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ABSTRACT

In this paper we propose a new two-phase algorithm for
overlapping community detection (OCD) in social networks.
In the first phase, called disassortative degree mixing, we
identify nodes with high degrees through a random walk
process on the row-normalized disassortative matrix repre-
sentation of the network. In the second phase, we calcu-
late how closely each node of the network is bound to the
leaders via a cascading process called network coordination
game. We implemented the algorithm and four additional
ones as a Web service on a federated peer-to-peer infrastruc-
ture. Comparative test results for small and big real world
networks demonstrated the correct identification of leaders,
high precision and good time complexity. The Web service
is available as open source software.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory—Graph
Algorithms; H.2.8 [Database Management]: Database
Applications—Data Mining ; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Clus-
tering

General Terms

Algorithms, theory and experimentation

Keywords

Overlapping community detection; expert identification; in-
formation diffusion; Web service

http://dx.doi.org/10.1145/2740908.2741696 .

1. INTRODUCTION
In recent years, researchers have been interested in identi-

fying the more connected and dense parts of graphs, named
communities. There is still no well-established definition of
the term community but we consider both a traditional and
a more modern one. In the classical understanding, commu-
nities are considered components in which internal cluster
relationships are dense and the relationships among differ-
ent components are sparse [8]. In a more modern defini-
tion online communities are defined as groups of people or
nodes which interact with each other based on their needs
and interests [22]. First research on community detection
algorithms just intended to identify a set of disjoint commu-
nities. However, today’s online networks, people (or nodes)
tend to belong to more than one community. E.g. readers
of online media are interested in more than one topic or are
member of several news groups. Consequently the detec-
tion of overlapping communities has recently gained much
attention [13, 4, 5, 6, 7, 11, 17, 29, 32].

There exists a broad variety of methods for identifying
overlapping communities. The first category employs global
properties of the graph such as e.g. the global clustering co-
efficient or modularity values to find covers. The modularity
optimization by Girvan and Newman is a typical example
for this category [18]. So-called local approaches circumvent
problems related to global methods like resolution limit and
high time complexity. They apply optimization techniques,
identify cliques of fixed small sizes or make use of local dy-
namics through random walk processes and clustering coef-
ficients [13, 24, 30, 31, 10, 9, 2, 32]. One subcategory of
local methods for overlapping community detection is based
on identifying leaders. At first most influential nodes are
detected in the graph and each or a group of them are con-
sidered as communities. Afterwards, the other nodes’ mem-
bership are calculated based on the leaders. Different kinds
of metrics and processes like node weights or degree [2, 13],
node distances [17] and random walks [24] can be used to
determine most influential vertices in the network.

In this manuscript a new local approach for detecting over-
lapping communities is proposed. It is a two-phase method
which utilizes two kinds of dynamics for identifying commu-
nities: disassortative degree mixing and information diffu-
sion. Communities form around influential nodes, so iden-
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tifying these nodes is very important [24]. In networks,
nodes can have two states regarding their similarity with
their neighbours. One state is assortative, where nodes tend
to communicate with similar nodes in terms of rank, de-
gree or other aspects. For example assortative low-degree
nodes tend to communicate with other low-degree nodes.
Disassortativity on the other hand is a sign of dissimilarity.
Disassortative high-rank/high-degree nodes tend to commu-
nicate with low-rank/low-degree nodes and vice versa, which
is also a characteristic of real world networks [19]. However,
for identifying communities, we should look for disassorta-
tive hubs. Most real world networks like the internet, cita-
tion networks, communication and co-authorship networks
have disassortative degree mixing properties. For example,
scientists like to cite reputable papers in their field and stu-
dents like to co-author with well-known and high-rank pro-
fessors [25]. Numerous methods can be used for detecting
disassortative hubs. Here a simple random walk process is
proposed. First, we compute a disassortative matrix whose
elements are computed based on subtraction of the corre-
sponding node degrees. By row-normalizing this matrix we
then obtain a disassortative transition matrix. By perform-
ing a random walk process for each node, we compute the lo-
cal disassortative-ness of each node in the network. Through
the disassortative-ness value we identify nodes which largely
differ from their neighbours in terms of degree. Among these
disassortative nodes we are interested in those which have
the highest degrees in the network. Details of disassortative
dynamics are explained in the method section. In the sec-
ond phase of the algorithm the membership degree of each
node to the communities is computed. For this purpose a
network coordination game based on the dynamics of in-
formation diffusion is used. The details of the underlying
cascading process are explained in the method section as
well.

The proposed method and the four algorithms including
SSK [24], CLiZZ [17], MONC [6] and Link Communities [30]
are implemented on top of a java-based peer-2-peer infras-
tructure 1 and provided as open source software. Among the
above mentioned baseline approaches, SSK and CLiZZ are
leader-based local OCD algorithms. They are suitable for
both directed and weighted networks. SSK uses a random
walk process for the detection of leaders [24]. Besides CLiZZ
finds leaders based on a distance matrix and membership of
non-leader nodes are computed iteratively [17]. Moreover,
MONC is also a local based method which performs based on
community expansion. In other words, it starts with some
initial communities (seeds) and it adds nodes to communities
based on a fitness function [6]. Finally, Link Communities
algorithm is an approach for OCD based on link partition-
ing. It aims to increase the link density inside communities
by creating communities of edges as opposed to minimizing
the communities’ external edges. This is achieved by de-
tecting communities of edges rather than of nodes by using
the so called similarity index [30]. We ran the algorithms
on different offline and online networks to demonstrate the
usefulness of our approach. It proves to be competitive in
terms of both precision and time complexity. In summary
the paper makes the following contribution:

A novel two-phase method of overlapping community de-
tection is proposed and experimented on small, large real

1https://github.com/rwth-acis/LAS2peer

world and synthetic networks. Not only the algorithm is
competitive in comparison to others but also it can identify
most influential nodes correctly.

2. USE OF TERMS AND VARIABLES
Overlapping community detection is a graph-theoretic prob-

lem. We are trying to identify communities in a network (or
graph) G = (V,E) which is a tuple containing a set of nodes
(or vertices) V and a set of edges (or links) E. The total
number of nodes is denoted as n = |V | and the total num-
ber of edges as m = |E|. A node j is called a neighbour of
node i if the two are directly connected by an edge. The
set of all neighbours of i is called the (open) neighbourhood
of i, denoted N(i). The degree deg(i) of node i is given by
the amount of edges which are incident to i. In the case
of the original (disjoint) community detection problem the
goal is to identify a partition of V into disjoint communi-
ties, i.e. each node of the graph is member of exactly one
community. In OCD, one single node can be part of differ-
ent communities. Hence a community structure is given by
a cover Γ = (C1, C2, ..., Cl) which is a tuple containing the
(generally not disjoint) identified communities. The number
of communities in cover Γ is denoted |Γ|. Often we want to
be more specific and define to what degree a node is mem-
ber of which community. Therefore we assign each node i
a membership vector Mi of dimension l. The j-th value of
this node determines to what extent i is part of Cj .

3. PROPOSED TWO-PHASED METHOD
In this section, the new method of overlapping community

detection is explained.

3.1 Phase I: Disassortative Random Walk
In the first phase, a random walk is used to identify dis-

assortative hubs. A hub is a node which has a high degree.
A network is disassortative if high-degree nodes are mainly
connected to low-degree nodes, and vice versa. We consider
a node to be disassortative if its degree strongly differs from
the degree of most of its neighbours. So a disassortative
hub is a central node, i.e. a node with a high degree, whose
neighbours are mostly low-degree nodes. Consequently, such
nodes can be regarded as local leaders, since they have an ex-
traordinarily high level of communication compared to their
surrounding nodes.

We begin by defining a disassortative matrix

ASij = |deg(i)− deg(j)| (1)

so that ASij corresponds to the disassortativity for nodes i
and j which are directly connected. For the execution of a
random walk we row-normalize this matrix, resulting in the
following transition matrix

Tij =
ASij

∑|N|
k=1

ASik

(2)

Consequently, we can perform a random walk for calculating
a disassortativity vector DAt at time t with

DA
t+1 = DA

t × T (3)

The probability of choosing each path in this process is com-
mensurate with its level of disassortativity of the path. So if
one edge connects two nodes that are highly disassortative,
then the probability of choosing this edge in the random
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walk process will be high as well. For initializing the values
of the disassortativity vector we use a uniform distribution

DA
0
i =

1

|N |
(4)

After a finite number of t∗ iterations this process converges,
giving us the local disassortativity value DAt∗

i of each node
i. Since we are searching for disassortative nodes with a
high degree, we still have to consider additional information.
Hence we continue by calculating a normalized degree vector

DRNi =
deg(i)

maxk∈V deg(k)
(5)

using the infinity norm. Combining node degrees and disas-
sortativity values, we define the leadership of node i as

LSi = DAi ×DRNi (6)

We name LS the leadership vector and call a node i a local
leader if

LSi > LSj ∀j ∈ N(i) (7)

Node j is said to be a follower of node i if it is connected to i
and i is a local leader. In order to obtain the most influential
leaders from LL, the set of local leaders, we compare the
number of each leader’s followers with the average number
of followers. We define the average follower degree as

AFD =

∑
i∈LL

|FL(i)|

|LL|
(8)

where FL(i) is the set of followers of local leader i. We
finally consider a local leader i to be a global leader, i.e. a
community leader, if its number of followers is above average
such that holds

|FL(i)| > AFD (9)

3.2 Phase II: Cascading Behaviour
In order to compute the assignment of remaining non-

leader nodes to communities a cascading behaviour is used.
The cascading behaviour which is used here is a network
coordination game. To make things more clear, if all nodes
in the network are communicating with a behaviour B and
suddenly one leader of a community adopts a new behaviour
A, we are interested in identifying to what extent this be-
haviour is cascaded through the network. If we run this
game with different initial sets, in our case each consisting
of one leader, we can also identify overlapping nodes. Since
we have |L| leaders in the network, we play this game |L|
times. In each game some nodes are affected by the leader’s
new behaviour A. If we select a suitable threshold for each
node then its membership degree can be computed based
on the time after which it adopts behaviour A. More pre-
cisely, for each leader a cascade set is created. Cascade sets
for different leaders can overlap. Hence nodes belonging to
several different cascade sets are overlapping nodes and are
part of all the corresponding communities. Moreover, nodes
which change their behaviour in the first iterations will have
a higher degree membership for the leader’s community than
nodes which resist this new behaviour and join the set A in
the final iterations.

To illustrate this, let us consider an example node i that
currently has behaviour B and possesses three neighbours.
If we assume that only one of its neighbours works with be-
haviour B, but two with behaviour A, then it would be more

profitable for the node i to adopt behaviour A because this
way it could collaborate more easily with a higher number
of nodes.

More precisely, for a node i and a behaviour A we define
the pay-off for that node for adopting the behaviour as the
percentage of its neighbours working with behaviour A

pA(i) =
|{j ∈ N(i) : j has behavior A}|

|N(i)|
(10)

A node will adopt a new behaviour if the pay-off for that
behaviour is higher than a given profitability threshold α.

We now do this label propagation once for each leader
Lj . Initially all nodes apart from Lj will have behaviour
B, whereas the leader starts with behaviour A. Generally
speaking, the sooner a node adopts the new behaviour, the
more profitable this behaviour results for it. Hence we can
determine the membership of a node i of the community
represented by leader Lj by the number of iterations ti it
took for i to adopt the leader’s behaviour

Mij =
1

t2i
(11)

To reduce the dependency of nodes that accept a new be-
haviour at a later time we propose the function in equation
(11) which was also used in the experiments. The game
ends after an iteration in which no additional node adopts
the new behaviour. For determining a meaningful profitabil-
ity threshold a binary search is performed over all possible
threshold values between the bounds 0 and 1. In each iter-
ation of the binary search the game is played once for each
leader using the average value of the two current bounds as
the profitability threshold. If all nodes are assigned to at
least one community, the upper bound is decreased, other-
wise the the lower bound will increase. The iteration count
for the binary search phase must be predefined, for the ex-
periments we used 10 iterations. The final outcome is a
membership matrix M where Mij defines the membership
degree of node i of community j.

3.3 DMID Time Complexity and its Extension
for Directed/Weighted Graphs

This algorithm can be easily tuned for weighted and di-
rected networks. In the first phase, the nodes’ weighted
in-degrees will be used instead of the regular degrees to con-
struct the disassortativity matrix and the leadership vec-
tor. In the second phase, the definition of the pay-off value
changes to

pA(i) =
|{j ∈ S(i) : j has behavior A}|

|S(i)|
(12)

where S(i) is the set of successors of node i.
For analysing time complexity let us define c(l) as the

size of the community generated by the l-th leader. If we
assume that each node is member of only a constant amount
of communities and further that the sizes of the communities
are equal, it can be approximated that the worst case time
complexity is about O(m n

|Γ|
).

4. EXPERIMENTAL SET UP AND DATA SETS
In this section, firtly we introduce the datasets which are

used in the experiments and then we investigate and com-
pare the results of DMID and other algorithms on synthetic
and real world networks.
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Table 1: Type, number of nodes and edges of networks used in the experiments. Number of edges is
shown after making the graph undirected meaning that a backward edge was added for any directed edge.
Information regarding the small datasets Zachary, Sawmill, Sawmill Strike and Dolphins is not listed.

Graph dblp [21] email [23] facebook [12] hamsterster [1] internet [16] jazz [20] Power grid [28]
Nodes 1959 1133 4039 2000 6474 198 4941
Edges 16354 10902 176468 32196 25144 5484 13188
Type Citation Social Social Social Tech Social Tech

Figure 2: This figure comprises both NMI measure and CPU time calculated for different algorithms on the
LFR benchmark networks with different parameter settings (average degree 12, 24 and mixing parameter
0.1, 0.3 and percentage of overlapping nodes ranging from 0 to 100 percent. The y axis for NMI and CPU
time respectively indicates the NMI value and CPU time and x axis shows the percentage of overlapping
nodes. For each overlap value we generated 100 networks and averaged over the results. Because of the high
time complexity of the Link Communities algorithm (LC), unlike the others it was only run on one network
for each parameter setting. Moreover, running time of LC was too high to be plotted.

Table 2: Results of extended modularity and running time on different real-world networks for various
algorithms. The upper part of the table indicates the modularity values and the lower part shows the running
times. NaN indicates that the algorithm could not finish in appropriate running time on the corresponding
network.
Graph dblp dolphins email facebook hamsterster internet jazz powergrid sawmill sawmill strike zachary
DMID 0.42 0.514 0.342 0.825 0.288 0.522 0.346 0.643 0.685 0.752 0.691
CLiZZ 0.428 0.522 0.248 0.882 0.368 0.225 0.000 0.681 0.455 0.00 0.593
MONC 0.21 0.3218 0.0886 0.00 0.173 NaN 0.201 0.398 0.364 0.496 0.332
SSK 0.485 0.551 0.428 0.941 0.366 0.406 0.413 0.701 0.588 0.702 0.592
LC 0.349 0.359 0.441 NaN 0.511 0.080 0.338 0.090 0.340 0.368 0.237

DMID 110.77 0.38 5.50 3101.55 734.19 2522.62 0.203 3039.97 0.04 0.028 0.01
CLiZZ 84.91 0.41 7.59 528.90 29.54 2483.98 0.14 400037 0.108 0.01 0.01
MONC 159 0.44 109 3808 87.4 NaN 0.29 62.4 0.02 0.009 0.07
SSK 3911 0.36 129.9 3528.4 7406 6545 0.65 204797 0.23 0.02 0.02
LC 12500 0.54 3074 NaN 133531 48736 304 5082 0.06 0.01 0.04
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Figure 1: Results of DMID on Zachary.

4.1 Data Sets
Some information about the number of nodes, edges and

types of networks are shown in table 1.

4.2 Results on Zachary Karate Club
Zachary Karate Club [27] network is popular for testing

community detection algorithms. This network consists of
34 nodes which are members of a karate club and 78 edges
which represent friendship among these nodes. As can be
observed in figure 1, for Zachary DMID detected two com-
munities, node 1 and node 34 as the most influential nodes.
In real setting, the author identified two communities, node
1 as an instructor and node 34 as the president of the club.
As the author noted, this network was split into two com-
munities as a result of a conflict between instructor and the
president. Our algorithm was able to identify exact leaders.
Also it identified overlapping nodes in the network (9, 31,
14, 3, 2 and 20). However, their memberships of the lead-
ers are different. Nodes 3 and 20 have equal membership
degrees for both leaders.

4.3 Results on Synthetic Networks
For a better analysis of the precision and running time,

we also used the LFR networks proposed by Lancichinetti
[14]. We set the mixing parameter to µ ∈ {0.1, 0.3}, the
average degree to k ∈ {12, 24} and increased the percentage
of overlapping nodes stepwise from 0% to 100%. For each
parameter combination, we generated 100 networks and av-
eraged over the results. Figure 2 indicates extended Normal-
ized Mutual Information (NMI) measure and running time
for these networks. The extended NMI is a variant of the
original NMI that is a metric for determining the quality of
partitions [3], i.e. for disjoint community detection. Later
it was adapted by Lancichinetti for measuring covers as well
[15]. The NMI is knowledge-driven, i.e. based on the com-
parison with ground truth data sets.

As it can be observed in figure 2, DMID has higher NMI
values in comparison to CLiZZ and SSK. As for LFR k =
12, µ = 01 and LFR k = 12, µ = 03, it is competitive
with MONC and LC except in some cases where the NMI
is a little bit lower. On the other hand CPU times indicate
a better time complexity of DMID. LC is not illustrated
because the high running times did not allow to plot it. In
all parameter settings for the LFR networks, CPU time of
DMID is better than that of both MONC and SSK. Only in

LFR k = 24 and µ = 01, the MONC algorithm outperforms
others.

4.4 Results on Real-World Networks
We ran SSK, CLiZZ, Link Community (LC), DMID and

MONC on the networks of table 1. Table 2 indicates the ex-
tended modularity measure and running time for these net-
works 2. Extended modularity is a statistical measure for the
evaluation of covers without any given ground truth datasets
[26]. Concerning extended modularity, DMID has the high-
est values on the four datasets Zachary (0.691), Sawmill
Strike (0.752), Sawmill (0.685) and Internet (0.524) and also
has the second rank among the algorithms for Jazz (0.346).
One can observe that DMID is very competitive over differ-
ent datasets regarding both the quality of the detected com-
munity structure and the time complexity. Although SSK
sometimes is better regarding modularity, DMID beats it in
terms of time complexity. Moreover, it seems that CLiZZ
has good time complexity in comparison to other algorithms.
However, DMID defeats CLiZZ with respect to modularity.
Finally, it is worth mentioning that DMID has further ad-
vantageous since it can be used e.g. to detect global and
local leaders as well as node hierarchies.

5. CONCLUSIONS AND FUTURE WORKS
In this paper a two-phase overlapping community detec-

tion algorithm is proposed, which uses two social processes
named disassortative degree mixing and information dif-
fusion. The proposed algorithm has several advantages.
Firstly, it detects leaders as disassortative hubs and based on
these dynamics it seems that it can better identify communi-
ties in networks with disassortative degree mixing property.
In future works, we would like to investigate the effects of
network structure by using graphs with different assorta-
tivity values. Also, in this implementation only one leader
started the cascade and all the nodes used the same thresh-
old value to determine when to change their behaviour. In
further steps we would like to change this algorithm to allow
multiple leaders for each community in the first phase and
different threshold values for the other non-leader nodes in
the second phase. Secondly, this algorithm can uncover the
hierarchical structure in the network. Thirdly, via this al-
gorithm, overlapping nodes can be identified and due to the
soft partitioning one can identify the membership degrees of
each node for all communities. Moreover, in terms of time
complexity, since the algorithm only considers local informa-
tion, it can be implemented in a decentralized environment.
Hence, another aspect of future work is implementing the
algorithm with the Map-Reduce framework and running it
on larger networks.

6. ACKNOWLEDGMENTS
The work has received funding from the European Com-

mission’s FP7 IP Learning Layers under grant agreement no
318209.

2On the internet network MONC and on the facebook net-
work LC did not finish because of high running times

1373



7. REFERENCES
[1] Hamsterster full network dataset - konect, August,

2014.

[2] D. Chen, Y. Fu, and M. Shang. An efficient algorithm
for overlapping community detection in complex
networks. In Intelligent Systems, 2009. GCIS ’09.
WRI Global Congress on, volume 1, pages 244–247,
May 2009.

[3] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas.
Comparing community structure identification.
Journal of Statistical Mechanics: Theory and
Experiment, P09008, 2005.

[4] T. S. Evans. Clique graphs and overlapping
communities. Journal of Statistical Mechanics: Theory
and Experiment, (12), 2010.

[5] T. S. Evans and R. Lambiotte. Line graphs of
weighted networks for overlapping communities.
European Physical Journal B, 77(2):265–272, 2010.

[6] F. Havemann, M. Heinz, A. Struck, and J. Glaser.
Identification of overlapping communities and their
hierarchy by locally calculating community-changing
resolution levels. Journal of Statistical Mechanics:
Theory and Experiment, 2011.

[7] M. Fan, K.-C. Wong, T. Ryu, T. Ravasi, and X. Gao.
Secom: A novel hash seed and community detection
based-approach for genome-scale protein domain
identification. PLOS ONE, 7(6), 2012.

[8] M. Girvan and M. Newman. Community structure in
social and biological networks. Proceedings of the
National Academy of Sciences of the United States of
America, 99(12):7821–7826, 2002.

[9] S. Gregory. A fast algorithm to find overlapping
communities in networks. In Proceedings of the 2008
European Conference on Machine Learning and
Knowledge Discovery in Databases - Part I, ECML
PKDD ’08, pages 408–423, Berlin, Heidelberg, 2008.
Springer-Verlag.

[10] S. Gregory. Finding overlapping communities in
networks by label propagation. New Journal of
Physics, 12(10):1–21, 2010.

[11] J. Huang, H. Sun, J. Han, and B. Feng. Density-based
shrinkage for revealing hierarchical and overlapping
community structure in networks. Physica
A-Statistical Mechanics and its Applications,
390(11):2160–2171, 2011.

[12] J. McAuley and J. Leskovec. Learning to discover
social circles in ego networks. In Advances in Neural
Information Processing Systems 25, pages 548–556.

[13] D. Jin, B. Yang, C. Baquero, D. Liu, D. He, and
J. Liu. A markov random walk under constraint for
discovering overlapping communities in complex
networks. Journal of Statistical Mechanics-Theory and
Experiment, 1303.5675, 2011.

[14] A. Lancichinetti and S. Fortunato. Benchmarks for
testing community detection algorithms on directed
and weighted graphs with overlapping communities.
Phys. Rev. E, 80(1):016118, July 2009.

[15] A. Lancichinetti, S. Fortunato, and J. Kertész.
Detecting the overlapping and hierarchical community
structure in complex networks. New Journal of
Physics, 11(3):033015, 2009.

[16] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs

over time: Densification laws, shrinking diameters and
possible explanations. KDD ’05, pages 177–187, New
York, NY, USA, 2005. ACM.

[17] H. Li, J. Zhang, Z. Liu, L. Chen, and X. Zhang.
Identifying overlapping communities in social networks
using multi-scale local information expansion. Eur.
Phys. J. B, 85(6):190, 2012.

[18] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical Review E,
69(026113), 2004.

[19] M. E. J. Newman. Mixing patterns in networks. Phys.
Rev. E, (67), 2003.

[20] P. Gleiser and L. Garrido. Advances in complex
systems. 6(565), 2003.

[21] M. Pham, D. Kovachev, Y. Cao, and R. Klamma.
Enhancing academic event participation with
context-aware and social recommendations. In
ASONAM 2012, pages 457–464.

[22] J. Preece. Online Communities: Designing Usability
and Supporting Sociability. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 2000.
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