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ABSTRACT
The majority of Web email is known to be generated by machines
even when one excludes spam. Many machine-generated email
messages such as invoices or travel itineraries are critical to users.
Recent research studies establish that causality relations between
certain types of machine-generated email messages exist and can
be mined. These relations exhibit a link between a given message
to a past message that gave rise to its creation. For example, a ship-
ment notification message can often be linked to a past online pur-
chase message. Instead of studying how an incoming message can
be linked to the past, we propose here to focus on predicting future
email arrival as implied by causality relations. Such a prediction
method has several potential applications, ranging from improved
ad targeting in up sell scenarios to reducing false positives in spam
detection.

We introduce a novel approach for predicting which types of
machine-generated email messages, represented by so-called “email
templates”, a user should receive in future time windows. Our pre-
diction approach relies on (1) statistically inferring causality re-
lations between email templates, (2) building a generative model
that explains the inbox of each user using those causality relations,
and (3) combining those results to predict which email templates
are likely to appear in future time frames. We present preliminary
experimental results and some data insights obtained by analyz-
ing several million inboxes of Yahoo Mail users, who voluntarily
opted-in for such research.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communications Ap-
plications—Electronic Email

1. INTRODUCTION
Today’s Web consumer email is dominated by non-spam machine-

generated email messages [2, 8]. More than 90% of traffic origi-
nates from mass senders like social networks and ecommerce sites.
These email messages range from slightly annoying wide-spread
newsletters and promotions to critical information such as e-tickets
and booking confirmations. Machine-generated email messages
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represent a great ground for research and data mining as they keep
reoccurring over time, and over thousands if not millions of users.
Indeed, by design, a single script generates numerous variations of
messages for similar types of activities. Mailing lists represent the
simplest form, where all messages are almost identical, while more
sophisticated messages, such as travel itineraries and purchase or-
ders, use a common boilerplate that is instantiated according to the
user, transaction details, and more.

Some of the authors of this paper have previously introduced a
method for identifying these similar messages by leveraging the
notion of “email template” [2]. This method follows the intuition
that if several messages share a common sender and a variation of
subject lines, they should have been generated by a same script,
and conceptually belong to a same equivalence class that can be
mapped into a unique email template. In this previous work, we
identified about 12,000 templates on a one month period of email
traffic and then learned causal relations between pairs of templates.
A typical example of causality relation is a purchase confirmation
email that is followed by a shipping notification message for the
acquired product. In this case, the purchase confirmation is said to
cause the shipping notification. We used such causality relations
to link a machine-generated message to a previously received mes-
sage that might have caused it.

In this work, we tackle a more ambitious task. We are trying to
link a message to a future email message that has yet to be deliv-
ered, by extrapolating from causality relations. More specifically,
we introduce a novel approach for predicting which email tem-
plates a user should receive in selected future time frames. Our pre-
diction approach relies on (1) statistically inferring causality rela-
tions between email templates by analyzing large amounts of email
messages across a large number of users, (2) building a generative
model that explains the inbox of each user using those causality
relations, and (3) combining those results to predict which email
templates are likely to appear in future time frames. We describe
experimental results obtained by analyzing several million inboxes
of Yahoo Mail users, who voluntarily opted-in for such research.

This line of research has several potential applications. One ex-
ample is a new kind of advertising mechanisms that present ads
that are not directly related to a current email message, but rather
related to future predicted email. For instance, if it is observed that
users flying to a specific Greek island often make an online booking
of a cruise from a leading provider soon after, then it seems intu-
itive to show them competing cruise advertisements as soon as they
receive their travel itinerary. Another use case for such a prediction
method is a mail client feature that identifies that important mes-
sages, like shipment notifications, were not received within some
expected delay. In this case, the mail system could suggest users
to check their spam folders for the message, and if they still cannot
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find it, to inquire with the relevant ecommerce site about the ship-
ment. Note that the work presented here represents only a first step
in investigating the predictability of future email arrival. We re-
serve the demonstration of its value in some of the above use cases
to future work.

2. RELATED WORK
Prediction of future events has been given a lot of attention re-

cently. In several papers, the predicted events are news items, po-
litical events, or crises [18, 6, 12, 16, 17]. The data that is used for
those predictions commonly originates from various websites and
social networks. In Radinsky et al. [16], future news events are pre-
dicted by extracting causal relations from past data, and applying
them on recent events. Other relevant research has explored movie
ticket sales prediction using signals derived from social media plat-
forms such as Twitter [13, 4, 9]. Several other papers deal with the
problem of identifying bursts or trends of content type as soon as
they appear [10, 11, 3, 7]. An example of a burst can be a sudden
interest in a specific performer due to a significant event in her life.
This phenomenon may be reflected by many search queries. This
setting has a slightly different flavor from our setting in the sense
that we do not exploit a specific extreme event such as a burst, but
rather predict future events based on past occurrences and causal-
ity relations. In [1, 15], prediction of future events was made via
modeling user behavior. In the context of email, Dabbish et al. [5]
suggest a method for predicting whether an email message will be
replied to or not. To the best of our knowledge, this work is the first
to explore the specific task of predicting the arrival of future email.

3. AN EMAIL PREDICTION MODEL

3.1 Email templates and causal threads
The notions of email templates and causal threads were intro-

duced by a subset of the authors of this paper in [2]. Email tem-
plates provide an abstraction of the groups of machine-generated
messages that were generated by a same script. They are identi-
fied by finding the commonality among numerous similar messages
from the same mass sender. For privacy preserving reasons and per-
formance considerations, the commonality is derived only from the
header of such messages, and more specifically from the sender and
subject line fields. A template is then represented as a pair (sender,
subject mask), where the subject mask is a regular expression that
covers many variations of a same subject. For example, the tem-
plate (facebookmail.com, “? has commented on your status”) will
represent a message sent by facebookmail.com to a given user, with
the subject line “Bonnie Parker has commented on your status”, as
well as another message sent to another user with the subject line
“Clyde Barrow has commented on your status”, under the rationale
that both should have been generated by the same script. Other
examples of frequent templates include (ups.com “ ups ship noti-
fication tracking number ?”), or (americanairlines.com,”? your flight
from ? to ?”). Email templates were used in the same work [2], in
order identify causal threads. Unlike usual conversation threads
that group together messages between a same group of senders
who reply to each other after an initial message, causal threads
link machine-generated messages that were indirectly caused by
an action reflected in an initial message, such as a purchase order
or a travel reservation. Take as an example the sequence of email
arrival: an email from ebay.com congratulating a user for her suc-
cessful bid on a collector’s item and asking him to pay for this
purchase, followed by a receipt notification from paypal.com for
payment to eBay inc, and then by two additional ups.com notifi-

cation messages, one about the shipment, and one about the sub-
sequent delivery of the item. By observing such patterns of mes-
sages through their templates over a large number of users, causal
thread rules between templates can be automatically derived. The
template-based rule representing the above sequence of events is
given below.

ebay.com:“congratulations! your bid for ? won!”
→ paypal.com:“receipt for your payment to ?”
→ ups.com:“ups.com shipment notification”
→ ups.com:“ups package arrived”

Such rules are then used to link an incoming machine-generated
message to a sequence of previously delivered messages that might
have caused it. We note that the method for predicting messages
represented by their templates is independent from the template
discovery process, and should work with any similar abstractions
of mail messages.

3.2 A generative model for an inbox
We assume a generative model for an inbox, where every mes-

sage appears due to one of the following reasons: (1) a tempo-
ral event occurring regularly on a weekly, monthly or other basis
(e.g., a monthly statement from the bank or a weekly newsletter),
(2) a previous email message that caused it (e.g., in the above, the
previous email for the ups.com shipment notification is the receipt
message sent by paypal.com) and, (3) an unobserved action that
occurred externally and is not documented in the inbox (e.g., a pur-
chase in an online store is an unobserved action for a receipt mes-
sage that is sent later on).

Note that our model assumes that every message can give rise to
at most one message, which holds true in most cases. It also as-
sumes the existence of three (almost) independent processes, each
generating a different type of messages. The first process selects
messages resulting from unobserved actions (type 3 above), while
the second generates messages that result from temporal events
(type 1). The messages generated by these two processes define
a seed set for a third process, which generates messages that are
caused by previous messages (type 2). The two latter processes are
similar in the sense that they account for messages generated by
observable events. We later refer to such relations that correspond
to observable events as causal relations.

3.3 A three-step prediction approach
An email message E is abstracted as a pair (T, t) where T is its

template and t is its delivery time. Given an inbox with messages
and temporal events I = {E1, . . . , En}, a current time tcur, and
a time window size ∆, our goal is to return a list of templates that
may occur in the time window [tcur, tcur + ∆]. Each template is
associated with a score that indicates how likely this template to
appear in the mentioned time window. Our prediction approach
works as follows. As a preliminary step, we discover causal re-
lations, which are pairs (S, T ), where S is either a template or a
temporal event, and T is a template, such that given an appearance
of S it is likely that T follows it, or given an appearance of T it is
likely that S appears beforehand. This step is done once on all our
email data, and not repeated for each inbox. We analyze each of
the inboxes using our generative model. We utilize the statistically
inferred causal relations to discover the probability of each email
message in the inbox to cause any other message within the inbox.
This step is crucial for our prediction step since any email message
that already gave rise to a message cannot cause another message
by our assumption. The core prediction step consists of generat-
ing a small set of candidate templates whose chances of appearing
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is non-negligible. We associate with each candidate a score repre-
senting the probability of its appearance in the given time window.
These three steps of (1) discovering events and causal relations, (2)
analyzing inboxes and (3) the actual template prediction, are de-
tailed below.

3.4 Observed events and causal relations
We consider two kinds of causal relations: (1) between two tem-

plates, and (2) between a temporal event and a template. Recall
that our data includes inboxes in which all messages arrived in the
time window [tbgn, tcur]. For a template or a temporal event S and
a template T , we define Cnt1(S, T ) as the overall number of times
the pair (S, T ) was observed, where S appeared at least two weeks
prior to tcur. Note that we increment this counter only for pairs
(S, T ) in which S appeared before T and no other S or T appeared
between them. Similarly, Cnt2(S, T ) is the analog that counts the
number of times that the pair (S, T ) was observed, but T appeared
at least two weeks after tbgn. Note that we use these (two weeks)
truncated counts to avoid inaccuracies that relate to the exact times
that our time window begins and ends. We also define Cnt1(S) as
the total number of times S was observed at least two weeks prior
to tcur, and Cnt2(T ) as the number of times T was observed at
least two weeks after tbgn. We first focus on the case that S is a
template. We say that S causes T if

Cnt2(S, T )

Cnt2(T )
> θ1, and

Cnt2(S, T )

Cnt2(T )
· Cnt2(S)

Cnt2(T, S)
> θ2 . (1)

In a similar way, we say that T is caused by S if

Cnt1(S, T )

Cnt1(S)
> θ1, and

Cnt1(S, T )

Cnt1(S)
· Cnt1(T )

Cnt1(T, S)
> θ2 . (2)

where θ1 and θ2 are parameters (eventually given corresponding
values of 0.3 and 2 after a grid search). In both equations, the first
inequality asserts a correlation between S and T . Informally, in
equation 1 we get that Pr[S |T ] is large, and in equation 2, we get
that Pr[T |S] is large. The latter inequality in both equations filters
spurious relations, where both S and T are caused by unobserved
events1. We emphasize that although those causal relations may
seem similar or even identical, they are inherently different. For
example, suppose S is a purchase notification template of a very
small vendor and T is a shipment notification template of a prime
corporation. It is quite natural that S causes T . However, the ap-
pearance of T does not indicate that it was caused by S since only
a small fraction of the shipments done by the corporation are for
this small vendor. As another example, consider the case that S
is a product promotion template and T is a purchase notification
template. This time it seems natural to say that, given T , it was
caused by S. However, the opposite does not seem true, that is, the
appearance of S does not indicate that it causes T since promotions
are more likely not to lead to purchases.

We now turn to analyzing whether a temporal event S causes
a template T . In this case, it seems less natural to focus on the
corresponding counts since temporal events are consistently inter-
leaved with templates, and hence, some relations may look spuri-
ous. Therefore, we rather validate that the time difference between
S and T is consistent. This is achieved by validating that the vari-
ance of the time differences is small. More formally, for a template
or a temporal event S and a template T , we define δ(S, T ) to be
the random variable that captures the time difference for the pair
1Note that this approach does not remove all spurious relations, yet
it does eliminate the vast majority of them, which is sufficient for
practical purposes.

(S, T ) in which S appeared before T and no S or T appeared be-
tween them. We statistically infer this random variable from the
email data. We also define δ(S) to be the (same) time difference
between two consecutive temporal events of S. We say that the
temporal event S causes T if

stdev(δ(S, T )) < θ3 · δ(S) , (3)

where θ3 is a parameter (eventually given the value of 0.1 by a grid
search).

Let S be a template or a temporal event. We define Follow(S)
to be the set of templates that may be caused by S, that is, the
union of all templates T such that S causes T . Note that given
the appearance of a template S at most one T ∈ Follow(S) may
appear due to S by our assumption. However, in case that S is a
temporal event, each T ∈ Follow(S) can appear independently.
We also define Precede(T ) to be the collection of templates that
may give rise to the appearance of template T , namely, templates
S such that T is caused by S.

3.4.1 Analyzing an inbox
The goal of this step is to identify causal relations between mes-

sages in the inbox. This step is essential since any message that al-
ready gave rise to a message within the inbox cannot cause another
message. Consequently, we should ignore those messages when
we predict the arrival of future email messages. We explain be-
low how to estimate for each message, the probability that it causes
some other message in the inbox as well as the probability that it is
caused by some message.

We first focus on an important feature in our approach, namely
time differences. Recall that δ(S, T ) is a random variable that cap-
tures the time difference for the pair (S, T ), where S is a tem-
plate or a temporal event and T is a template. We assume that
the distribution Dδ(S, T ) describes the random variable δ(S, T ).
As Dδ(S, T ) is unknown, we approximate it by considering all the
time differences for the pair (S, T ) in our email data, and remem-
bering their 99 percentiles, while assuming a uniform distribution
within each bucket. More formally, let t1, . . . , t99 be the 99 per-
centiles of the observed time differences between S and T . We
assume that FS,T , the probability density function of Dδ(S, T ),
has a probability of 1/(100(ti+1 − ti)) for any value in [ti, ti+1].
Here, t0 = 0 and t100 is the maximum time difference.

Let us focus on an inbox, and let E = (T, t) be an email mes-
sage in the inbox. Suppose the inbox consists of the messages and
temporal events E1 = (S1, t1), . . . , Ek = (Sk, tk) such that,

1. ti ≤ t for every i ∈ [k], and

2. T ∈ Follow(Si) or Si ∈ Precede(T ) for every i ∈ [k].

We posit that the probability that the message E was not caused by
any of E1, . . . , Ek is

pT =
Cnt2(¬(S1, . . . , Sk), T )

Cnt2(T )
,

where the expression Cnt2(¬(S1, . . . , Sk), T ) stands for the num-
ber of times template T is observed in our email data, while there
are no appearances of S1, . . . , Sk during some (parametrized) time
period preceding it (eventually two weeks were selected by a grid
search). We emphasize that although pT is not an accurate estima-
tion of the probability thatE was not caused by any ofE1, . . . , Ek,
it is a simple expression that provides a good approximation for a
carefully selected time period. In the case that E was caused by
one of E1, . . . , Ek, which happens with probability 1− pT , we as-
sume that the probability that Ei gave rise to E is proportional to
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Cnt1(Si, T )

Cnt1(Si)
· FSi,T (t− ti) ,

where FSi,T is the (approximate) probability density function of
Dδ(Si, T ) which is generated using the process described before.

The above discussion accounts for the distribution of messages
or events being the parent (or cause) of a specific email message.
We are interested in the probabilities of all relations within an in-
box. To estimate these probabilities, we pick those relations at ran-
dom according to the calculated distribution. Specifically, given
an inbox E1, . . . , En, we go over the messages in the inbox from
the oldest one to the most recent. For each message under con-
sideration, we randomly assign a parent (or possibly reflect the
case in which a message does not have a parent) according to the
above-mentioned probability distribution. Based on our random
choices, we adjust the probabilities, and continue to the next mes-
sage. In particular, if we decide that message Ei is the parent of
Ej , we alter the probability that Ei is the parent of messages Ek
such that k > j > i to zero, and normalize the relevant probabili-
ties. We repeat the above-mentioned random process that identifies
parental relations multiple times to get more accurate estimations
pparent(Ei) (respectively, pchild(Ei)) of the probability that each
messageEi caused another message (respectively, was caused by a
message or event) in the inbox.

3.4.2 Predicting future templates
Given an inbox that consists of the messages and temporal events

E1 = (S1, t1), . . . , En = (Sn, tn), we want to predict the tem-
plates that will arrive within the next ∆ time units. We first com-
pute a list of candidate templates that have a non-negligible chance
of appearing. This collection is composed of all the templates in the
inbox and all the templates in ∪ni=1Follow(Si). Let T be this set
of templates. We compute a score for each T ∈ T that indicates
how likely it is to appear within the given time window. The list
of templates that we finally predict consists of all templates whose
score exceeds some threshold, which can be adjusted to increase
recall or precision.

In order to assign a probability score to a given template T ∈ T ,
we first calculate α0, which is defined as the probability that T
appears due to an unobserved event in the next ∆ time units. We
model this generation process as a series of Bernoulli trials that
decides, in each time unit, whether T arrives. For this purpose, we
consider the collection C of all messages Ei whose template is T .
We let

Cnt(C) =
∑
E∈C

(1− pchild(E)) ,

be the (fractional) expected number of messages in the inbox that
appeared due to an unobserved event. We use qT to mark the prob-
ability that T spontaneously appears in a single time unit. Specif-
ically, qT = min{1,Cnt(C)/(tcur − tbgn)}. Consequently, the
probability that T appears in a time window of length ∆ is

α0 = 1− (1− qT )∆ .

In order to account for the creation of T due to causality rela-
tions, we consider only such templates and temporal events Si such
that T ∈ Follow(Si). Let us assume without loss of generality that
every Si satisfies this property. In case Si is a template, we define

βi =
Cnt1(Si, T )

Cnt1(Si)
·
∫ tcur−ti+∆

t=tcur−ti
FSi,T (t)dt .

This quantity is the estimate of the probability that Si causes T .
Dealing with temporal events is a bit more tricky since temporal
events occur periodically, and thus, there are such future events that

occur after tcur but before tcur + ∆. Clearly, we like to take them
into account. In case that Si is a temporal event that happens every
tspn time units, we define

βi =
Cnt1(Si, T )

Cnt1(Si)
·
∫ min{tcur−ti+∆,tspn}

t=max{tcur−ti,0}
FSi,T (t)dt .

Recall that an email message can cause at most one other mes-
sage. Since some of the messages in the inbox may have already
caused other messages in the inbox, we set

αi = βi · (1− pparent(Ei)) ,

for all messages Ei. This term is the estimate of the probability
that Ei caused T (given the underlying inbox). Note that if Ei is
a temporal event then we set αi = βi. Since we assume indepen-
dence between the different generation processes, we estimate the
probability that T is generated in the mentioned time window by

1−
n∏
i=0

(1− αi) .

4. DATA INSIGHTS
An important signal in our approach is the time differences be-

tween pairs (S, T ), where S is a template or a temporal event and T
is a template. This information is utilized in both the inbox analysis
and the prediction components. Given a pair (S, T ), it may seem
natural to approximate the distribution Dδ(S, T ) by some standard
distribution, such as Gaussian or Zipf, and mine its underlying pa-
rameters. This would allow us to represent the probability density
function concisely and efficiently. Unfortunately, such an approach
fails miserably. In almost all cases, the distribution Dδ(S, T ) has
a complex structure. Furthermore, different (S, T ) pairs often ex-
hibit widely-differing time differences behavior, which is very in-
ductive to the relation between them (see the figures and discus-
sion below). Luckily, as we are only interested in pairs (S, T )
that co-occur often, we obtain a large number of samples from the
mentioned distribution. As a consequence, we decided to approx-
imate the probability density function of Dδ(S, T ) by recording
percentiles 1 through 99 of the observed time differences, while
assuming a uniform distribution within each bucket defined by two
consecutive percentiles. We note that such an approximation not
only provides a good estimation of the unknown distribution, but
also scales well.

Figure 1 includes a few examples that demonstrate how template
pairs may have different distributions. For each of the graphs in
the figure, the template pair is indicated in the caption above the
graph, the x-axis represents the time differences between instances
of that pair (with a step size of 1 hour), and the y-axis represents
the number of pair instances that were observed. For example, the
upper graph demonstrates the relation between the template “your
ebay item sold .?” from ebay.com and the template “we’re transfer-
ring money to your bank” from paypal.com. This graph confirms
for instance that most commonly, the transfer of money immedi-
ately follows the sale. Also, one can see that there is a decrease in
the number of times money was transferred as the time passes (with
the caveat that this overall trend exhibits diurnal fluctuations).

One can derive additional insights from these graphs. The sec-
ond to bottom graph suggests that walmart.com most commonly
sends a survey two weeks after a purchase has been done, while
the bottom graph suggests that processing photo printing orders at
walgreens.com usually takes less than 3 hours, although there are
some orders that are ready after 10 hours (maybe due to nighttime).
Another example, presented in Figure 2, shows that when users in-
dicate that they have forgotten their password on ebay.com, it typ-
ically takes less than 10 minutes until they change it. There are
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Figure 1: Time difference distribution of template pairs.

many other examples of interesting relations between templates,
that we cannot include here for lack of space. These examples fur-
ther support our modeling decision in representing the probability
density function.

Figure 2: Time difference distribution of a template pair.

5. EXPERIMENTS AND RESULTS
We next describe the experiments that we conducted and their

results. Note that all the email data used for those experiments was
collected from users who voluntarily opted-in for such research.

5.1 Evaluation metrics
For the purpose of verifying the effectiveness of our prediction

model, we use the traditional measures of recall and precision.
We analyze each user’s inbox over a given past time period, and
then, predict the arrival of certain templates, representing machine-
generated classes of email messages, in a future time period. In our
experiments, we fixed the “past” to two months of incoming mail,
while the “future” time period τ was set to cover a two weeks pe-
riod. Given the inbox of a certain user, our model generates a list
of predicted templates P = (P1, P2, . . . , Pn) that are sorted by
decreasing order of confidence scores, that is, P1 has the highest
confidence score, and Pn the lowest one. Note that each template
in this list is unique. We mark by F (τ) = (F1, F2, . . . , Fm) the
collection of templates of messages that actually arrived during τ .
Note that each template in this collection is also unique; even if
there are two or more messages that share the same template, F
contains only one instance of this template. Now, we can view the
list P as a set of retrieved results whose quality we want to evalu-
ate against a ground truth of relevant documents, namely, F . With
this definition in mind, recall is defined as |P ∩ F |/|F |, and pre-
cision as |P ∩ F |/|P |. More specifically, we computed recall@k
and precision@k, that is, the recall and precision scored achieved
when predicting k templates “from the future”. Following the no-
tation above, where F is the true collection of future templates and
P is the ordered list of predicted templates, we denote by P (k) the
ordered list that consists of the first k templates in P (or fewer if

there are less than k templates in P ). We now have

recall@k ,
|P (k) ∩ F |
|F | , and precision@k ,

|P (k) ∩ F |
|P (k)| .

5.2 Predicting the past
It has often been observed in the literature that naïvely predict-

ing the exact behavior seen in the past achieves surprisingly good
precision results on average. A typical example of this behavior
is exhibited by the famous weather forecast persistence method,
which predicts that tomorrow’s weather will be identical to today’s
weather [14]. A simple prediction model in this vein for our task,
which we refer to as PastPredictor, predicts that the templates to
appear are those in the user’s inbox with a confidence score pro-
portional to the corresponding number of appearances in the in-
box. Indeed, we also found that “predicting the past" results in rea-
sonable precision and recall in our case; specifically, we achieved
recall@10 > 0.63 and precision@10 > 0.18. However, in many
cases of interest, it is important to keep some level of freshness and
diversity. For instance, in advertisement scenarios, one wants to
arouse attention and avoid ad blindness. Diversity is a recognized
important factor in recommender systems. For example, in the do-
main of question recommendation in community-question answer-
ing, it has even been demonstrated that it is preferable to reduce
relevance in favor of diversity and freshness [19]. Following the
same intuition, we argue that predicting diverse templates that have
not been observed in the past is important for the applicability of
the model.

A possible attempt to add diversity to the prediction is to use a
mix of past and popularity prediction. We call the obtained pre-
diction model the PastAndPopularityPredictor. We use this model
as a baseline for comparison with our prediction model, which we
refer to as the ThreadingBasedPredictor.

5.3 Experimental setup and results
Our experiments leveraged over 10,000 templates, a sample data

of over 40 million Yahoo mail users, and a grand total of over
1.5 billion email messages. We primarily measured recall@k and
precision@k for the two predictors mentioned above: the Pas-
tAndPopularityPredictor and our ThreadingBasedPredictor .

In Figures 3 and 4, one can see that our model most commonly
outperforms the PastAndPopularityPredictor in both precision and
recall. We wish to emphasize that both predictors improve upon the
recall rate of PastPredictor, which is limited to predicting the past
templates of the user’s inbox. Specifically, our model, Threading-
BasedPredictor achieves recall@30 of nearly 0.8, improving upon
a score of under 0.67 obtained by the PastPredictor. In contrast, the
competing predictor, PastAndPopularityPredictor achieves a score
of less than 0.72. This overall trend in recall scores between the
3 predictors is maintained for all values of k. We note that around
the values of k = 5, the baseline has a slight advantage over our
method with respect to the recall, yet this advantage is insignificant
compared to its counterpart in the regime of larger k. Interestingly,
this mentioned improvement in recall happens simultaneously to an
improvement in precision.

6. CONCLUSIONS
We introduced a novel problem of predicting the future arrival

of machine-generated emails. We presented a generative model for
an inbox, along with an offline method to infer its parameters. Our
approach builds upon mining users inboxes and identifying causal
relations between email messages. To demonstrate the effective-
ness of our approach, we collected email data from Yahoo mail
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Figure 3: Precision comparison between predictors.

Figure 4: Recall comparison between predictors.

users who voluntarily opted-in to such research. After partition-
ing the data into train and test time periods, we showed that our
method improves upon a strong baseline that mixes together pop-
ular messages and past messages of users. While these results are
only preliminary, we believe that they open new grounds for re-
search on mail data. In future work, we plan to continue improving
our approach, refine our templates representation and enrich it with
additional attributes extracted from email bodies. We also intend
to verify the value of predicting email in a variety of application
domains such as up-sell ads and anti-spam mechanisms.

We also like to emphasize that our prediction approach is general
in the sense that it can be applied to other temporal problems that
admit an underlying event generation process with causal relations.
We classified machine-generated email messages using templates,
and mined for causal relations between those events. One can sim-
ilarly define classification in other domains (like categorization of
tweets or social network posts), and use our approach to mine and
predict causal relations over this classification domain. In particu-
lar, we believe that one interesting component of our temporal ap-
proach is the way we model different frequency patterns between
events using time-based quantile histograms.
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