com.au/NTSWebPort
al/Common/Auxillary/Contactus.aspx?men
u=Feedback
Migrate windows scroll bar position:
http://www.www2015.it/

4
https://docs.google.com/

https://apprtc.appspot.com/

5 https://www.my.commbank.com.au/

6 http://janeriddellarchitects.com.au/contact

7 http://www.inmensia.com/files/minesweepe
r1.0.html

S – Source Browser D – Destination Browser
L – Local Desktop Chrome with IP address 58.162.192.91
R1 – Remote Desktop Chrome with IP address 122.151.142.44
R2 – Android Firefox

BrowserCloud successfully migrates browser sessions in Test
Cases 1 – 4. Test Case 1 demonstrates that BrowserCloud can
monitor remote browser activities, and control the migration of
static web pages between different browsers from a central point,
which could be the local browser’s popup window. Test Case 2
confirms that BrowserCloud can migrate login sessions between
browsers with different IP addresses. Test Case 3 shows that
BrowserCloud can migrate hidden and modified DOM elements
and attributes between different browsers. Test Case 4
demonstrates that BrowserCloud can migrate some interesting and
complex browser sessions, such as Google Docs and WebRTC.

However, BrowserCloud fails to migrate browser sessions in the
following test cases.

Figure 2. File Size of Browser Sessions

Test Case 5: Save a Commonwealth Bank Netbank login session;
but it returns a session timeout error when the user restores it after
15 minutes. When the session has been inactive for more than 15
minutes, Netbank closes the session for security reasons. A
possible solution could be that, the BrowserCloud server sends
keep-alive requests to the web server on behalf of the user, while
the user’s session is saved. However, this solution involves
security risks, since a hacked server may send unauthorized
requests to the web server on behalf of the user.

Test Case 6: Save a contact us web page; but it fails to restore the
same CAPTCHA image as the one in the original browser, since
the web server creates a new CAPTCHA image for the new web
request from the destination browser. To overcome this issue, we
could implement a proxy server between the user’s browsers and
the web server. Since the proxy acts on behalf of the client in
handling web requests, the web server only communicates with
the proxy even when the client moves. Therefore, the web server
uses the same CAPTCHA image. Nevertheless, a proxy server
may significantly increase network delay.
Test Case 7: Save a website with a JavaScript game; but it fails to
restore the process of the game, since BrowserCloud has not
implemented the code to capture the status of JavaScript-based
web applications. There are a few existing works regarding
JavaScript status migration, such as IMAGEN [4] which provides
a solution of migrating JavaScript-based online games. We are
considering integrating BrowserCloud with IMAGEN or similar
programs in the future.

4.2 Performance Testing
To measure the size of session files and the process time of
session migration, we ran the browser session migration processes
for several popular websites.

The size of a browser session is measured by the length of data
that sends from the BrowserCloud client to the server. It includes
the timestamp ID, encrypted cookies, encrypted DOM and
encrypted tab object.
See Figure 2 for the size of browser sessions. Please note that both
A and B have a smaller file size than others, mainly because they
are static web pages, without many cookies and any filled web
forms. The sizes of C1 and D1, whose web forms are unfilled, are

1495

slightly smaller than C2 and D2 resp., whose web forms are filled.
The difference between C1 and C2 is 440 bytes, but there are
1246 bytes difference between D1 and D2. It is because the myki
Feedback form in D has more input fields than the myki login
form in C. After-login sessions (E2 and F2) consume more space
than before-login sessions (E1 and F1), since after-login sessions
involve more cookies.
The saving process time includes the time spent on saving
cookies, inserting JavaScript, saving DOM, saving Tab and data
encryption. The restoring process time includes the time spent on
data decryption, restoring cookies, loading web page, and running
JavaScript to restore DOM elements. To improve accuracy, we
take an average of five tests as the final result.

See Figure 3 for the process time of browser sessions save and
restore. It distinctly shows that the restoring time is much longer
than the saving time, because the process of restoring DOM
elements happens after a website is fully loaded from its web
server, which takes a long time. Since web server response times
varies, and this directly effects the restore time, it will be
meaningless to compare browser session restore times. By
comparing the saving time, it shows that saving login sessions
takes longer than saving filled web forms and static web pages,
since it involves more cookies. In spite of this, it takes less than
0.2 second to save PayPal and Netbank login sessions, which
should be acceptable for end-users. Combining both session file
sizes in Figure 2 and session save times in Figure 3, it shows that
it takes longer to save larger browser sessions files, partly because
it takes longer to encrypt large Strings.

5. RELATED WORK AND DISCUSSION
There are existing researches on browsing mobility and browser
session migration. Most of them focus on the integrity and
seamlessness of browser session migration, but did not pay much
attention to providing central management and addressing privacy
concerns. Proxy-based session hand-off in Web applications [5]
involves the utilization of a proxy system, called MuffinSH,
running between clients and servers. Since the proxy acts on
behalf of the client, servers see a surrogate of the client even when
the client migrates from a device to another. However, the

utilization of a proxy requires extra efforts in system setup and it
increases network delay. Browser Mirror [6] enables a user to
share the browser screen with anyone else. It differs to typical
screen-sharing applications by sending DOM elements in real-
time instead of images, but a mirrored user will not be able to
interact with the web pages. IMAGEN [4] implements a platform,
which is specialized for the live migration of JavaScript-based
web apps, such as online games. In comparison, BrowserCloud is
focused on generalized browse session migration.

6. SUMMARY AND FUTURE WORK
In summary, we describe BrowserCloud, which brings browsing
mobility to users, using a communication module that enables a
user to access remote browsers, a browser session migration
module that captures browser sessions, and a security module that
protects a user’s information in many common attacks.

For future work, there are a number of aspects that we can
address: (1) Websites generally set a timeout attribute for browser
sessions. If a user does not restore and reactive the browser
session within a certain time, the browser session will be closed
automatically. A possible solution may be that the BrowserCloud
server acts as a proxy server and regularly sends web requests to
keep browser sessions active. (2) BrowserCloud may be able to
integrate with IMAGEN to capture the status of JavaScript-based
web applications. (3) CAPTCHA images are widely used in web
forms submission to determine whether or not the user is human.
How to migrate and continue to use the same CAPTCHA image at
the destination browser is an interesting topic. (4) BrowserCloud
clients specialized for Safari, including its mobile phone browser,
could be developed. We have successfully developed
BrowserCloud clients for desktop Chrome browser and Android
Firefox browser, to demonstrate that browser sessions can be
migrated between different browser software (Chrome and
Firefox), different hardware devices (PC and mobile phone) and
different operating systems (Windows and Linux).

7. REFERENCES
[1] Potter, S., & Nieh, J. 2005, May. WebPod: persistent Web

browsing sessions with pocketable storage devices. In
Proceedings of the 14th international conference on World
Wide Web (pp. 603-612). ACM.

[2] A message from Tim Cook about Apple’s commitment to
your privacy. [ONLINE] Available at:
https://www.apple.com/privacy/.

[3] Madhuravani, B., & Murthy, D. S. R. Cryptographic Hash
Functions: SHA Family.

[4] Lo, J. T. K., Wohlstadter, E., & Mesbah, A. 2013, May.
Imagen: Runtime migration of browser sessions for
javascript web applications. In Proceedings of the 22nd
international conference on World Wide Web (pp. 815-826).
International World Wide Web Conferences Steering
Committee.

[5] Canfora, G., Di Santo, G., Venturi, G., Zimeo, E., & Zito, M.
V. (2005, July). Proxy-based hand-off of Web sessions for
user mobility. In Mobile and Ubiquitous Systems:
Networking and Services, 2005. MobiQuitous 2005. The
Second Annual International Conference on (pp. 363-372).
IEEE.

[6] Browser Mirror. 2014. [ONLINE] Available at:
https://browsermirror.ianbicking.org/.

Figure 3. Process Time of Browser Sessions Migration

1496

