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ABSTRACT
In the link prediction problem, formulated as a binary clas-
sification problem, we want to classify each pair of discon-
nected nodes in the network whether they will be connected
by a link in the future. We study link formation in social net-
works with two types of links over several time periods. To
solve the link prediction problem, we follow the approach
of counting 3-node graphlets and suggest three extensions
to the original method. By performing experiments on two
real-world social networks we show that the new methods
have a predictive power, however, network evolution cannot
be explained by one specific feature at all time points. We
also observe that some network properties can point at fea-
tures which are more effective for temporal link prediction.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
temporal evolution, heterogeneous networks, link prediction

1. INTRODUCTION
An important problem in social networks, called link pre-

diction, is to predict the appearance of a link between two
disconnected people, or nodes, in the network. Nowadays
link prediction has applications in many different domains,
such as in communication or collaboration networks.

Earlier works on link prediction have focused on simple
network models disregarding the temporal aspects and het-
erogeneity of human relationships [2, 13]. Temporal aspects
have often been omitted due to insufficient data [6]. But
nowadays, with the availability of Web APIs on many plat-
forms, it is possible to collect data about social interactions
over considerable time periods on a large scale. Recent works
show that models which consider temporality better cap-
ture link formation processes in the network [12, 5, 19]. As
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for the second property, heterogeneity can be frequently ob-
served in real-world networks. For example, on Facebook we
can study the formation of friendship ties and communica-
tion interactions between users. Classical methods for link
prediction in homogenous networks cannot fully capture the
complex structure in such scenarios. Hereby, the two easiest
ways to adapt these methods to a heterogeneous setting are
either to treat all link types equally or to consider only one
link type and disregard the others. Either way we might
lose valuable information which becomes even more critical
in the light of sparse nature of many social networks.

In this paper we formulate link prediction as a binary
classification problem, where a pair of nodes is classified as
a positive case if they form a link. To efficiently combine
information about various types of links in the network, we
follow the approach of counting 3-node graphlets [6]. In this
approach, we identify for a pair of nodes the type of a pat-
tern/triad they form with their common neighbors and put a
score proportional to the frequency of this triad in the whole
network. We introduce three modifications to the original
weighting scheme of triads. The first modification is the
introduction of time awareness which we achieve by using
the time score [12]. The second modification is motivated
by the work in the area of graph pattern mining where the
stress is put on the fact that simple counts are not always a
proper measure to estimate the frequency of patterns in the
network [4]. Our last modification addresses the hypothesis
that triad formation among more active (thus experienced)
and ordinary users in the network might be different. There-
fore, we differentiate the 3-node graphlets not only by link
type, but also by node categories. We also raise the question
whether there are certain network properties which might
point out a suitable weighting scheme of triads for temporal
link prediction.

The main contributions of the paper are the following:

1. We study the performance of several supervised meth-
ods for temporal link prediction in heterogeneous so-
cial networks at several time points.

2. We suggest three modifications to the weighting scheme
of 3-node graphlets [6].

3. Our experiments illustrate that network evolution can-
not be explained by one specific feature at all time
points which emphasizes the importance of combining
different features into efficient models.

4. We observe that some network properties can point out
which weighting scheme for 3-node graphlets is more
effective for temporal link prediction.

The rest of the paper is structured as follows. In the next
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section we provide a formal definition of the problem. In
Section 3 we discuss related work. We explain the calcula-
tion of our new features in Section 4. In Section 5 we present
datasets and experimental setting. We also report and dis-
cuss the results of our experiments. Finally, the conclusion
is drawn and possible directions for future work are outlined.

2. PROBLEM
We have a network G = (V,E1, E2, τ1, τ2), where V is

the set of nodes; E1 and E2 are the set of links of type
1 and 2 respectively; τ1 assigns timestamps to links of the
first type and τ2 to links of the second type. The set of
nodes does not need necessarily to be homogeneous, but we
focus on the case when nodes represent the same type of
objects, namely people. Let G[t] = (V,E1[t], E2[t], τ1, τ2)
denote the sub-network of G which exists at time t ∈ T .
In other words, this sub-network contains only those links
which have a timestamp not greater than t: E1[t] = {e ∈
E1 : τ1(e) ≤ t}, E2[t] = {e ∈ E2 : τ2(e) ≤ t}.

The link prediction problem consists either of finding hid-
den connections or predicting links which will appear in the
future based on the previously observed network states [9].
The first problem is better studied in the link prediction
community. The latter, predicting future links, has gained
more interest recently. We focus on this problem in the
following formulation: Given G[t] = (V,E1[t], E2[t], τ1, τ2)
predict Ex[t′] for some t′ > t and link type x ∈ {1, 2}.

3. RELATED WORK
There are many methods developed for the link prediction

problem in networks with one type of links. We can cate-
gorize them into three classes: approaches based on node
features, probabilistic models and topological patterns [18].
We focus on the last category since it is related to our work.
The aim here is to calculate a similarity score between a pair
of nodes based on the topological metrics of the network.
Among the topological metrics which are used, the neighbor-
hood based scores form the biggest category. The preferen-
tial attachment (PA) score for a node pair (s, t) is the prod-
uct of their degrees: |Ns|∗|Nt| [13]. Here, Nx denotes the set
of immediate neighbors of the node x. The common neigh-
bors (CN) counts the number of common neighbors: |Ns ∩
Nt| [13]. Jaccard’s coefficient (JC) is a normalized num-

ber of common neighbors: |Ns∩Nt|
|Ns∪Nt| [16]. The Adamic/Adar

(AA) measure weights the impact of neighbors inversely ac-
cording to their degrees:

∑
n∈Ns∩Nt

1
log |Nn| [2].

Unsupervised and supervised methods can be used to build
a prediction model based on these scores. Lichtenwalter et
al. show that supervised learning provides better results due
to the ability to reduce variance and to cope with high imbal-
ance in the class distribution [11]. To overcome imbalance,
they suggest to use skew-insensitive trees based on Hellinger
distance or to undersample the negative class.

We want to efficiently combine information about different
types of links in the same network to predict future links.
For this purpose Davis et al. construct a weighting scheme
for combinations of link types based on the frequencies of 3-
node graphlets [6]. In the following work Lichtenwalter and
Chawla extend the class of graphlets and introduce a new
method for link prediction, called Vertex Collocation Profiles
(VCP) [10]. However, time information is not considered.
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Figure 1: P1-P4 are examples of 3-node graphlets for a net-
work with links of two types; G is an example of a network
with two types of links.

There are already works which incorporate time informa-
tion into the calculation of similarity scores. For example,
Munasinghe and Ichise suggest a time-score which combines
the time and weight of links with common neighbors [12].
Their approach is based on two concepts: the strength of a
link decreases with time, and the common neighbors are
more effective if the interaction with them happens in a
closer proximity of time. Soares and Prudencio do not con-
struct one single score for a node of pairs, but rather explore
the evolution of topological metrics by constructing a time
series of scores [5]. Based on the obtained time series for
a specific neighborhood based score, they predict the next
value of the series and use the predicted value in the link
prediction model. However, many works on temporal link
prediction consider only homogeneous networks [5, 12].

We want to perform temporal link prediction in networks
with two types of links. There is a recent work which solves
this problem on a DBLP dataset by performing a multi-
relational influence propagation [19]. To account for tempo-
ral dimension, the authors introduce several features. Firstly,
they calculate recency as the time passed since a node made
its last new link and activeness as the number of new links
made in the last time step. These two features are some-
what similar to the time score [12]: instead of introducing
time awareness for the links this work makes nodes time
aware. Secondly, the authors calculate a degree preferential
vector which can be perceived as a time series approach [5].
Finally, they design two new models (Temporal and MRIP
models) and compare their performance against three state-
of-the-art models (Homo Model, VCP3U and VCP4U). Our
approach is based on the works of Davis et al. and Mu-
nasinghe et al. [6, 12]. Therefore, we use these works as
baselines to compare our approach. We do not study the
combinations of features. The future work includes this as-
pect and a comparison with the other models [19, 10].

4. TIME AND HETEROGENEITY BASED
SCORES

Davis et al. introduce a prediction score for an appearance
of a link between two nodes based on the frequency of 3-node
graphlets which these two nodes form with their common
neighbors [6]. We suggest to extend this methodology in
three ways: (1) by introducing an additional weight based
on time of interactions in the network; (2) by using support
as a measure to account for frequency of graphlets; (3) by
using node labels which indicate how experienced nodes are.

The original score which is introduced to predict a link
of type x between nodes s and t is [6]: score(i)(s, t) =
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∑
n∈Ns∩Nt

w
(i)
n , where w

(1)
n corresponds to the weighting

scheme from the previous work and w
(2)
n is our modifica-

tion. To calculate the first score, we put:

w(1)
n =

σ · |P (x)− P (x ⊂ edge type(s, t)|pattern(s, n, t))|
P (edge type(s, n)) · P (edge type(t, n))

in which pattern(s, n, t) describes one of possible 3-node
graphlets formed by nodes s, n, t. Four out of 16 possible
graphlets for a network with two types of links are illus-
trated in Figure 1. To calculate the conditional probability
of the link x to appear in pattern(s, n, t), we need to count
the occurrence of pattern(s, n, t) and the occurrence of this
pattern with the added link x, and then divide the latter
number by the former. P (x) stands for the probability of
the link type x in the network, and edge type(s, t) deter-
mines the link type between nodes s, t. Ns, Nt stand for the
sets of neighbors for nodes s, t correspondingly. The value
of σ ∈ {−1, 0, 1} is determined upon statistical comparison
of P (x ⊂ edge type(s, t)|pattern(s, n, t)) and P (x).

This approach is loosely related to the approach of min-
ing graph evolution rules [3]. Unlike counting apriori known
graphlets, Bringmann et al. discover frequent graph patterns
in a network which are limited in their size. The frequency
of the graph patterns is measured by the minimum image-
based support. It roughly equals to the minimum number
of different nodes in the network to which one of the nodes
in the pattern can be matched. Bringmann and Siegfried
argue that support is a better measure to estimate the fre-
quency of a pattern than a simple count [4]. Consider the
network G in Figure 1, where the first type of link is rep-
resented by the full line, and the second type is shown by
the dashed line. 3-node graphlet P1 has a count 16 in this
network, and the corresponding closed triad P4 has a count
6. The conditional probability of the appearance of the link
of the first type between nodes v1 and v2 using counts [6]:
P (x ⊂ edge type(v1, v2)|pattern(v1, v0, v2)) = 6

16
. The min-

imum image-based support for P1 is three, since the node
n can be matched only to v0, v3, v4 in the network G. P4

has the same support. Hence, the conditional probability of
the appearance of the link of the first type between nodes
v1 and v2 using support is 1. Note that such difference in
these two calculation approaches arises if we have a high-
degree node which connects otherwise disconnected nodes.
Such kind of nodes are also referred to as structural holes.
We do not know how exactly the temporal evolution is af-
fected by structural holes in the network, but a previous
work points out that structural holes can indicate the rela-
tionship type [17]. To account for such behavior in social

networks, we calculate w
(2)
n using the support [3]:

w(2)
n =

support2(x ⊂ edge type(s, t), pattern(s, n, t))

support(pattern(s, n, t))
.

This score has proven to perform well not only for link pre-
diction in social networks [3], but also for prediction of cita-
tion counts over time [14].

To consider the temporal aspect of node interactions, we

use the time score [12]: TS =
∑
n∈Ns∩Nt

Hm∗βk

|t1−t2|+1
, where

t1, t2 are recent interactions between n, s and n, t corre-
spondingly, k = now −max(t1, t2), Hm is a harmonic mean
of weights of these two interactions. We put β equal to 0.5.
This score can be naturally applied to each 3-node graphlet

separately. Then we put a new time-dependent score:

tscore(i)(s, t) =
∑

n∈Ns∩Nt

TSn · w(i)
n .

The last extension is motivated by the work on link pre-
diction across heterogeneous networks [8]. A more fine-
grained mechanism to study network growth is proposed.
First, nodes are categorized in two groups (elite and ordinary
users) based on their PageRank score. Then triads (3-node
graphlets) with respect to node categories are enumerated
and weighted with regard to their frequencies. We also intro-
duce two node categories, ordinary and experienced users,
which we estimate based on user’s engagement in the net-
work. We obtain a new score:

tscore
(i)
l (s, t) =

∑
n∈Ns∩Nt

TSn ·W (i)
n .

W
(i)
n is calculated like w

(i)
n , except that patterns and link

types include labels of the nodes. The new scores are similar
to AA, since these features are based on the triad formation.
However, they all provide different weighting scheme for a
given triad. We hypothesize that our new weighting scheme
will better capture the network evolution over time.

5. EXPERIMENTS

5.1 Datasets
We conduct experiments on two datasets: the gaming net-

work Dota2 and the collaboration network HepTh.
Gaming Network. The dataset was crawled using Steam

API (friendship information) and Dota2 API (team member-
ship information) from Valve. A detailed description of the
dataset is available in our previous work [15]. Nodes corre-
spond to users of Steam in both cases. The mate link indi-
cates that two players were team mates in a Dota2 match,
and the friend link means that two players are friends on
Steam. The mate link has a weight as the number of matches
where two players were team mates. We consider only links
with weight> 1. We make this restriction for two reasons:
firstly, if the weight is more than one, than the interaction is
less likely to be random; secondly, to decrease the network
volume. We introduce a weight on the friend links as the
current friendship age. We select one calendar week as the
time unit. The users in this network are classified at each
time point in two groups based on their experience: if they
played more than 60 matches, they are marked as “experi-
enced”, otherwise “ordinary”. The threshold is identified by
the distribution of users’ experience in the week 201145.

Collaboration network. The collaboration network is
constructed from 27,732 papers from the years 1992− 2003
from the arXiv which are categorized as High Energy Physics
Theory. Nodes correspond to authors of these publications.
There are colleague and peer types of links. If a scientist
collaborates with another one on some paper, it indicates
that they are colleagues and know each other on a personal
level. If a scientist cites one of the works of the other au-
thor, it indicates that both of them are working on related
topics, and, thus, they may be considered as peers. That is
also the reason why we ignore the direction of this relation-
ship. We delete self-loops. There are weights on both types
of links which indicate how many times the corresponding
interaction between the authors takes place. We select one
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Table 1: Properties of Dota2 network over time.
team mate link friend link

year-week # nodes # links C̄ T # CC # nodes # links C̄ T # CC
201147 7901 17544 0.216 0.112 584 69505 81733 0.058 0.021 1831
201149 18763 47145 0.214 0.084 668 75756 92656 0.069 0.026 1786
201151 28639 81237 0.208 0.069 526 81858 103983 0.079 0.03 1602
201201 34839 114426 0.205 0.061 271 86272 112574 0.083 0.033 1432
201203 40104 176195 0.196 0.063 88 90010 121424 0.087 0.035 1214
201205 43701 232289 0.192 0.07 48 93295 129767 0.092 0.038 1043
201207 46645 276768 0.19 0.076 34 96534 138030 0.095 0.039 903

Table 2: Properties of HepTh network over time.
peer link colleague link

year # nodes # links C̄ T # CC # nodes # links C̄ T # CC
1993 529 1618 0.435 0.314 30 965 1185 0.521 0.592 217
1995 2500 21845 0.461 0.245 23 2579 3988 0.482 0.409 289
1997 4063 68510 0.471 0.248 14 3902 7173 0.472 0.313 318
1999 5325 140528 0.477 0.259 16 5025 10622 0.463 0.263 327
2001 6677 241091 0.485 0.252 16 6240 14534 0.466 0.229 349
2003 7978 368323 0.493 0.25 15 7416 18793 0.467 0.206 349

year as the time unit. The authors are classified at each
time point in two groups based on how many papers they
wrote before: if they authored more than 10 papers, they
are marked as “experienced”. The threshold is identified by
the distribution of users’ experience in the year 1993.

We present the properties for each link type in Tables 1
and 2 over the selected time periods. These properties in-
clude number of nodes (#nodes), number of links (#links),
average clustering coefficient (C̄), transitivity (T ) and num-
ber of connected components (#CC). For simplicity we show
every second time point to get the feeling about the trends.

5.2 Experimental setting
We select several state-of-the-art scores as our baseline:

AA, CN, JC and PA which are described in Section 3. We
also consider TS [12] and score(1) [6]. We predict each link
type separately, thus features AA, CN, JC, PA and TS are
calculated for the network with one link type. We construct
the training and testing datasets based on link existence at
different time units: t and t+1 correspondingly. If a link ap-
pears between two nodes at time t, then it is a positive class
in the training dataset. The same rule is used for the testing
dataset, except that we consider time t + 1. The features
are calculated based on G[t−1] for the training dataset and
G[t] for the testing dataset. We predict links for the testing
dataset at time t + 1. We undersample the negative class
to balance the class distributions [11, 6, 5, 10]. We choose
to undersample the negative class so that the positive class
represents 25% observations [6, 10]. We consider only those
pairs of nodes which have common neighbors in the network.

We incorporate bagging into our model [6]. We build ten
folds for the training datasets: each fold contains all observa-
tions of the positive class, but we take different observations
of the negative class to reach the balanced ratio of classes;
we use the same testing dataset for each fold of the training
dataset. We experimented with three classification methods:
logistic regression (LR), conditional inference trees (CIT)
and random forests (RF). Due to consistently better perfor-
mance of CIT, we report the results of this method.

Recent works indicate that in the case of a highly imbal-
anced class distribution Area under Precision-Recall curve
(AUPR) is a better performance measure [7, 20, 6, 10]. We
use R packages in our learning tasks: party and PerfMeas [1].

5.3 Results
We report AUPR results in Tables 3-4 for Dota2 network

and in Tables 5-6 for HepTh network. The best perform-
ing feature for each time period in the network (i.e., each
row in the tables) is marked in bold. We noticed that, in
case AUPR is more than 0.99, the learning algorithm fails
to create a classification model (AUROC equals 0.5 in such
cases). Closer analysis reveals that in such cases the dis-
tributions of the calculated scores are almost identical for
positive and negative classes, resulting in all instances be-
ing classified into the negative class. Thus, we mark the
corresponding numbers in the tables in italic and identify
the second best results. Our general expectation is that the

new time-dependent scores tscore(i) and tscore
(i)
l will per-

form better than score(i). We do not expect score(2) to
outperform score(1), but we want to define the cases when
it does. Lastly, we expect that including additional informa-
tion about users’ experience will improve the performance,

i.e., tscore
(i)
l is better than tscore(i).

The results indicate that there is no definite winner in
all cases. The performance of features varies over time and
across link types. However, if we compare the average of
AUPR over the considered time periods, we obtain that

tscore
(1)
l provides the highest value for 3 out of 4 link types

(we exclude cases with AUPR>0.99 from averaging). Pre-
diction of friend links in Dota2 network is the only case when
JC yields better average results. It is also the case when
the new scores based on the support calculation outperform
almost at all time points the scores which use counts for
graphlets. In Table 1 we notice that the network based on
friend links has very low average clustering coefficient and
transitivity, especially compared to three other networks.
These two network measures provide an insight how well the
social balance theory is fulfilled within the network. Appar-
ently, such configuration leads to the better performance of
JC and PA which are not based on this theory. Further-
more, it also provides an explanation why using support for
frequency calculation is a better choice in this situation. Re-
member the example network G in Figure 1 where the con-
ditional probability of link appearance is higher if we use
the support measure. Similar situation will arise every time
we have structural holes in the network. Tang et al. include
the information about structural holes for the task of link
prediction across networks [17]. Our results indicate that
such information might further improve the link prediction
and help to choose the suitable weighting scheme.

We make another interesting observation for the network
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Table 3: AUPR for predicting mate links.

week AA CN JC PA TS score(1) score(2) tscore(1) tscore(2) tscore
(1)
l tscore

(2)
l

201148 0.192 0.21 0.999 0.489 0.201 0.141 0.126 0.113 0.169 0.117 0.191
201149 0.123 0.184 0.219 0.181 0.142 0.134 0.431 0.113 0.288 0.119 0.121
201150 0.082 0.092 0.168 0.08 0.146 0.095 0.129 0.087 0.092 0.094 0.143
201151 0.093 0.114 0.096 0.12 0.142 0.087 0.105 0.101 0.204 0.094 0.185
201152 0.083 0.129 0.828 0.121 0.128 0.103 0.085 0.999 0.108 0.999 0.087
201201 0.102 0.112 0.177 0.096 0.122 0.08 0.12 0.215 0.17 0.216 0.215
201202 0.074 0.079 0.109 0.076 0.19 0.11 0.081 0.122 0.082 0.19 0.095
201203 0.095 0.095 0.176 0.084 0.107 0.119 0.09 0.163 0.083 0.368 0.094
201204 0.078 0.09 0.069 0.102 0.088 0.112 0.08 0.237 0.108 0.336 0.112
201205 0.078 0.084 0.084 0.082 0.076 0.093 0.08 0.121 0.082 0.361 0.08
201206 0.067 0.07 0.117 0.084 0.123 0.068 0.072 0.18 0.07 0.338 0.066
Average 0.097 0.115 0.204 0.138 0.133 0.104 0.127 0.145 0.132 0.223 0.126

Table 4: AUPR for predicting friend links.

week AA CN JC PA TS score(1) score(2) tscore(1) tscore(2) tscore
(1)
l tscore

(2)
l

201148 0.276 0.496 0.797 0.503 0.27 0.26 0.346 0.465 0.398 0.389 0.385
201149 0.249 0.343 0.941 0.594 0.195 0.35 0.154 0.379 0.711 0.329 0.259
201150 0.203 0.182 0.694 0.604 0.14 0.244 0.339 0.307 0.799 0.325 0.5
201151 0.546 0.524 0.323 0.649 0.212 0.276 0.115 0.363 0.969 0.999 0.817
201152 0.385 0.383 0.831 0.767 0.626 0.274 0.74 0.359 0.956 0.174 0.949
201201 0.195 0.284 0.953 0.915 0.458 0.195 0.07 0.999 0.939 0.4 0.943
201202 0.355 0.204 0.923 0.616 0.924 0.999 0.622 0.199 0.942 0.19 0.769
201203 0.179 0.203 0.601 0.799 0.258 0.214 0.237 0.173 0.962 0.273 0.215
201204 0.152 0.226 0.956 0.444 0.318 0.152 0.615 0.178 0.379 0.264 0.504
201205 0.23 0.249 0.57 0.361 0.385 0.195 0.653 0.228 0.251 0.192 0.343
201206 0.194 0.202 0.681 0.667 0.181 0.183 0.697 0.227 0.262 0.282 0.17
Average 0.27 0.3 0.752 0.629 0.361 0.234 0.417 0.288 0.688 0.282 0.532

based on colleague links. This is the only case where the
number of connected components grows over time (Table 2).
It might be explained by the trend of writing papers within
specified groups at hosting institutes and of having little col-
laboration with outside groups. Though the features based
on our new scores perform overall good, there is no con-

sistency in results with tscore
(1)
l leading often to extreme

AUPR values. Including more information about authors,
e.g., which institute they belong to, might improve the per-
formance like it was done in some previous works [19].

Overall, introducing the time awareness improves the per-
formance. However, not in all cases tscore(i) yields bet-
ter AUPR compared to score(i), especially on the network
with colleague links. Still if we use 3-node graphlets which
distinguish between ordinary and experienced authors, we
gain advantage over score(i). Nevertheless, in case of the

Dota2 network with friend links tscore
(i)
l reduces the av-

erage AUPR in comparison to tscore(i). We think that the
gaming experience of users does not really impact the friend-
ship formation among them. It might be more effective to
categorize users in this network with regard to being a struc-
tural hole. Judging from results both for Dota2 and HepTh
networks, we believe that the choice of node categories fits
well team mate and peer link types, but we could introduce
better node categories for friend and colleague link types,
thus reducing the inconsistency.

Friendship and colleague networks are sparse compared to
team mate and peer networks. We see that the new score
performs well on the latter while the results for the former
are inconsistent. Previous works outline that a technique
based on counting graphlets is better suited for information
networks [6]. It might be the explanation for such incon-
sistency, however, we show that even in such cases the new
scores perform on average well and might further improve
supervised models in combination with other features.

Our results lead us to the conclusion that the network
evolution is more complex and is not completely captured
by one specific feature. Even within the same type of net-

work we observe quite a lot of variance in the performance
of features. Similar observation has been already outlined
by Davis et al. [6]. However, we want to stress that even
combining efficiently the considered features on one dataset
at a specific time point does not guarantee that this model
will perform equally well over time. It is worth noting that
except for the network structure and content we do not use
any additional information. However, there can be outside
factors which influence the network evolution. For example,
Valve (the company which develops Dota2 and Steam) per-
formed many marketing activities to attract new players to
their game Dota2 in 2011. Note that we have currently no
means to include them into our model. This fact might ex-
plain why till the beginning of 2012 we observe quite drastic
changes in the performance of features (see Table 3).

6. CONCLUSION
We have studied the performance of several state-of-the-

art and 5 new scores for temporal link prediction in social
networks with two types of links. We have performed ex-
periments on two real-world social networks: a gaming net-
work Dota2 with team mate and friend links; a co-author
network HepTh with colleague and peer links. We have
confirmed once again that considering the temporal aspect
of links when studying network evolution is important and
leads to the improved link prediction performance. However,
our results indicate that the performance of link prediction
methods varies over time, and in two cases there is consider-
able inconsistency in results within the same network type.

We have noticed that the methods which use some vari-
ation of a triad counting technique do not perform well on
the network with very low average clustering and transitiv-
ity coefficients. By using a support measure to estimate the
frequencies of graphlets we achieve better performance for
temporal link prediction.

The results of our work point out several directions for
the future work. First of all, the categorization of nodes
according to structural hole spanning could lead to the fur-
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Table 5: AUPR for predicting peer links.

year AA CN JC PA TS score(1) score(2) tscore(1) tscore(2) tscore
(1)
l tscore

(2)
l

1994 0.202 0.225 0.095 0.168 0.167 0.13 0.325 0.265 0.195 0.336 0.131
1995 0.223 0.23 0.166 0.18 0.196 0.163 0.327 0.183 0.27 0.423 0.109
1996 0.208 0.21 0.116 0.154 0.212 0.169 0.239 0.241 0.242 0.418 0.219
1997 0.203 0.19 0.221 0.141 0.181 0.171 0.193 0.242 0.193 0.715 0.235
1998 0.182 0.183 0.168 0.143 0.196 0.182 0.185 0.202 0.184 0.328 0.19
1999 0.198 0.195 0.179 0.155 0.194 0.184 0.165 0.214 0.197 0.342 0.203
2000 0.192 0.194 0.217 0.154 0.184 0.186 0.172 0.257 0.199 0.249 0.205
2001 0.243 0.242 0.227 0.18 0.234 0.245 0.22 0.332 0.236 0.718 0.244

Average 0.206 0.209 0.174 0.159 0.195 0.179 0.228 0.242 0.215 0.441 0.192

Table 6: AUPR for predicting colleague links.

year AA CN JC PA TS score(1) score(2) tscore(1) tscore(2) tscore
(1)
l tscore

(2)
l

1994 0.161 0.356 0.146 0.991 0.287 0.813 0.579 0.566 0.546 0.359 0.772
1995 0.154 0.195 0.992 0.224 0.254 0.805 0.641 0.86 0.573 0.993 0.835
1996 0.296 0.37 0.261 0.226 0.541 0.562 0.289 0.591 0.294 0.995 0.648
1997 0.276 0.214 0.148 0.164 0.216 0.468 0.311 0.215 0.298 0.996 0.358
1998 0.182 0.136 0.138 0.186 0.109 0.4 0.214 0.138 0.321 0.769 0.31
1999 0.385 0.199 0.123 0.138 0.145 0.271 0.123 0.145 0.189 0.585 0.204
2000 0.376 0.186 0.692 0.997 0.136 0.11 0.135 0.1 0.158 0.997 0.127
2001 0.116 0.223 0.166 0.997 0.122 0.306 0.792 0.17 0.085 0.997 0.086

Average 0.243 0.235 0.239 0.188 0.226 0.467 0.385 0.348 0.308 0.571 0.418

ther improvement in performance of our new scores tscore
(i)
l .

Secondly, we could introduce time series techniques [19, 5].
Lastly, by efficiently combining the new features we could
compare their performance with the state-of-the-art models
like Homo, MRIP and VCP [10, 19].

There is currently a trend to develop supervised models for
link prediction by combining classical unsupervised scores
(e.g., AA, JC, PA, CN) with new features [10, 19]. These
models are then tested on a variety of datasets with the
goal to fit as many as possible. We noticed that there might
be innate network properties (e.g, average clustering coef-
ficient, presence of structural holes) which could point out
appropriate features to explain its future evolution. Instead
of designing a general model to fit different networks, we
could guide the process of model development with regard
to these properties. For example, the methodology based
on 3-node graphlets, which we applied in our current work,
and more generally the approach of VCPs [10] provide con-
siderable flexibility as to how much additional information
(besides the local structure among nodes) is captured by the
graphlets, like node labels, link labels, frequency estimation
and weighting scheme. However, to tune the parameter con-
figuration, we need a bigger pool of networks.
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