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ABSTRACT
We compare machine learning methods to predict quality
aspects of the C3 dataset collected as a part of the Recon-
cile project. We give methods for automatically assessing
the credibility, presentation, knowledge, intention and com-
pleteness by extending the attributes in the C3 dataset by
the page textual content. We use Gradient Boosted Trees
and recommender methods over the evaluator, site, eval-
uation triplets and their metadata and combine with text
classifiers. In our experiments best results can be reached
by the theoretically justified normalized SVM kernel. The
normalization can be derived by using the Fisher informa-
tion matrix of the text content. As the main contribution,
we describe the theory of the Fisher matrix and show that
SVM may be particularly suitable for difficult text classifi-
cation tasks.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; I.2 [Computing Methodologies]: Artificial In-
telligence; I.7.5 [Computing Methodologies]: Document
Capture—Document analysis

General Terms
Kernel Methods, Document Classification, Information Re-
trieval
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Web Quality, Credibility, Machine Learning, Fisher Infor-
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1. INTRODUCTION
Mining opinion from the Web and assessing its quality and

credibility became a well-studied area [9]. Known results
typically mine Web data on the micro level, analyzing in-
dividual comments and reviews. Recently, several attempts
were made to manually label and automatically assess the
credibility of Web content [19, 21]; among others, Microsoft
created a reference data set [27]. Classifying various aspects
of quality on the Web host level were, to our best knowl-
edge, first introduced as part of the ECML/PKDD Discov-
ery Challenge 2010 tasks [28].

Classification for quality aspects of Web pages or hosts
turned out to be very hard. For example, the ECML/PKDD
Discovery Challenge 2010 participants stayed with AUC val-
ues near 0.5 for classifying trust, bias and neutrality. Later
we were able to slightly improve their results and our best
performance has only slightly extended the AUC of 0.6 [28].
Since these attributes constitute key aspects of Web quality,
our goal is to improve the classification techniques for these
tasks.

In this paper we address the WebQuality 2015 Data Chal-
lenge by comparing prediction methods for the C3 data set.
The data set was created in the Reconcile1 project and con-
tains 22325 evaluations (five dimensions, among them cred-
ibility) of 5704 pages given by 2499 people. The mTurk
platform were used for collecting evaluations.

In our earlier findings on different Web spam and quality
corpora [12], the bag-of-words classifiers based on the top
few 10,000 terms performed best. We were able to signifi-
cantly improve the traditional Web spam features [5] similar
to the C3 attributes. In this paper our main goal is to eval-
uate known methods and combine them with new means of
text classification particularly suited to the quality related
tasks in question.

While we are aware of no other results over the C3 data
set, we collect reference methods from Web credibility re-
search results. Existing results fall in four categories: Bag
of Words; language statistical, syntactic, semantic features;
numeric indicators of quality such as social media activity;
and assessor-page based collaborative filtering.

User and page-based collaborative filtering is suggested in
[21] in combination with search engine rankings. We reuse
our RecSys Challenge 2014 second place winner solution [20]
to build a strong baseline method over the evaluator, site,
evaluation triplets including the evaluator and site side in-
formation.

1http://reconcile.pjwstk.edu.pl/
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Social media and network based features appear already
for Web spam [5, 15]. In a collection designed similar to
C3 [19], social and general popularity and linkage were in-
troduced and used for credibility assessment. Some of these
features, in particular social media popularity, are used by
the RecSys Challenge 2014 [20] as well and hence we deploy
the methods we used there.

Content statistics as a concise summary that may replace
the actual terms in the document were introduced first in
the Web spam research [5]. The C3 data set includes content
quality and appearance features described among others in
[19].

In order to perform text classification, we crawled the
pages listed in the C3 data set. By using the bag of words
representation of the Web page content, our goal is to com-
bine all above methods with known and new kernel based
text classifiers. Our classifier ensemble consists of the fol-
lowing components:

• Gradient Boosted Trees and recommender methods
that reached us second place at the RecSys Challenge
2014 [20].
• Standard text classifiers, including our biclustering based

method that performed best over the DC2010 data set
[28].
• A new similarity kernel based SVM on the Fisher Infor-

mation Matrix that may work over arbitrarily defined
similarity measures over pairs of pages, using not only
the text but also the C3 attributes.

Our best results reach the AUC of 0.74 for credibility, 0.81
for Presentation, 0.70 for Knowledge, 0.71 for Intentions and
0.70 for Completeness. We may hence say that all results
reach the level of practical usability. Text classification is
the main component: alone it reaches 0.73, 0.77, 0.69, 0.71
and 0.70, respectively, for the five quality dimensions.

The rest of this paper is organized as follows. First we
begin with an extended motivation of our new text classifi-
cation technique. After listing related results, in Section 2
we describe the data set used in this paper. In Section 3
we describe our classification framework. The results of the
classification experiments over the C3 data set can be found
in Section 4.

1.1 Motivation
In our new similarity kernel method, our goal is to move

from terms as features to content similarity as features. On
one hand, content similarity is more general and it can be
defined by using the attributes other than term frequencies
as well. Similarity based description is also scalable since we
may select the number of reference documents as large as it
remains computationally feasible.

In the paper our main goal is to define a theoretically
justified kernel function over Web page similarities defined
in a general way. Similarity may be based on the distribution
of terms, the distance in the numeric C3 data attributes, or
distances from clusters as we defined in [28].

By considering general notions of similarity as object de-
scriptors for classification, we may combine different modali-
ties in a theoretically justified way too. For example, kernel
selection methods [23] performed well for image classifica-
tion tasks [8] but kernel fusion methods from [23] have a
very large number of parameters that are difficult to learn.

In our new method, we consider the similarity of a Web
page in question to a set of selected reference pages as a
generative model. By assuming independence of the refer-
ence pages, the generative model can be computed as we
will describe in Section 3.2. Hence we may obtain theoret-
ically justified coefficients to weight the importance of the
different similarity functions and reference Web pages.

1.2 Related Results
Web users usually lack evidence about author expertise,

trustworthiness and credibility [5]. The first results on au-
tomatic Web quality classification focus on Web spam. In
the area of the so-called Adversarial Information Retrieval
workshop series ran for five years [13] and evaluation cam-
paigns, the Web Spam Challenges [4] were organized. The
ECML/PKDD Discovery Challenge 2010 extended the scope
by introducing labels for genre and in particular for three
quality aspects [28].

Our baseline classification procedures are collected by an-
alyzing the results of the Web Spam Challenges and the
ECML/PKDD Discovery Challenge 2010. In our previous
work [11, 28], we improved over the best results of the par-
ticipants by using new text classification methods.

Recent results on Web credibility assessment [19] use con-
tent quality and appearance features combined with social
and general popularity and linkage. After feature selection,
they use 10 features of content and 12 of popularity by stan-
dard machine learning methods of the scikit-learn toolkit.

If sufficiently many evaluators assess the same Web page,
one may consider evaluator and page-based collaborative fil-
tering [21] for credibility assessment. In this setting, we face
a dyadic prediction task where rich metadata is associated
with both the evaluator and especially with the page. The
Netflix Prize competition [3] put recommender algorithms
through a systematic evaluation on standard data [2]. The
final best results blended a very large number of methods
whose reproduction is out of the scope of this experiment.
Among the basic recommender methods, we use matrix fac-
torization [17, 29]. In our experiments we use the factor-
ization machine [24] as a very general toolkit for express-
ing relations within side information. Recently, the RecSys
Challenge 2014 run a similar dyadic prediction task where
Gradient Boosted Trees [30] performed very well [20].

2. THE DATA SET
The C3 data set consists of 22325 Web page evaluations

in five dimensions (credibility, presentation, knowledge, in-
tentions, completeness) of 5704 pages given by 2499 people.
Ratings are similar to the dataset built by Microsoft for as-
sessing Web credibility [27], on a scale of four values 0-4,
with 5 indicating no rating. The distribution of the scores
for the five evaluation dimensions can be seen in Fig. 1.
Since multiple values may be assigned to the same aspect of
a page, we simply average the human evaluations per page.
We may also consider binary classification problems by as-
signing 1 for above 2.5 and 0 for below 2.5.

Since earlier results [21] suggest the use of collaborative
filtering along the page and evaluator dimensions, we mea-
sure the distribution of the number of evaluations given by
the same evaluator and for the same site in Fig. 2.

Distribution of the variance of the ratings is shown by
heatmap of all pairs of ratings given for the same page and
same dimension by pairs of different evaluators in Fig. 3.
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Figure 1: The distribution of the scores for the five
evaluation dimensions.

Figure 2: The distribution of the number of evalua-
tions given by the same evaluator (top) and for the
same site (bottom).

Note that 65% of the C3 URLs returned OK HTTP sta-
tus but 7% of them could no longer be crawled. Redirects
reached over 20% that we followed and substituted for the
original page.

Figure 3: The number of pairs of ratings given by
different assessors for the same aspect of the same
page.

3. CLASSIFICATION FRAMEWORK
In this section we enumerate the methods we combine for

assessing the five quality aspects. The C3 data set con-
tains numeric attributes for the evaluator, the page, and the
evaluation itself, which can be considered as triplets in a rec-
ommender system. The majority of the evaluators however
rated only one Web page and hence we expect low perfor-
mance of the recommender methods over this data set. Most
important elements of our classifier ensemble will hence use
the bag of words representation of the page content.

3.1 SVM over bag of words
The classification power of Support Vector Machine [7]

over bag of words representations has been shown in [1, 5].
The models rely on term and inverse document frequency
values (TF and IDF): aggregated as TF.IDF and BM25.
The BM25 scheme turned out to perform best in our earlier
results [11, 28], where we applied SVM with various linear
and polynomial kernel functions and their combinations.

3.2 New method: Fisher Kernel over similar-
ities

A natural idea to handle distances of pairs of observation
is to use kernel methods. A kernel acts as an inner product
between two observations in certain large dimensional space
where Support Vector Machine, a form of a high dimensional
linear classifier, can be used to separate the data points [26].
Under certain mathematical conditions, we have a freedom
to define the kernel function by giving the formula for each
pair of observations.

In order to combine the textual and C3 data attributes
for kernel based classification and regression, we use a linear
kernel support vector machine over distances from a selected
set of reference pages as described in [8].

Given a sample R of the Web pages, we define a generative
model where testing pages are characterized based on their
similarity to samples in R. By Jaakkola and Haussler [16],
generative models have a natural kernel function based on
the Fisher information matrix F :

KFisher(X,Y ) = GT
XF
−1GY , (1)

where GX and GY are the gradient vectors (Fisher score)
derived from the underlying generative model. The Fisher
kernel can be translated into a linear kernel function using
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Cholesky decomposition of the Fisher information matrix.
We will refer the normalized Fisher score as Fisher vector:
FX = GxF

− 1
2 . In our experiments we approximate the

Fisher information matrix with the diagonal as suggested in
[16].

Next we sketch the steps of deriving that the Fisher matrix
based distance is simply the Euclidean distance over the
K · |R| dimensional vector of the similarity to pages in R
with K representations.

In the generative model of pages based on the similarity
to pages in the sample R, our factor graph is a star that
consists of the pairs of x connected to the elements r ∈ R.
We think of our graph as a Markov Random Field over the
samples. By the Hammersley–Clifford theorem [25] our joint
distribution has a form of

p(x | Ω) =
exp(−U(x | Ω))

Z
, (2)

where Z is a normalizing constant and Ω is the set of param-
eters of our joint distribution. We define our energy function
as

U(x | Ω = {α}) =
∑
r∈R

K∑
k=1

αrkdistk(x, xr), (3)

where K is the number of different distance functions and
Ω = {αrk} is the set of the parameters.

It can be shown that the Fisher information matrix is sim-
ply the normalized variance matrix of the joint distribution
distk(x, xr) for r ∈ R, i.e. the Fisher kernel is the linear ker-
nel over the normalized distances. In the Fisher kernel αrk
cancel out in the derivatives. The mean and the variance of
distk(x, xr) can be approximated by the training data.

The dimensionality of the Fisher vector (the normalized
Fisher score) equals with the size of the parameter set of our
joint distribution, in our case it depends only on the size of
the reference set and the number of representations, K · |R|.

Since kernel methods are feasible for regression [22, 26],
we also use the methods of this subsection for predicting the
numeric evaluation scores.

3.3 Biclustering
We overview the method that performed best for assess-

ing the quality aspects of the DC2010 data [28]. We use
Dhillon’s information theoretic co-clustering algorithm [10]
to cluster pages and terms simultaneously. Important to
note that unlike in the original method [10] that uses Kullback-
Leibler divergence, we use Jensen-Shannon, the symmetric
version in the biclustering algorithm that makes very large
difference in classification quality.

In [28] we describe pages by distances from page clusters.
To exploit the Fisher kernel we can think of this page clusters
as additional samples with a specific distance function. This
results sparsity in our previously defined energy function

U(x | Ω = {α, β}) = U(x | Ω = {α}) +
∑
Ci∈C

βidist(x,Ci),

(4)
where Ci corresponds to the ith cluster, therefore the clus-
ters behave as a secondary sample set to R on a cost of
expanded dimension.

3.4 Gradient Boosted Trees and Matrix fac-
torization

We apply Gradient Boosting Trees [30] and matrix fac-
torization on the user and C3 data features. We used two
different matrix factorization techniques. The first one is a
traditional matrix factorization method [17], while the sec-
ond one is a simplified version of Steffen Rendle’s LibFM
algorithm [24]. Both techniques use stochastic gradient de-
scent to optimize for mean-square error on the training set.
LibFM is particularly designed to use the side information
of the evaluators and the pages.

3.5 Evaluation metrics
First, we consider binary classification problems by simply

averaging the human evaluations per page and assign them
1 for above 2.5 and 0 for below 2.5. The standard evalua-
tion metrics since the Web Spam Challenges [4] is the area
under the ROC curve (AUC) [14]. The use of Precision, Re-
call and F are discouraged by experiences of the Web spam
challenges.

Unlike spam classification, the translation of quality as-
sessments into binary values is not so obvious. We also
test regression methods evaluated by Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE).

4. RESULTS
In this section we measure the accuracy of various meth-

ods and their combinations. The detailed results are in Ta-
ble 1, in four groups. The first group gives the baseline
methods. Below, we apply the similarity kernel separate for
the corresponding attributes. In the third group we com-
bine multiple similarity functions by the similarity kernel.
Finally, in the last group, we average after standardizing
the predictions. In Table 2 part of the methods are tested
for regression.

4.1 C3 data attributes
For user and item features we experiment with GraphLab

Create2 [18] implementation of Gradient Boosted Tree and
matrix factorization techniques. In case of the gradient
boosted tree algorithm (GBT) we set the maximum depth of
the trees 4, and enabled maximum 18 iterations. To deter-
mine the advantage of additional side information over the
original matrix factorization technique (MF) we use factor-
ization machine (LibFM) for user and item feature included
collaborative filtering prediction. As seen from the tables,
matrix factorization (MF) fails due to the too low number
of ratings by user and by document but LibFM can already
take advantage of the website metadata with performance
similar to GBT.

4.2 Linear kernel SVM
Our Bag of words models use the top 30k stemmed terms.

For TF, TF.IDF and BM25, we show results for linear kernel
SVM as it outperforms the RBF and polynomial kernels. We
use LibSVM [6] for classification the Weka implementation
of SMOReg [22] for regression.

4.3 Fisher kernel methods
The similarity kernel described in Section 3.2 gives the

best results both for classification and for regression. For

2http://graphlab.com/products/create/
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Method Credi- Presen- Know- Inten- Complete- Avg
bility tation ledge tions ness

Gradient Boosted Tree (GBT) 0.6492 0.6558 0.6179 0.6368 0.7845 0.6688
Factorization Machine (LibFM) 0.6563 0.6744 0.6452 0.6481 0.7234 0.6695
Marix Factorization (MF) 0.5687 0.5613 0.5966 0.5700 0.5854 0.5764
TF linear kernel 0.6484 0.6962 0.6239 0.6767 0.6205 0.6531
TF.IDF linear kernel 0.6571 0.7020 0.5935 0.6824 0.6128 0.6496
BM25 linear kernel (Lin) 0.7236 0.7480 0.6278 0.6987 0.6633 0.6923
Bicluster linear kernel 0.6402 0.7467 0.5796 0.6482 0.6382 0.6506

Bicluster Sim kernel 0.6744 0.7718 0.6379 0.6830 0.6560 0.6846
C3 attributes Sim kernel 0.6267 0.7706 0.6327 0.6408 0.6149 0.6571
TF J–S Sim kernel 0.6902 0.7404 0.6758 0.7047 0.6778 0.6978
TF L2 Sim kernel 0.6335 0.6882 0.6200 0.6585 0.6300 0.6460
TF.IDF J–S Sim kernel 0.7006 0.7546 0.6552 0.7073 0.6791 0.6994
TF.IDF L2 Sim kernel 0.6461 0.7152 0.6013 0.6902 0.6353 0.6576
BM25 J–S Sim kernel 0.6956 0.7473 0.6351 0.6529 0.6222 0.6706
BM25 L2 Sim kernel 0.7268 0.7715 0.6741 0.7081 0.6898 0.7141

BM25 L2 & J–S Sim kernel (BM25) 0.7313 0.7761 0.6926 0.7141 0.7003 0.7229
BM25 & C3 Sim kernel 0.7449 0.8029 0.7009 0.7148 0.6993 0.7326
BM25 & Bicluster & C3 (All) Sim kernel 0.7457 0.8086 0.7063 0.7158 0.7052 0.7363

Lin + GBT 0.7296 0.8056 0.6589 0.6783 0.6939 0.7133
Lin + LibFM 0.7400 0.7769 0.6622 0.6733 0.6975 0.7100
All Sim kernel + Lin + GBT 0.7549 0.8179 0.6916 0.7098 0.7123 0.7373

Table 1: Detailed performance over the C3 labels in terms of AUC

Method Credi- Presen- Know- Inten- Complete- Avg
bility tation ledge tions ness

Gradient Boosted Tree (GBT) MAE 1.5146 1.3067 1.2250 1.2737 1.4438 1.3528
RMSE 1.6483 1.4510 1.3658 1.4132 1.6021 1.4961

Factorization Machine (LibFM) MAE 1.5313 1.3213 1.2303 1.2632 1.4984 1.3689
RMSE 1.6725 1.4745 1.3744 1.4073 1.6759 1.5209

Matrix Factorization (MF) MAE 1.7450 1.4093 1.3676 1.2905 1.5794 1.4784
RMSE 1.9174 1.5912 1.5540 1.4636 1.7583 1.6569

BM25 linear kernel (Lin) MAE 0.5562 0.7230 0.6052 0.5979 0.5896 0.6144
RMSE 0.7085 0.9072 0.7784 0.7910 0.7724 0.7915

BM25 L2 Sim kernel MAE 0.5678 0.7083 0.6228 0.5946 0.6045 0.6196
RMSE 0.7321 0.9307 0.8038 0.7878 0.7930 0.8095

Bicluster Sim kernel MAE 0.5340 0.6868 0.6039 0.5883 0.5813 0.5989
RMSE 0.6958 0.8906 0.7861 0.7778 0.7624 0.7825

BM25 & Bicluster & C3 All Sim kernel MAE 0.5403 0.6324 0.5946 0.5952 0.5829 0.5891
RMSE 0.7106 0.8357 0.7763 0.7879 0.7661 0.7753

Table 2: Detailed performance over the C3 labels in terms of RMSE and MAE

distance, we use L2 for the C3 attributes as well as TF,
TF.IDF and BM25. For the last three, we also use the
Jensen–Shannon divergence (J–S) as we suggested in [28].
While the similarity kernel over the bicluster performs weak
for classification, it is the most accurate single method for
regression.

In the similarity kernel, we may combine multiple dis-
tance measures by Equation (3). The All Sim method fuses
four representations: J–S and L2 over BM25 and L2 for C3
and the bicluster representation. By the linearity of the
Fisher kernel, we may use LibSVM [6] for classification and
SMOReg [22] for regression.

4.4 Classifier ensembles
Without using the similarity kernel, the best method is

the average of the linear kernel over BM25 (Lin) and GBT.
The performance is similar to the BM25 L2 similarity ker-
nel. As a remarkable feature of the similarity kernel, we
may combine multiple distance functions in a single kernel.
The best method (All Sim) outperforms the best combina-
tion not using the similarity kernel (Lin + GBT) by 3.2%.
The difference is 7.2% for classifying“knowledge”. The same
method performs bests for regression too.

The similarity kernel method can also resist noise and
learn from small training sets. If we add 10% noise in the
training set, the combination of all similarity kernels deteri-
orates only to an average AUC of 0.7241 from 0.7363 (1.7%).
In contrast, the best BM25 SVM result 0.6923 degrades to
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Figure 4: AUC as the function of the size of the
training set, given as percent of the full3040, for
the baseline BM25 with linear kernel and All with
similarity kernel.

0.6657 (3.85%), both with variance 0.004 for ten indepen-
dent samples. The robustness of the similarity kernel for
small training sets is similar to BM25 with linear kernel, as
seen in Fig. 4.

5. CONCLUSIONS
Over the C3 data sets, we gave a large variety of methods

to predict quality aspects of Web pages, including collabora-
tive filtering and methods that use evaluator and page meta-
data as well as the content of the page. We achieved best
performance by our theoretically justified kernel method over
the content of the page and C3 attributes. Our results are
promising in that our AUC is stable over 0.7 for all aspects
with “presentation” surpassing 0.8. The support vector re-
gression methods also perform with error less than one on
the range of 0–4.
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trust and bias classification via biclustering. In Proc.
Webquality, pp. 41–47. ACM, 2012.

[29] G. Takács, I. Pilászy, B. Németh, and D. Tikk.
Investigation of various matrix factorization methods for
large recommender systems. In Proc. 2nd KDD Workshop
on Large-Scale Recommender Systems and the Netflix
Prize Competition, pages 1–8. ACM, 2008.

[30] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and
G. Sun. A general boosting method and its application to
learning ranking functions for web search. In Advances in
NIPS, pp. 1697–1704, 2008.

1446




