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ABSTRACT
Urban information abound today in open Web sources as well as in
enterprise datasets. However, the maintenance and update of this
wealth of information about cities comes at different costs: some
datasets are automatically produced, while other sources require
expensive workflows including human intervention. Regression
techniques can be employed to predict a costly dataset from a set
of cheaper information sources.

In this paper we present our early experiments in predicting land
use and demographics from heterogeneous open and enterprise data-
sets referring to the city of Milano. The results are encouraging,
thus demonstrating that a data science approach leveraging diverse
data can be actually worth for a smarter urban planning support.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: correlation and regression anal-
ysis; H.4 [Information Systems Applications]: Miscellaneous

Keywords
Open Web Data; Enterprise Internal Data; Smart Urban Planning

1 Introduction and Motivation
Digital information about cities abound today. The sources of such
information are constantly increasing, due to the pervasiveness of
information and communication technologies in the so-called Smart
Cities domain.

With the advent of the open data movement, with its call for
transparency and knowledge sharing, a very large number of data
sources has been made available on the Web. Some examples of
those datasets are: demographics and statistics from municipali-
ties (e.g. distribution of population, family income, crime statis-
tics), listing of local businesses from chambers of commerce, var-
ious levels of descriptions about the environment from an urban
planning perspective (e.g. land use or land cover, cadastre infor-
mation), and so on. Additionally, the so-called Internet of Things
(IoT) has led to the availability of massive real-time and stream-
ing information, like climate sensors from environmental agencies,
smart meters and GPS traces from public utilities.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742131.

After the Web 2.0 boom, also user generated information about
cities has become ubiquitous, through crowdsourcing initiatives like
OpenStreetMap1, which popularized the Volunteered Geographic
Information paradigm of “citizens as sensors” [1], and location-
based social networks like Foursquare, Twitter, Flickr with their
stream of “check-ins” and geo-located information.

While a large part of the aforementioned sources can be con-
sidered open or at least openly accessible on the Web, there exist
also closed data sources about cities, produced and maintained by
enterprises, like public utilities information. For example, telco
companies collect data about the phone activity over time and also
over space (due to the positioning of transceiver towers), which is
a strong indicator of people presence and movement in the urban
environment.

The collection, cleansing, curation and maintenance of that wealth
of specialized data sources can require a complex and expensive
process. This is the case of datasets requiring a manual interven-
tion: demographics data, for example, needs a human-based census
activity; in other cases, there can be an error-prone (semi)automatic
processing: land use maps are derived from aerial or satellite imag-
ing and characterize the environment with reference to domain-
specific classifications. The cost of data management is therefore
highly variable with respect to the diverse data origins.

Our current investigation is aimed to answer to the following
research question: would it be possible to (semi)automatically gen-
erate or revise an outdated dataset (which would require an expen-
sive manual work), on the basis of the content of other up-to-date
information sources (which come almost for free)? In other words,
would it be possible to use cheap datasets as a “proxy” for more
expensive data sources?

To answer the question above, we propose to adopt a predic-
tive analytics [2] approach: using available (cheap) data sources
as predictors, we select the best regression model that is able to
predict, as outcome, an (expensive) dataset; more specifically, we
fit or train several regression models with data about city POIs or
human activities in the urban environment, to get the land use or
the population census as response variables. Comparing different
regression algorithms according to specific evaluation metrics, we
select the best possible technique to solve the task.

Once a suitable model is available, this can be applied to new
revised versions of the predictor datasets, in order to obtain an es-
timation of the update required in the outcome variables. While it
can be hard to automatically update an information source on the
basis of other “proxy” datasets, the regression model can help in
identifying change, i.e. which areas of the urban space could have
had a significant variation in terms of land use or demographics;

1Cf. http://www.openstreetmap.org/.
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this can be helpful for urban planners to focus their manual inter-
vention to update the (expensive) data sources only where needed.

In this paper, we present our early results in applying the above
approach to the city of Milano: we detail the experimental setting,
the adopted regression techniques and the obtained results; we give
some insights on the evaluation of those methods and the possible
extensions in terms on model and variable selection.

The remainder of the paper is as follows: Section 2 details the in-
formation sources about Milano used in this research; Section 3 il-
lustrates our regression experiments, explaining the adopted method-
ology(§ 3.1), the details on the employed data variables (§ 3.2) and
the experimental results (§ 3.3); related works are presented in Sec-
tion 4, and Section 5 concludes the paper with some perspectives
on our future extensions to this work.

2 Overview of the Milano Datasets employed
in our work

Our case study deals with the predictive analytics of diverse urban
datasets related to the municipality of Milano in Italy. The datasets
used in the analysis are illustrated in Table 1: the open data about
population demographics from Milano municipality2; the land use
classification elaborated within the CORINE European initiative3

and made available as open data by Lombardy Region4; the Points
of Interest (POIs) of the city provided by both Milano municipal-
ity and OpenStreetMap; two months of mobile call data records
provided by the Telecom Italia mobile operator. Those datasets
represent a meaningful mix of open data, volunteered geographic
information and enterprise data.

Domain Data Data Spatial Time Volume
(content) Source Format Resolution Period (records)
Demographics Milano Shape Census 2011 10s(population) Open Data file area
Urban Planning Lombardy Shape Building 2012 10Ks(land use) Region file resolution
Mobile Phones Telecom Tabular Grid cells 2013 100Ms(call records) Italia (250m)
Points of interest Milano Shape Points 2013 1Ks(POIs) Open Data file (lat-long)
Points of interest Open Shape Points 2014 1Ks(POIs) Street Map file (lat-long)

Table 1: Characteristics of the used datasets

As the table reveals, besides content heterogeneity, the datasets
also differ in terms of spatial granularity and this is why a pre-
processing phase was required in order to make them comparable.
The population dataset was collected using the census area resolu-
tion level and the land use data has even a building level resolu-
tion, Telecom data is mapped into a grid of square cells and POIs
datasets consist of points. Therefore we selected the more suitable
spatial resolution and we interpolated the other sources to map all
data into the Telecom data records resolution, a grid of 3538 square
cells of 250 m (cf. Figure 1).

Telecom dataset records every ten minutes the activity occurred
in Milano in Nov-Dec 2013. Five different phone activities are
stored: incoming and outcoming calls, incoming and outcoming
SMSs (text messages) and Internet connection. To reduce the dataset
size and to take into account the spatial information, we compressed
all the data of each cell into a “footprint”, i.e. a summarizing data

2Cf. http://dati.comune.milano.it/.
3CORINE multi-level taxonomy of land cover, cf.

http://www.eea.europa.eu/publications/COR0-landcover.
4Cf. https://www.dati.lombardia.it/.

Figure 1: Spatial resolution level used in the analysis

structure which records for each time slot of ten minutes the av-
erage activity of that cell, distinguishing between working days
and holidays. The resulting data consists of one footprint for each
cell and for each activity type. More specifically, each cell is de-
scribed by a vector with 1440 elements, as we have, for each type
of phone activity, 144 values (activity every 10 minutes). There are
5 phone activity blocks for the weekdays and 5 for the holidays.
Picture 2 shows an example of the footprint visualization of the
“Brera”district for the incoming calls.

Figure 2: Telecom footprint of “Brera” district with concatenation
of weekdays activity and holiday activity

The completeness and multifaceted nature of Telecom dataset
allowed us to select the data that could better fill our specific needs,
giving to the analyses flexibility and adaptability. On the one hand,
we are interested in analysing the changing of phone activity during
the day, thus we can extract only data at certain timestamps; on the
other hand, we may require an overall picture of the phone activity,
thus we can compute a global mean value. Similarly, we may want
to focus our attention on a particular phone activity as incoming
calls or out-coming text messages or we may want to assess the
influence of all these components together.

Using mean values instead of the entire information not only help
in managing lower-dimensional datasets, but also overcome possi-
ble local anomalies that are not specifically relevant when looking
for a global “picture”.
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As regards demographics information, we mapped the number
of inhabitants of each census area onto the grid (by overlapping
the shapefile layers with a GIS) and we obtained a single value
representing population density for each cell.

CORINE 2012 dataset provides data about the land use types
of Milano territory and it classifies them by using CORINE multi-
level taxonomy. Land use types can range from more general defi-
nition of residential/agricultural/industrial/wild areas to a more spe-
cific characterization as hospitals, roads, railways, construction sites
and so on. After analysing the distribution of the different land
uses in the Milano area, we selected the level of taxonomy more
suitable for our case studies (by selecting specific categories or by
grouping some classes together). The 5 types of land use that we
assumed could better feature a metropolitan area as Milan are: resi-
dential areas, agricultural areas, commercial/industrial areas, parks
and green areas, and sports centres. Therefore, each cell was de-
scribed with a vector of 5 elements, representing the percentage
shares of those land use categories over the cell area.

Lastly, as regards points of interest (both from OpenStreetMap
and from Milano municipality), as they are data points described by
latitude and longitude pairs, we computed their density in each cell.
The POIs provided by the two sources are slightly different in terms
of categories: they both have POIs about transports, schools and
sport facilities, but in addition OpenStreetMap provides informa-
tion about shops and amenity places of the city. On the other hand,
data coming from Milano municipality are “official”, whereas the
OSM dataset, being user generated data, may be less reliable and
incomplete.

3 Regression Models with Milano Datasets
Our experiments are aimed to answer the question: would it be
possible to use one or more “cheap” datasets as proxy for more
“expensive” data sources? Therefore, our work is oriented to pre-
dict land use and demographic data (the “expensive-to-maintain”
datasets) employing diverse “cheap-to-produce” datasets as predic-
tors (telecommunication and points of interest data). In our first
experiments we employed two different regression approaches, a
statistical learning method and a machine learning one.

Hereafter, we explain in details the followed methodology, the
input/output data used and the experiments performed. At the end
of the section we discuss the obtained results.

3.1 Methodology
The aim of this study was to compare different regression approaches
for predictive analytics.

As regards the statistical learning approach, we fit multiple lin-
ear regression models (MLR [3]) to have as dependent variables
demographic and land use data, considering as possible indepen-
dent predicting variables our multi-faceted information of phone
activity and POIs.

With respect to the machine learning approach, we started with
the Random Forest algorithm [4] which is an ensemble learning
method that extends the concept of regression/classification trees
(CART). Random Forest basically generates hundreds of regression
trees starting from a random selection of a subset of data (bagging)
with a randomized selection of predictors involved at each split.
The various tree solutions are then averaged in order to predict the
output variable with the smallest mean squared error (MSE). This
approach has the advantage of reducing the variance of the model
and also helps avoiding overfitting.

To build a model in both approaches, the standard methodology
requires splitting the datasets in two groups, the training and the
test sets.

The goal is first to learn the general rules that maps inputs to
outputs with the training set data, and then evaluate the generated
model using the unseen data of the test set. In both fields, a ma-
jor emphasis is placed on avoiding overfitting, so as to achieve the
best possible performance on an independent test set that follows
the same probability distribution as the training set. Therefore in
our experiments we divided the dataset into training and test sets,
randomly selecting respectively the 90% of the data and the remain-
ing 10%. We also applied k-fold cross validation (with 10 folds) to
assess the generalization power of our models. Actually, the advan-
tage of using cross validation is that all observations are used for
both training and validation, and each sample is used for validation
exactly once.

Once a model has been trained, it may be important to confirm
the goodness of fit of the model and the statistical significance of
the estimated parameters. The R squared (R2), calculated using
the test set, is one of the commonly used indexes of goodness of
fit. However, since the R2 index automatically and spuriously in-
creases when extra explanatory variables are added to the model, in
our analysis we decided to use the adjusted R squared (R2

adj) that
has been proposed to fix this behaviour. R2

adj adjusts for the num-
ber of explanatory terms in a model relative to the number of data
points; so R2

adj increases when a new explanatory is included only
if the new predictor improves the R2 more than would be expected
by chance.

As regards the predictors to be used to fit the model, we decided
to perform some tests to evaluate how the number of input variables
impacts the goodness of the model. So we planned a first experi-
ment involving only a subset of 15 predictors selected by hand and
a second set with all the 49 variables available. As regards MLR,
we also employed, on both experiments, an automated model selec-
tion approach, the so called Akaike information criterion (AIC [5]).
It automatically selects the most relevant predictors with the aim of
simplifying the model and avoiding overfitting.

Unlike linear regression, interactions between different predic-
tors are automatically incorporated into the Random Forest algo-
rithm, making complex, non-linear interactions between variables
easier to handle than in linear regression modeling. Variable se-
lection could be unnecessary in Random Forest because irrelevant
predictors should be automatically excluded from the model. How-
ever, in our experiments, we decided to investigate the variable
importance as well, by analyzing the information provided by the
Random Forest algorithm about how important each predictor is
in the model. Actually Random Forest computes the importance
score of each variable in terms of the mean decrease in accuracy
caused by removing that variable; the mean decrease in accuracy
values are calculated during the out of bag error calculation phase.
The higher decrease in accuracy due to the removal of a single vari-
able, the more important that variable in the Random Forest model.
Therefore variables with a larger mean decrease in accuracy are
more important for data regression.

3.2 Input and Output Data
According to our long-term goal of employing “cheap-to-produce”
datasets to predict or update “expensive-to-maintain” datasets, in
the following analyses we chose demographics and land use data as
outcome variables of both the linear model and the Random Forest
algorithm. Regarding demographics, the dependent variable is the
population density in the spatial unit, while regarding land use, we
extracted from the CORINE dataset different 1-dimensional vectors
representing the portion of each spatial unit covered by a specific
land use (residential, commercial/industrial, agricultural, green and
sports areas as explained in section 2).
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As predictors, we divided the experiments in two steps: the first
considers only a subset of predictors while the second takes into
account all the variables available, as detailed below.

We first focused our attention on Telecom data. From the call
data records we decided to take in consideration different “facets”
of that dataset. To this end we computed a set of ten 1-dimensional
vectors representing the average activity for each communication
type (incoming/outcoming calls, incoming/outcoming text messages,
internet connection) and distinguishing working week days (Mon-
day to Friday) from week-end days (Saturday, Sunday and other
holidays). We added also information about OpenStreetMap POIs
of five categories: transportation, leisure, food, shops and schools.
So, as a first step, we employed 15 variables, 10 coming from phone
data records and 5 regarding open data points of interest.

Since we have a larger number of urban datasets available, as
illustrated in Section 2, we can use a much higher number of pre-
dictors in our analysis. Therefore, as second step, we employed a
set of 49 predictors that better represent the multi-faceted nature of
the city. Besides the predictors listed above, we added 8 predic-
tors representing categories of POIs as listed by the municipality
of Milano in their open data, and we enriched the set of predic-
tors based on Telecom data, by introducing the average activity at
different times of the day (without distinguishing between activity
type and working day/holiday); regarding the latter, we introduced
one predictor for each hour interval.

The following Table 2 lists and explains all input/output vari-
ables included in the analyses. We remind that variables are vectors
with 3538 components, one for each spatial unit.

Output variable name Variable description
population population density
corine.resid dense residential land use density
corine.agric agricultural land use density
corine.comm industrial/commercial land use density
corine.green park/green area land use density
corine.sport sport facility land use density
Predictor variable name Variable description
poi.mun.school school presence (low/high) from municipality open data
poi.mun.transport transportation presence (low/high) from municipality open data
poi.mun.bike.car.share bike/car sharing presence (low/high) from municipality open data
poi.mun.sport sport facility presence (low/high) from municipality open data
poi.mun.pharmacy pharmacy presence (low/high) from municipality open data
poi.mun.newsstand newsstand presence (low/high) from municipality open data
poi.mun.conv.centre convention center presence (low/high) from municipality open data
poi.mun.culture cultural center presence (low/high) from municipality open data
poi.osm.transportation transportation POI density from OpenStreetMap
poi.osm.leisure leisure place presence (low/high) from OpenStreetMap
poi.osm.leisure leisure place presence (low/high) from OpenStreetMap
poi.osm.food restaurant/bar presence (low/high) from OpenStreetMap
poi.osm.shop shop presence (low/high) from OpenStreetMap
poi.osm.school school presence (low/high) from OpenStreetMap
sms.in.wd average incoming text messages during working days
sms.in.hd average incoming text messages during holidays
sms.out.wd average outcoming text messages during working days
sms.out.hd average outcoming text messages during holidays
call.in.wd average incoming calls during working days
call.in.hd average incoming calls during holidays
call.out.wd average outcoming calls during working days
call.out.hd average outcoming calls during holidays
internet.wd average Internet usage during working days
internet.hd average Internet usage during holidays
hour.hi.hj average telecommunication activity in the i-j hour interval

Table 2: List of data variables included in regression analysis.

Finally, it is worth noting that, in order to apply linear regression,
some conditions must hold for the data. To this end, we also ap-
plied some transformations to the considered variables; for example
Telecom data, which showed a strongly left-skewed distribution,
went through a logarithmic transformation, while some POI cate-
gories with limited number of distinct values were turned into cat-
egorical variables with two values indicating the presence/absence
of that specific type of POI within the spatial unit. Although no
assumption are made about the distribution of the data in Random
Forest algorithm, we used this transformed dataset also in the ma-
chine learning phase in order to have comparable experiments and
results.

3.3 Experimental Results
We performed five different tests: firstly we applied MLR to both
the 15 and 49 predictors described in section 3.2; secondly we made
an experiment to study how an AIC-based variable selection influ-
ences the linear regression results; lastly we trained our Random
Forest model again with both the 15 and 49 variables.

The results are summarized in Table 3, in terms of R2
adj on both

training and test sets. The test set results are also plotted on the bar
chart in Figure 3.

At first glance, it is evident that both the statistical and the ma-
chine learning approaches reach the best results in predicting popu-
lation, residential and agricultural areas. Actually, the R2

adj values
of these output variables range from 0.4 to 0.66, in contrast with
the values of commercial, green and sports areas that reach at most
0.25.

As regards the variance of the 10-fold cross validation process,
we verified that on training set it is always lower than on test set; in
both cases, variance is always sufficiently low, ranging respectively
from 10-6 to 10-5 and from 10-3 to 10-4 orders of magnitude.

Another general tendency shown in Figure 3 is that Random For-
est (blue and yellow bars) always equals or outperforms multiple
linear regression (green, red and grey bars). This indicates that
the data does not follow a linear distribution and so a non-linear,
more complex model is needed. Actually, Random Forest, as an
extension of tree-based algorithm, generates a model that implies
the partition of the space into blocks according to different split
variables.

If we compare the results of Random Forest with 49 and 15 pre-
dictor, besides higher R2

adj values for the 15-predictors model, we
can see that there may be overfitting using a larger number of vari-
ables, since the difference in R2

adj between training and test sets
is much higher in the 49-predictors case. This tendency to overfit
is also evident comparing the MLR-49 predictors models with and
without AIC: the R2

adj of the full model is always lower than the
one with variable selection.

Even though we selected by hand the subset of 15 predictors, the
use of a restricted number of inputs improved significantly our pre-
diction in all the Random Forest experiments except for the popula-
tion case. We tried to investigate this result by looking into the vari-
able importance ranking produced by each Random Forest model.
As the right side of Figure 4 shows, the top-10 variables in the pop-
ulation model, ranked according to the mean decrease in accuracy
(as explained in § 3.1), include only two of the 15 predictors used
in the 15-RF analysis (poi.osm.transport and tlc.avg.internet.wd).
On the contrary, if we look at the variable ranking of the residential
case, in which less predictors led to a higher R2

adj , we can find 7
predictors out of the manually-selected 15 in the top-10 variables
(cf. left side of Figure 4). To sum up, we verified that variable se-
lection is an essential step in optimizing a predictive model. Since
further improvements can be achieved by smartly selecting predic-
tors, the optimization of the variable selection process will be our
next challenge in future analyses.

4 Related Works
The increasing availability of data related to urban environment has
fostered the growing of various research studies that aim to explore
spatio-temporal patterns of big cities. These datasets, coming from
different and heterogeneous sources (as open data from social me-
dia or private data records), describe various aspect of the urban
environment.

Quercia and Saez [6] aimed to determine whether social me-
dia could offer an alternative data source to study the relation-
ship between the presence of specific physical venues in a London
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R-squared
adjusted

MLR - 15 pred. w/ AIC MLR - 49 pred. w/o AIC MLR - 49 pred. w/ AIC RF - 49 pred. RF - 15 pred.
Train Test Train Test Train Test Train Test Train Test

Population 0.517 0.495 0.648 0.585 0.649 0.600 0.668 0.623 0.604 0.591
Residential 0.551 0.532 0.600 0.528 0.601 0.547 0.633 0.588 0.623 0.614
Agricultural 0.410 0.396 0.493 0.409 0.494 0.444 0.631 0.580 0.628 0.614
Commercial 0.107 0.075 0.172 0.021 0.174 0.068 0.255 0.159 0.234 0.209
Park/green 0.041 0.020 0.075 0.013 0.077 0.019 0.172 0.041 0.147 0.120
Sport 0.044 0.02 0.163 0.014 0.166 0.076 0.175 0.169 0.126 0.095

Table 3: R2
adj on both training and test set obtained in the five different experiments

Figure 3: Graphical comparison of the five experiments in terms of R2
adj on test set

Figure 4: Ranking of variable importance for residential area and population

neighborhood (extracted from Foursquare) and the neighborhood’s
socio-economic deprivation. Other analysed social media data are
geolocated Tweets, which were used as a complementary source
of information for urban planning applications; Frias-Martinez et
al. [7] aimed to automatically determine land uses in a specific ur-
ban area based on tweeting patterns and to identify urban points of
interest as places with high Twitter activity.

The phone activity is one of the most used enterprise data record
in research studies. For example, the aim of Reades et al. [8] was

to extract recurring structures from overall mobile usage levels in
order to find a correlation between phone activity and land use (the
density of businesses categories in the urban environment was the
method to label the land use of an area).

In an urban environment, mobile phone data was also used as a
sensor to obtain information from users for discovering the Points
of Interest (POIs) of the city, by looking at the presence of mo-
bile signals [9]. When heterogeneous data sources are analysed to-
gether, the problem of having datasets at different spatial resolution
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levels is very common and the definition of a method to integrate
these data is required. Ye et al. [10] faced this problem in their
study on the global mapping of croplands: spatial cropland infor-
mation of the entire world were available at different resolution lev-
els, ranging from finer granularity of 30 m to coarser of 10 km. An-
other example related to the process of homogenizing different land
cover datasets is the research of Tchuenté et al. [11] in which four
different Africa’s land cover classifications were available. Each of
them has been produced by using different mapping initiatives and
standards and by adopting diverse spatial resolutions.

As described in our case study, the predictive analysis between
the different datasets can be performed with diverse methods ac-
cordingly to data complexity. In literature there are some examples
of correlation and prediction analysis. When dealing with multiple
heterogeneous datasets the most used methodology is the multiple
linear regression, as in Maniquiz et al. [12]: their aim was to de-
velop equations for estimating pollutant loads and event mean con-
centration as a function of rainfall variables. See et al. [13] applied
the regression principles also to geographical data, by adopting the
so called geographically weighted regression (GWR) to build an
hybrid land cover map using crowdsourced validation data.

Machine learning techniques are employed for predictive ana-
lytics also at large scale. Chen et al. [14] use big data technolo-
gies and neural networks to predict PM2.5 concentration in China
from air quality and weather records as well as from open Web
datasets. Spatio-temporal anomaly detection is proposed by Di-
fallah et al. [15] with a scalable real-time stream processing ap-
proach employing clustering techniques. The integration of diverse
datasets requires also to reconcile their different “semantics”. In
this regard, Kotoulas et al. [16] describe SPUD, a semantic envi-
ronment for urban data processing that leverages Semantic Web
technologies in information sense-making to address several chal-
lenges like city traffic diagnosis.

5 Conclusions and Future Work
Regression models are used to compute an outcome variable from
a set of predictors. We applied regression analysis to evaluate if
suitable models can be built to predict demographics or land use
from other urban datasets. The aim is to support urban planned in
the maintenance and update of relevant datasets that usually require
an expensive human intervention. In this paper, we described our
early experiments that gave encouraging results: indeed it is worth
to employ diverse open and enterprise datasets, easily available on
the Web, in regression models.

Comparing the results of our experiments with different tech-
niques, we observe that population density, dense residential area
and agricultural areas were adequately forecast by the predictive
models, with explained variability reaching 62%. This means that,
even if we considered quite diverse and heterogeneous datasets as
predictors (call data records features and points of interest), there
is a relation with land use and demographics.

Our next steps include extending the set of predictors with other
open and enterprise datasets and employing further regression mod-
eling techniques for predictive analytics [2] to choose the most
accurate approach. We also intend to have our approach qualita-
tively validated with urban planning experts. Finally, since land
use data is described with categorization systems and taxonomies
like CORINE, we also intend to replicate the same approach with
classification techniques [17].
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