
Dicer: A Framework for Controlled, Large-Scale
Web Experiments

Sarah Chasins
University of California, Berkeley, USA

schasins@cs.berkeley.edu

Phitchaya Mangpo Phothilimthana
University of California, Berkeley, USA

mangpo@cs.berkeley.edu

ABSTRACT
As dynamic, complex, and non-deterministic webpages pro-
liferate, running controlled web experiments on live web-
pages is becoming increasingly difficult. To compare algo-
rithms that take webpages as inputs, an experimenter must
worry about ever-changing webpages, and also about scal-
ability. Because webpage contents are constantly changing,
experimenters must intervene to hold webpages constant, in
order to guarantee a fair comparison between algorithms.
Because webpages are increasingly customized and diverse,
experimenters must test web algorithms over thousands of
webpages, and thus need to implement their experiments ef-
ficiently. Unfortunately, no existing testing frameworks have
been designed for this type of experiment.

We introduce Dicer, a framework for running large-scale
controlled experiments on live webpages. Dicer’s program-
ming model allows experimenters to easily 1) control when
to enforce a same-page guarantee and 2) parallelize test ex-
ecution. The same-page guarantee ensures that all loads
of a given URL produce the same response. The frame-
work utilizes a specialized caching proxy server to enforce
this guarantee. We evaluate Dicer on a dataset of 1,000 real
webpages, and find it upholds the same-page guarantee with
little overhead.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Web Algorithm Testing, Testing Framework, JavaScript

1. INTRODUCTION
Algorithms that take webpages as inputs are becoming in-

creasingly ubiquitous. From search algorithms that find data
on the web, to template extraction algorithms that identify
data relations on the web, to scraping algorithms that col-
lect data from the web, the number of programs that operate
over web content is on the rise. As the amount of online data

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741699 .

continues to increase, the need for web algorithms — that is,
algorithms that take webpages as inputs — will only grow.

Unfortunately, support for the development of web algo-
rithms has not kept pace. In particular, controlled testing
remains extremely difficult. While there is a preponderance
of tools targeted at developers testing their own pages, these
tools are not easily applied to the more general problem of
running arbitrary tests over real-world, constantly changing
pages. If we are to fairly compare different algorithms on
real-world pages, we cannot simply run the algorithms di-
rectly; input webpages can be updated at any time, perhaps
altering an experiment’s outcome, making one algorithm or
another appear more successful. In controlled testing, an ex-
perimenter must hold input webpages constant while com-
paring different algorithms. To our knowledge, no existing
JavaScript testing framework offers this functionality.

As a motivating example, we discuss one such web algo-
rithm, the DOM node addressing problem. The task is to
load a URL at time t1, describe a given node n from the
loaded webpage, then load the same URL at a later time t2,
and use the description of n to identify the node at time t2
that corresponds to n. Several node addressing algorithms
have been proposed [1, 2, 6, 11, 18], but because testing
them is so difficult, none has been evaluated empirically.

In response to the lack of testing tools for web algorithms,
we introduce Dicer, the DOM-Interacting Controlled Exper-
iment Runner. Dicer uses a custom caching proxy server to
offer a same-page guarantee, a guarantee that all requests
for a given URL return the same response, regardless of
server state changes and JavaScript non-determinism. Fur-
ther, Dicer automatically parallelizes experiments, facilitat-
ing large-scale evaluations. Our goal is to make web exper-
iments more accessible, and thereby make thorough testing
of web algorithms more widespread. Dicer’s programming
model makes it easy for users to reason about input pages
and hold them stable over time, and it ensures that auto-
matic parallelization is always possible. This brings con-
trolled web experiments within reach of a wider audience.

In summary, we make the following contributions:
• We develop a novel programming model for running DOM-

interacting controlled web experiments.
• We design and implement a proxy server that offers a

stricter same-page guarantee than existing proxy servers.
• We design and implement the first JavaScript testing tool

that can run DOM-interacting controlled web experiments.

2. GOALS
We identify five core properties that are critical to mak-

ing a framework capable of running large-scale controlled
experiments on real-world webpages. A framework must:

1321

1. parallelize test execution
2. allow DOM interaction
3. run arbitrary JavaScript code
4. run on live pages from URLs (not only local DOMs)
5. offer a same-page guarantee

We address the need for each in turn. First, because our
focus is on large-scale experiments, parallelization is key
to making our target experiments practical. Second, be-
cause we target algorithms that take webpages as inputs,
it is crucial to allow algorithms to use the DOM API to
access and interact with webpage content. Tools that only
test JavaScript functions independently of webpages, such as
Node.js testing frameworks, are not suitable for our target
domain. Third, a framework should permit the user to test
arbitrary JavaScript code. A framework that only allows
pass/fail outputs restricts the class of algorithms that can
be tested. Fourth, it is important that a framework allow
users to run their tests on real pages, not only on locally con-
structed DOMs. While users can of course download pages
from URLs in order to construct their DOMs locally, this
process becomes cumbersome when a user wishes to test at
multiple different points in time. Last, comparing different
web algorithms demands a same-page guarantee. If a user
wishes to test one DOM-interacting algorithm against an-
other, it is crucial that both receive the same page as input.

2.1 Motivating Example
To offer robust record and replay for live webpages, a tool

must be able to identify the same DOM node in a webpage
over time, even if the DOM structure of the page changes
between record and replay. We will call this the node ad-
dressing problem. Using an XPath from the DOM tree’s
root to the target node is too fragile; new wrapper nodes
and sibling nodes will break the XPath. Ids would be suf-
ficient if all elements had ids, if those ids stayed the same
throughout page redesigns, and if all web designers adhered
to the one element per id rule. Unfortunately, none of these
conditions is met across the web. Handling real webpages
requires much more care, and node addressing algorithms
are typically quite complex.

We formalize a node addressing algorithm as a function
from a DOM tree T and a node n ∈ T to an expression e,
such that e(T) = n. Let T ′ be a different DOM tree, and let
e(T ′) = n′. We consider a node addressing algorithm robust
if n′ is the same node that a human would select if asked to
find the original node n in T ′.

Node addressing algorithms are in use in tools like Co-
Scripter [11], iMacros [1], and Selenium’s Record and Play-
back [18]. Unfortunately, testing node addressing algorithms
is so difficult that to our knowledge, despite the fact that this
problem is central to the success of their tools, none of these
node addressing algorithms have been tested against other
candidate algorithms on large data sets. Each project ap-
pears to have settled on an approach that works sufficiently
well on its test cases, without empirical validation.

Our motivating example will be an experiment that tests
multiple node addressing algorithms against each other. Since
we will not ask a human to evaluate n′ in our large-scale
experiment, we use a simple correctness condition. If algo-
rithm A produces e such that e(T) = n and e(T ′) = n′, we
will consider algorithm A correct on page T ′ if and only if
clicking on n′ directs the browser to the same URL as click-
ing on n. Since many nodes will not respond to clicking, we
only test on nodes that direct the browser to a new URL.
We term these reactive nodes.

Method Description
startSession() Starts a new session.
endSession() Ends current session.
stage(String ip, Adds stage to the current session with

String it, input program from file ip, input table
String ot) from file it, which will write to file ot.

Table 1: The Dicer API.

Note that an experiment like this relies on all five of the
crucial features identified above.
1. Parallelism: A thorough test demands running this task

on many nodes, in order to reveal enough naturalisti-
cally broken addresses to distinguish between approaches,
which makes parallel execution highly desirable.

2. DOM interaction: The algorithms must click on nodes.
3. Arbitrary JavaScript: The algorithms cannot be limited

to, for instance, pass/fail outputs.
4. Running on live pages: The algorithms should run on the

real sites of interest. The pages should change between
training and testing.

5. Same-page guarantee: To fairly compare different algo-
rithms, their inputs must be the same.

3. PROGRAMMING MODEL
In this section we introduce the core abstractions that

form Dicer’s programming model, describe how our moti-
vating example is implemented with these abstractions, and
discuss some design decisions.

3.1 Abstractions
Our programming model is built around a few key abstrac-

tions that make it easy to express complicated experiments.

Session: a sequence of stages.
Stage: a (input table, input program) pair, which pro-
duces an output table when passed to Dicer.
Input Table: a set of n-field rows.
Input Program: a sequence of one or more algorithms.
Algorithm: a set of one or more subalgorithms.
Subalgorithm: a JavaScript function, accepts n arguments.
Output Table: a set of m-field rows.

A session is a sequence of stages during which Dicer offers
a same-page guarantee. During a session, loading a given
URL always loads the same DOM tree. Each stage is de-
fined by its input table and its input program. The first col-
umn of the input table contains URLs, indicating the pages
on which the input program should be run. All remaining
columns contain additional arguments to the input program.
An input program may contain multiple algorithms to run
for each row in the input table. If an algorithm runs over
multiple pages, it must be decomposed into subalgorithms,
one to run on each page. Each subalgorithm is a function
that accepts n arguments (corresponding to the n items in
each input table row). Each row in the input table corre-
sponds to one run of the input program. For each algorithm
in the input program, Dicer first directs the browser to the
URL in the first column of the row, then runs the algorithm
on the loaded page, passing all row cells as arguments to
the algorithm. Thus, for a given row, all algorithms are
run with the same arguments on fresh, identical copies of
the target page. For any given input row, the return values
of the different algorithms are concatenated to produce full
output rows, which are appended to the output table. Only
the final subalgorithm of an algorithm may produce output.

1322

get all XPaths

URLs

STAGE 1 XPaths

filter non-reactive
nodes

node addressing
algorithms

filtered XPaths

run expressions

expressions

post-click URLS

STAGE 2

STAGE 3

STAGE 4

session 1
session 2

Figure 1: The motivating example. Blue boxes represent
JavaScript programs, and gray boxes represent tables.

Dicer offers a simple API for interacting with these ab-
stractions, outlined in Table 1.

3.2 Motivating Example Experiment
To explain the Dicer programming model more concretely,

we show how we can use the framework to implement the
node addressing experiment described in Section 2.1. In
Dicer, this experiment is split into the four stages depicted
in Figure 1 and described below.

Stage 1 traverses the DOM tree, recording an XPath for
each node. The input table has only one column, the URL
column. The table contains the list of URLs on which we
want to test our node addressing algorithms. The input
program is an algorithm that produces an XPath for each
node in a document’s DOM tree, and emits an output row
for each XPath.

Stage 2 determines which nodes are reactive. Its input ta-
ble is the output table from Stage 1. For each XPath in
the input table, it clicks on the node at the XPath. (Since
Stages 1 and 2 run in a single session, with the same-page
guarantee ensuring the same T , even a fragile XPath will
serve here.) The input program is one algorithm with two
subalgorithms. The first subalgorithm clicks on the node
identified by the XPath. If the click loads a new page, the
second subalgorithm runs on the new page. If the click does
not load a new page, the second subalgorithm runs on the
original page. By retrieving the current URL in the second
subalgorithm and comparing it with the pre-click URL, we
can determine whether the clicked node is reactive 1. The
subalgorithm only produces an output row if the URL has
indeed changed. For this stage, the output table again con-
tains one row per XPath, but now all rows that correspond
to non-reactive nodes have been removed.

Stage 3 takes the XPaths of all reactive nodes as input, and
runs each node addressing algorithm on each reactive node,
producing e expressions as output. The input table has one
row for each reactive node. The first column contains the
URLs at which those reactive nodes are found. The second
column has the XPaths of the nodes. The input program is
a set of algorithms, all the node addressing algorithms we
want to test. Each of these algorithms has only one subal-
gorithm, a JavaScript function that takes all input columns,
including the XPath, as its arguments. Each algorithm re-
turns an expression e. All the algorithms’ outputs together
form an output row. Thus the output table contains a col-
umn corresponding to each node addressing algorithm.

1Redirects and JavaScript-controlled target URLs make
clicking the only reliable way to collect post-click URLs.

Listing 1: Using the Dicer API to configure Dicer to run our
motivating example.

d = new Dicer(); // New framework instance.
d.startSession();
// Here urls.csv is a list of pages on which to run.
d.stage("collectXPaths.js","urls.csv","xPaths.csv");
// Below, the user strings together stages, using
// the results of stage 1 as the input for stage 2.
d.stage("filterXPaths.js","xPaths.csv","filteredXPaths.csv");
d.stage("saveNodes.js","filteredXPaths.csv","expressions.csv");
d.endSession();
d.startSession();
d.stage("retrieveNodes.js","expressions.csv","results.csv");
d.endSession();

Stage 4 tests the e expressions, so it takes the e expressions
as input. If we were to test the algorithms’ outputs — the
e expressions — in the same session, our results would be
rather boring. If T ′ = T , all algorithms should succeed on
T ′. Thus, we test the algorithms’ outputs in a new session,
so that pages are allowed to change. This stage runs one
algorithm per node addressing algorithm. Each algorithm
uses an e expression to find a node on the new page, and
then click on it. It produces the new post-click URL as
output. The new post-click URL can be compared with the
Stage 2 post-click URL to determine whether each algorithm
successfully identifies the corresponding node.

To run this experiment with Dicer, a user only needs the
JavaScript input programs described above, a list of URLs
on which to run the experiment, and the code in Listing 1,
which uses the Dicer API to set up the experiment.

3.3 The Design of Stage Output
Recall that a single input row may produce any number

of output rows. Also recall that we allow subalgorithms.
Together these features have the potential to complicate our
programming model. We keep the design simple and usable
by allowing only the final subalgorithm to produce output.

An alternative approach would allow all subalgorithms to
produce output. This is useful for cases in which earlier sub-
algorithms can access data that later subalgorithms cannot,
but it substantially complicates the programming model, be-
cause the outputs of different subalgorithms may vary in
number, and must somehow be stitched together to produce
complete output rows. Fortunately, algorithms that would
benefit from the more complicated programming model can
be refactored to adhere to our simpler one. For instance, re-
call that our motivating example needs to compare the URLs
before and after clicking on a node. The pre-click URL is
available during the first subalgorithm, but not during the
later subalgorithm. To complete this task in the simple pro-
gramming model, it is split into two stages. The first stage
stores the original URL, while the second clicks the link and
stores the second URL. Because this approach simplifies the
user’s experiment design experience, and because splitting
such tasks across stages is sufficient to make our approach
general, this is the design we have adopted.

We considered allowing all subalgorithms to produce out-
put, but requiring the user’s JavaScript subalgorithm code
to associate each slice of an output row with a row ID. All
cells in a row would share an ID. We believe that this require-
ment complicates the programming model, putting a burden
even on users with simple tests. We rejected this approach,
choosing to optimize for usability in the common case. An-
other alternative design would require that the number of
output rows be the same across subalgorithms, allowing the

1323

c1	

c2	

c3	

b1	
 a1	

a2	

c1	

c2	

c3	

b1	
 a1	

a2	

Figure 2: Different algorithms may return different numbers
of rows for a given input row. Here algorithms a, b, and c
produce 2, 1, and 3 outputs respectively. They are stitched
together to create output rows 1, 2, and 3.

Worker	
 Thread	
 …Worker	
 Thread	
 Worker	
 Thread	

HTTP	
 request	
 HTTP	
 response	

HTTP/HTTPS	
 request	
 HTTP/HTTPS	
 response	

WebDriver	
 WebDriver	
 WebDriver	

Web	

HTTP	
 request	
 HTTP	
 response	

SSL	
 Stripping	
 Proxy	
 Server	

Caching	
 Proxy	
 Server	

Figure 3: Dicer architecture. Dicer runs multiple workers
in parallel. Each worker owns a web driver — a browser
instance that can be controlled programmatically. The net-
work traffic goes through a caching proxy server.

framework to use ordering to align slices and produce the
full rows. A final option would allow each algorithm to pro-
duce only one output row per input row. We decided against
these last two designs because of how substantially they di-
minish the expressiveness of the model.

Although only one subalgorithm produces output, all al-
gorithms must be allowed to produce as many output rows as
desired, even if different algorithms produce different num-
bers of output rows for the same input row. Output slices
are stitched together based on the order in which they are
returned by the algorithms, as shown in Figure 2. This ap-
proach simplifies users’ code for the common cases in which
there is only a single algorithm, each algorithm returns only
a single row, or each algorithm returns the same number of
rows. However, it restricts the model’s expressiveness in one
scenario; if algorithms do not know the order in which other
algorithms will return their output rows, but still want to
achieve a particular alignment with each other, this design
will not be convenient. Experimenters with this use case
would be best served by an ID alignment approach like the
one described above for subalgorithms. Because of the bur-
den it places on simple experiments, we did not choose an ID
alignment model. However, advanced users can leverage or-
der alignment to simulate ID alignment by associating each
algorithm output with an ID, then emitting outputs in an
ID-defined order. Thus our design optimizes for usability in
the common case, but provides users enough flexibility to
handle the uncommon alignment case.

4. IMPLEMENTATION
The basic architecture of Dicer, illustrated in Figure 3, re-

volves around directing a set of worker threads, each of which
controls a browser instance. Their web traffic goes through
our custom proxy server, which implements a caching scheme
that upholds our same-page guarantee.

Source code for Dicer is available at https://github.com/

schasins/dicer.

4.1 The Dicer Library
We have implemented our framework as a Java library.

Users interact with the simple abstractions described in Sec-
tion 3.1, as in Listing 1. Because Dicer is implemented as a
Java library, users can interleave Dicer processing with other

Java processing as necessary — for instance to combine the
outputs of two stages into an input for another stage.

Dicer uses Selenium [3] to control browser instances. Head-
less WebKits were not sufficiently robust or reliable for our
domain. Prototype implementations of Dicer built on top of
PhantomJS [16] and Ghost.py [9] had respectively 0.6% and
12.4% rates of incorrect answers on a simple title extrac-
tion benchmark. In contrast, the Selenium implementation
yields 0 incorrect answers on the same benchmark.

Dicer automatically parallelizes experiments. It runs a
given input program across multiple input table rows in par-
allel. Also, Dicer can run multiple algorithms from a given
input program across each input row in parallel. The Dicer
programming model ensures that it is always correct to par-
allelize these components of an experiment. Dicer uses a
shared queue to distribute tasks across worker threads.

4.2 The Dicer Proxy Server
Enforcing our same-page guarantee requires controlling

for both non-determinism in the server and non-determinism
in the pages’ own JavaScript code.

4.2.1 Server-Level Non-Determinism
Dicer uses a caching proxy server to enforce the same-page

guarantee. It makes a new cache whenever a new session is
created and serves all recurring URLs from that cache until
the end of the session. All URLs, including URLs loaded
directly by Dicer, URLs loaded within iframes, and URLs
loaded via AJAX go through the proxy server.

Despite the preponderance of existing caching proxy
servers, none proved sufficiently configurable to meet Dicer’s
needs. Squid cache [19, 21] can be configured to ignore
some web cache policy parameters (e.g. ‘no-cache,’ ‘must-
revalidate,’ and ‘expiration’), but not others (e.g. ‘Vary’).
Thus, Squid will never cache any page with “Vary: *” in the
header. Apache Traffic Server [5] provides even less cache
configuration control. Other proxy servers can be configured
to ignore all caching policy parameters, but are too fragile
to be useful for large-scale experiments. Some can only han-
dle HTTPS traffic with restrictions. For instance, Polipo [7]
can be configured appropriately, but it is not very stable,
and cannot decrypt or modify HTTPS traffic.

To meet our framework’s demands, we implemented a cus-
tom caching proxy server. Dicer directs all request-response
traffic through our caching proxy server, and the caching
proxy server in turn directs all request-response traffic
through an SSL-stripping proxy server [13], as illustrated in
Figure 3. The SSL-stripping layer allows our proxy server to
handle HTTPS traffic. It decrypts responses from the origi-
nal servers and forwards the plain text to the caching proxy
server, as if they are HTTP responses. Thus, the proxy
server can freely modify the content of any response, even an
HTTPS response. This is critical to mitigating JavaScript
non-determinism, as discussed in Section 4.2.2.

Our custom proxy server stores every response into its
cache, ignoring all web cache policy parameters in the header.
When a framework browser instance requests a given URL,
it always elicits the same response from the server. The only
exception to the permanent caching rule addresses cyclic
redirects. Some pages use a cyclic redirect process, redi-
recting a request for URL X to URL Y (with a‘no-cache’
policy), and redirecting a request for Y to X, until eventu-
ally the originally requested X is ready, and the X response
is no longer a redirect. At this point, the response for X
contains the final page content that our cache should as-

1324

https://github.com/schasins/dicer
https://github.com/schasins/dicer

sociate with URL X. In this scenario, if neither X’s nor
Y ’s associated response can be altered, our system will loop
forever. Our server addresses this issue by maintaining a
redirect table and running a cycle check before recording
a redirect response. If the addition of the redirect response
would cause such a cycle, the server removes the pre-existing
cached response that produces the cycle.

4.2.2 JavaScript-Level Non-Determinism
Ensuring server-level determinism is not sufficient to offer

a same-page guarantee. Even if a given URL always retrieves
the same response, the page’s own JavaScript is a source of
non-determinism. Non-deterministic JavaScript may itself
modify the page, or may make new requests to the server.

The Mugshot project [14] identifies math.random and the
JavaScript Date class as the two JavaScript functions that
introduce non-determinism. Since their work, Navigation
Timing has been introduced and become prevalent, and is
now another substantial source of JavaScript non-
determinism. To prevent these sources of non-determinism
from undermining our same-page guarantee, our proxy server
inserts a script into all HTML responses. This script re-
places math.random with a deterministic, explicitly seeded
algorithm. During a given session, all pages receive the same
seed. The script also replaces the Date constructor, which
returns the current date, with a constructor that returns
the date at the beginning of the current session. Finally, the
script replaces window.performance with an empty dictio-
nary to handle variations in Navigation Timing.

Cookies are also a potential source of JavaScript-level non-
determinism, since they can change during an experiment.
Thus Dicer turns off cookie storage for its browser instances.

Note that these are not the only sources of non-
determinism in the browser. For instance, the browser’s
scheduler is non-deterministic. If multiple requests are out-
standing at once, or if a page’s JavaScript uses the
setTimeout function, scheduler non-determinism may cause
the page to diverge. However we find these ordering-based
sources of non-determinism have little effect in practice. (See
Section 5.1 for evaluation details.)

5. EVALUATION
In this section we evaluate how well Dicer upholds the

same-page guarantee, as well as the effect of the same-page
guarantee on framework execution time.

5.1 Same-Page Guarantee
To assess our framework’s same-page guarantee, we use

a data set of more than 200,000 DOM nodes — specifi-
cally, all nodes in the Alexa top 100 webpages. We load
each webpage twice in a single Dicer session and compare
DOMs. We observe the percentage of unmatched nodes with
no non-determinism control in place, with only server-level
non-determinism control in place, and with both server- and
JavaScript-level non-determinism control in place. We con-
sider a node matched if both its position in the DOM tree
and its text content is the same across loads.

Table 2 displays our results. Note that the failure to suf-
ficiently control for non-determinism may affect our results
in two ways. It may mean that a page times out in one
load but not another, or it may mean that a page is loaded
both times, but with different content. In Table 2, the “Pre-
Filtering” row reflects the percentages of unmatched nodes,
including nodes that are considered to be unmatched be-
cause a page times out during only one of its loads. The

No NDC S NDC S + JS NDC

Unmatched Pre-Filtering 17.7% 14.5% 0.1%

Unmatched Post-Filtering 7.4% 6.1% 0.1%

Table 2: The percentage of unmatched nodes across two
loads of the same pages when there is no non-determinism
control (No NDC), when only server non-determinism is
controlled (S NDC), and when both server and JavaScript
non-determinism is controlled (S + JS NDC). The “Pre-
Filtering” row includes nodes that go unmatched because
of non-deterministic timeouts.

0"

500"

1000"

1500"

2000"

2500"

100" 200" 300" 400" 500" 600" 700" 800" 900" 1000"

Ti
m
e%
in
%S
ec
on

ds
%

Pages%

Performance%Impact%of%Same4Page%Guarantees%

No"Same2Page"
Guarantees"

Same2Page"
Guarantees,"1st"Load"

Same2Page"
Guarantees,"2nd"Load"

0"

500"

1000"

1500"

2000"

2500"

0" 200" 400" 600" 800" 1000"

Ti
m
e%
in
%S
ec
on

ds
%

Pages%

No"Same/Page"
Guarantee"

Same/Page"
Guarantee,"1st"Load"

Same/Page"
Guarantee,"2nd"Load"

Figure 4: A comparison of the execution time in seconds
for runs with no same-page guarantee, first loads with the
same-page guarantee, and second loads with the same-page
guarantee, by the number of pages loaded.

“Post-Filtering” row reflects the percentage of unmatched
nodes after the removal of nodes from pages that timed out
in one of the loads. That is, the set of nodes is first restricted
to the nodes from pages that successfully loaded both times.
We then identify unmatched nodes in that restricted set.

When we control for both server- and JavaScript-level
non-determinism, as described in Section 4, only 0.1% of
nodes were unmatched. Also note that when both server-
and JavaScript-level non- determinism are controlled, non-
deterministic timeouts are eliminated. We conclude that
our approach to non-determinism control is sufficient for our
target domain. While we could obtain higher determinism
guarantees by building a custom browser with a determinis-
tic scheduler, this approach would sacrifice the performance
and external validity advantages of using a real production
browser. We leave heavyweight techniques with stronger de-
terminism guarantees for future work.

5.2 Performance Impact
To assess the overhead associated with upholding the same-

page guarantee, we compare loading time with and without
our caching proxy server in place. We consider both the
first loading time, at which point the proxy server must re-
trieve and store all responses, and the second loading time,
at which point it serves responses from the cache. We com-
pare the execution times of a simple title extraction bench-
mark on Alexa’s top 1,000 webpages [4].

Figure 4 reveals that the first load with the same-page
guarantee exhibits a 31.1% slowdown over loads without the
same-page guarantee. This is the overhead associated with
modifying and saving the retrieved pages, a cost incurred
for the first load of any URL. In contrast, the second load
with the same-page guarantee exhibits a 19.4% speedup over
loads without the same-page guarantee. This reflects the
performance benefits of caching.

Since the performance impact on first loads is manage-
able, and the performance of all future loads is better with
the same-page guarantee, we conclude that our framework’s

1325

execution times are well within the acceptable range. In
light of the fact that our proxy server has not yet been op-
timized for performance, we are satisfied that the cost of
upholding the same-page guarantee is low.

5.3 Motivating Example
We used Dicer to test five node addressing algorithms on

a dataset of 25,000 nodes. The results determined the node
addressing approach of a record and replay tool, Ringer [2].

6. RELATED WORK
Of the many existing tools for running JavaScript tests,

almost all are targeted towards web developers who want
to test their own pages, or even just their JavaScript. We
discuss the main subcategories of this class of tools.

We start with tools targeted towards web developers run-
ning unit tests. Jasmine [8] is one of the most prevalent
tools. While its ease of use makes it an excellent tool for
small-scale experiments, it lacks many of the characteris-
tics we desire for large-scale, general purpose web experi-
ments. First, its parallelization mechanism is quite limited.
Second, it uses a restrictive programming model, tailored
to offer pass/fail responses for each test. Third, it only
runs on locally constructed DOMs. The same restrictions
make projects such as QUnit [17], Mocha [15], and YUI Test
[12] unsuitable for large-scale experiments. In fact, QUnit,
Mocha, and YUI Test do not offer even the limited paral-
lelization that Jasmine provides.

Some tools, like Vows [10], offer parallelization, but are
aimed only at testing JavaScript. These typically run on
Node.js, which eliminates any DOM-interactive code from
their domains, and naturally any URL-loaded pages.

Finally we consider web automation tools, program-
controllable browsers like Ghost.py [9], PhantomJS [16], and
Selenium [3]. None of these is explicitly a testing frame-
work, so they do not offer convenient programming models
for large-scale experiments. Also, Ghost.py and PhantomJS
have no built-in parallelization. There is a variation on Se-
lenium, Selenium Grid [20], that does offer parallelization.
However, it is tailored for users who want to run the same
small tests on multiple browsers and on multiple operating
systems, usually to test a site’s browser compatibility, rather
than for users with many distinct results to collect as part of
a large-scale experiment. Ghost.py, PhantomJS, Selenium,
and other web automation tools like them, do all offer DOM
interaction, the ability to run arbitrary JavaScript code, and
the ability to load pages from URLs. However, in the case
of headless WebKits, we found that their limited robustness
reduced the ability to run arbitrary code.

All of the tools above lack a same-page guarantee. Ulti-
mately most tools, being targeted towards developers, are
intended for users who know their test pages will stay the
same, or know how they will change. This makes them gen-
erally unsuitable for broader web experiments.

7. CONCLUSION
To this point, no JavaScript testing framework has been

targeted at helping users test their web algorithms in con-
trolled experiments. This paper has presented a testing
framework for running large-scale, DOM-interacting con-
trolled web experiments. It handles test parallelization, and
permits users to run arbitrary DOM-interacting code on real
webpages. Most importantly, it is the first framework to of-
fer a same-page guarantee. This guarantee allows users to

control for the fact that webpages change over time, in or-
der to conduct fair experiments. Further, our framework’s
caching proxy server offers a better same-page guarantee
than any existing proxy server. We believe that our frame-
work represents an important step in web algorithm test-
ing, bringing controlled web experiments within reach of
a wider population. As the need for web-processing algo-
rithms grows steadily greater, tools like this framework will
help programmers handle the rapid and constant evolution
of their webpage inputs, enabling them to build robust, em-
pirically validated web algorithms.

8. ACKNOWLEDGEMENTS
This work is supported in part by NSF Grants CCF-

1018729, CCF-1139138, CCF-1337415, and CCF-0916351,
NSF Graduate Research Fellowship DGE-1106400, a grant
from DOE FOA-0000619, a grant from DARPA FA8750-14-
C-0011, and gifts from Mozilla, Nokia, Intel and Google. Ad-
ditional thanks to John Kubiatowicz and Anthony Joseph.

9. REFERENCES
[1] Browser scripting, data extraction and web testing by

iMacros. http://www.iopus.com/imacros/.
[2] sbarman/webscript.

https://github.com/sbarman/webscript.
[3] Selenium-web browser automation.

http://seleniumhq.org/.
[4] Alexa. Alexa top sites. http://www.alexa.com/topsites.
[5] Apache. Apache traffic server.

http://trafficserver.apache.org/.
[6] Michael Bolin, Matthew Webber, Philip Rha, Tom

Wilson, and Robert C. Miller. Automation and
customization of rendered web pages. UIST ’05.

[7] Juliuz Chroboczek. Polipo: A caching web proxy. http:
//www.pps.univ-paris-diderot.fr/~jch/software/polipo/.

[8] Jasmine. Jasmine introduction-1.3.1.js.
http://pivotal.github.io/jasmine/.

[9] Jeanphix. ghost.py. http://jeanphix.me/Ghost.py/.
[10] Vows JS. Vows - asynchronous BDD for node.

http://vowsjs.org/.
[11] Gilly Leshed, Eben M. Haber, Tara Matthews, and

Tessa Lau. Coscripter: automating & sharing how-to
knowledge in the enterprise. CHI ’08.

[12] YUI Library. Test - YUI library.
http://yuilibrary.com/yui/docs/test/.

[13] Moxie Marlinspike. New tricks for defeating SSL in
practice. Presented at BlackHat, 2009.

[14] James Mickens, Jeremy Elson, and Jon Howell.
Mugshot: deterministic capture and replay for
JavaScript applications. NSDI’10.

[15] Mocha. Mocha - the fun, simple, flexible JavaScript
test framework. http://visionmedia.github.io/mocha/.

[16] PhantomJS. PhantomJS | PhantomJS.
http://phantomjs.org/.

[17] QUinit. QUnit. http://qunitjs.com/.
[18] Selenium. Selenium IDE plugins.

http://www.seleniumhq.org/projects/ide/.
[19] SquidCache. Squid: Optimising web delivery.

http://www.squid-cache.org/.
[20] ThoughtWorks. Selenium grid.

http://seleniumgrid.thoughtworks.com/.
[21] Duane Wessels and K. Claffy. ICP and the Squid Web

Cache. IEEE JSAC, 16:345–357, 1998.

1326

http://www.iopus.com/imacros/
https://github.com/sbarman/webscript
http://seleniumhq.org/
http://www.alexa.com/topsites
http://trafficserver.apache.org/
http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/
http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/
http://pivotal.github.io/jasmine/
http://jeanphix.me/Ghost.py/
http://vowsjs.org/
http://yuilibrary.com/yui/docs/test/
http://visionmedia.github.io/mocha/
http://phantomjs.org/
http://qunitjs.com/
http://www.seleniumhq.org/projects/ide/
http://www.squid-cache.org/
http://seleniumgrid.thoughtworks.com/

	Introduction
	Goals
	Motivating Example

	Programming Model
	Abstractions
	Motivating Example Experiment
	The Design of Stage Output

	Implementation
	The Dicer Library
	The Dicer Proxy Server
	Server-Level Non-Determinism
	JavaScript-Level Non-Determinism

	Evaluation
	Same-Page Guarantee
	Performance Impact
	Motivating Example

	Related Work
	Conclusion
	Acknowledgements
	References

