
Search Query Categorization at Scale

Michal Laclavík
Magnetic Media Online

122 West 27th Street, 7th floor
New York, NY 10001

laclavik@magnetic.com

Marek Ciglan
Magnetic Media Online

122 West 27th Street, 7th floor
New York, NY 10001

marek@magnetic.com

Sam Steingold
Magnetic Media Online

122 West 27th Street, 7th floor
New York, NY 10001

sam.steingold@magnetic.com

Martin Šeleng
Institute of Informatics

Slovak Academy of Sciences
Dúbravská cesta 9, Bratislava
martin.seleng@savba.sk

Alex Dorman
Magnetic Media Online

122 West 27th Street, 7th floor
New York, NY 10001

alex@magnetic.com

Štefan Dlugolinský
Institute of Informatics

Slovak Academy of Sciences
Dúbravská cesta 9, Bratislava
stefan.dlugolinsky@savba.sk

ABSTRACT
State of the art query categorization methods usually ex-
ploit web search services to retrieve the best matching web
documents and map them to a given taxonomy of categories.
This is effective but impractical when one does not own a
web corpus and has to use a 3rd party web search engine API.
The problem lies in performance and in financial costs. In
this paper, we present a novel, fast and scalable approach
to categorization of search queries based on a limited inter-
mediate corpus: we use Wikipedia as the knowledge base.
The presented solution relies on two steps: first a query is
mapped to the relevant Wikipedia pages; second, the re-
trieved documents are categorized into a given taxonomy.
We approach the first challenge as an entity search problem
and present a new document categorization approach for the
second step. On a standard data set, our approach achieves
results comparable to the state-of-the-art approaches while
maintaining high performance and scalability.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]; H.3.1
[Content Analysis and Indexing]; H.3.3 [Information
Search and Retrieval]

Keywords
query categorization; search; indexing; Wikipedia

1. INTRODUCTION
Query categorization (QC), or query classification, is a

task of identifying user search intent based on a submitted
query and mapping it to predefined categories. Query cat-
egorization can be used for several applications; the most
notable one is, probably, online advertising. In the online

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741995.

advertising domain, the QC can help capture user interests
and improve user modeling, which in turn can lead to an
increase in precision of user targeting with ads relevant to
their interests and needs. The motivation for this work came
from the domain of search retargeting, a form of targeted
advertising where the audiences are modeled based on the
search queries users conduct on websites they visit. By mod-
eling user interests, the query retargeting has the ability to
find new customers, who never visited a marketer’s website
before. Search retargeting focuses on displaying advertise-
ments to users who conducted searches for specific keywords
or categories in the past. For this domain, QC is the essen-
tial technique for user modeling and better user targeting.

The task of query categorization is quite intricate. One
has to map a short string, representing a query, to another
short string, representing a category, while the two strings
usually have only marginal lexical similarity or none at all.
For this reason, the common approach is to extend both
queries and the categories by gathering additional informa-
tion, richer in textual content. The richer textual repre-
sentations are then compared. The most popular method
to gather additional data for queries is to retrieve results
a web search engine yields for the given query. The docu-
ments and, possibly, categories retrieved by the web search
are then compared with representations of target categories.
When one does not own a large web crawler covering a sig-
nificant part of the web (an asset only a few organizations
have), the only option is to use an API of a web search prod-
uct. This approach is impractical due to the financial costs
and for performance reasons.

Meanwhile, companies focusing on search retargeting
gather large numbers of user-generated queries that need to
be categorized, on the order of thousands of queries per sec-
ond. This challenge really needs a scalable and fast approach
independent of a web search engine API. The research ques-
tion we try to address is whether we can use a relatively
small (compared to a web corpus), off-line corpus as a means
of information extension and still retain results competitive
with the methods relying on the Web as a corpus. Wikipedia
is suitable as the intermediate corpus because it is relatively
small (under 40 GB of text) and has a very broad coverage.
The proposed solution relies on two steps:

1. Extend search query with information from Wikipedia.
2. Map extended query data to pre-defined categories.

1281



We approach the first task, the query extension, as an
entity search problem. A search query is mapped to Wiki
pages and then results are enriched with data from semantic
knowledge bases DBPedia and Freebase. These pages are
then classified based on the given taxonomy.

Main contributions of the paper are following:
• We propose a query categorization approach that uses

limited data resources and is scalable, while achiev-
ing quality of results competitive with state-of-the-art
approaches that use the entire web as a corpus for in-
formation extension.
• We approach the challenge of the query information

extension as an entity modeling and search problem.
This part is not in the scope of this paper and is cov-
ered in the write-up [6] from the ERD challenge focus-
ing on entity recognition in search queries, where we
participated and achieved high scores.
• We propose a text classification method, which defines

categories by representative n-grams with scores. N-
grams are derived by reusing human knowledge en-
coded in Wikipedia articles using the Wikipedia link
graph. Subsequently we are using a simple N-gram
matching technique to categorize text.

The paper is structured as follows. Section 2 summarizes
scholarly works related to the search query categorization
task. We outline the proposed solution in Section 3. Details
from query and corpus modeling are covered in [6] and we
give a short overview in Section 4. The novel document
categorization and its impact on query categorization is the
main part of paper and is described in Section 5, where we
study the effects of different options of the categorization
process on the end-to-end results quality. We evaluate the
scalability of the proposed solution in Section 6.

2. RELATED WORK
Most of related scholarly works were triggered by the

ACM KDDCUP 2005 competition1, which was focused on
query categorization. The goal of the challenge was to cat-
egorize provided queries into 67 categories, organized as a
two-level taxonomy2. A subset of 800 queries was manually
categorized by three human labelers, providing a test set
for the task evaluation. It is worth mentioning the findings
reported in [10], where each labeler was evaluated against
the other two labelers, which showed that average value was
50.9% F1 and 52.6% Precision. This indicates that QC is
a hard task for humans as well, thus results achieved with
automated systems can hardly be better.

The winning solution of the KDDCUP 2005, by Shen et
al [9], achieved 41.4% precision and 44.4% F1 score. The
same authors later improved the method in [10] achieving
43% precision and 46.1% F1 score in the best run. This
is currently the best known result on the 2005 KDDCUP
data set, using search engine, intermediate taxonomies and
SVM-based classification. Similar results, with 46% of F1,

1http://www.kdd.org/kdd-cup-2005-internet-user-
search-query-categorization
2In practice, our taxonomy is based on several publicly avail-
able taxonomies (e.g., IAB), adapted to the business needs
of search retargeting (i.e., who we want to advertise to) as
well as the actual query distribution (i.e., we tried to avoid
empty and overly abundant categories), which resulted in
just over 400 categories organized in 3 levels. The experi-
ments in this paper, however, use the KDD taxonomy.

are reported in [2] using queries logs from a web search en-
gine and documents retrieved by the web search. All of these
best-performing solutions use the entire Web as a corpus via
a search engine or search engine logs. Such an approach can
work well for web search companies, who have a web search
engine at hand. Unfortunately, it is slow and costly when
using a web search engine over a paid API. Another re-
cent work [11] claims significant improvements over existing
approaches, using an interesting approach of learning from
Dmoz categories. On the KDD CUP dataset it achieves high
Precision of 59.5% but with a very low F1 of 33.1%. Again
the entire web was used as corpus for query categorization.
All these approaches focus on mapping retrieved documents
to categories treating it as a text categorization problem
via machine learning, intermediate taxonomies or document
classification, but leave query modeling, which is a large part
of the query categorization task, up to web search engine.

Several works modeled queries using Wikipedia. In [4],
Wikipedia data (text, link graph) are used to model user’s
query intent. However, the query intent is evaluated only
on 3 categories, achieving quite high scores running in bi-
nary mode, where the algorithm decides if a query falls in
a category or not. It is not clear how it would behave on
a larger taxonomy. Another work [5] uses Wikipedia as a
corpus for the query categorization task, utilizing the infor-
mation retrieval approach based on a vector space model,
but the method achieved only 32.2% F1 on KDDCUP data.

3. QUERY CATEGORIZATION USING IN-
TERMEDIATE CORPUS

Our hypothesis was that a large number of the queries can
be answered to some extent by Wikipedia to get an under-
standing of query categories. There are, of course, queries
not covered by the Wikipedia content, e.g. some company or
product names. We have considered other data sources such
as Freebase and DBPedia. We use semantic information
from both knowledge bases to enrich Wikipedia concepts.
Namely, we exploit Freebase and DBPedia types (ontologi-
cal hierarchy of categories) associated with concepts.

Our solution relies on two high level steps:
1. We extend the query with the information from

Wikipedia corpus, by mapping the query to relevant
Wikipedia concepts.

2. We map Wikipedia concepts associated with the query
to items in the taxonomy.

For the first step, the extension of query information, we
took inspiration from scholarly works on entity search and
we treat the challenge as an entity search problem and we
successfully turned queries to Wikipedia entities by partic-
ipating in the 2014 Entity Recognition and Disambiguation
Challenge3. We have participated in the Short Track of the
challenge, which focused on recognizing mentions of entities
in search queries, disambiguating them, and mapping them
to the entities in a given knowledge base. In the ERD, our
system was evaluated as the 4th best, with an F1 score of
65.57%4. Recognizing Wikipage concepts in queries is a first
step of our QC solution.

The second step of the approach is concerned with map-
ping Wikipedia concepts associated with a query to target
categories. Each category in the input data set is repre-

3http://web-ngram.research.microsoft.com/erd2014/
4http://tinyurl.com/ShortTrackERD14

1282



sented by a short string with very limited information con-
tent. Thus, we extend category strings with information
from the Wikipedia. For each category, we select several
representative Wikipedia pages related to the given category.
Having enriched query and categories with Wikipedia docu-
ments, we basically need to solve a document categorization
problem. We have evaluated multiple techniques, including
tf-idf similarity, LSI [8] and a gazetteer-based classification.
We discuss the second step in detail in Section 5.

4. MODELING QUERY WITH CORPUS
DOCUMENTS

In this section, we briefly describe the process of enrich-
ing a query with the data from the intermediate corpus. As
already mentioned, we have used Wikipedia instead of the
entire Web and we have created an entity search solution
based on Wikipedia, Freebase and DBPedia data which is
described in [6]. To summarize this approach, we built a
search index using the Lucene library, where each document
is a Wikipedia article broken into a variety of fields such as
title, alternative names, links, abstract, or categories from
Wikipedia, Freebase and DBPedia. There are 17 fields used
altogether. Each query is searched in the index, and subse-
quent post-processing is done to eliminate and disambiguate
candidates. Post-processing uses Wikipedia link graph and
alternative names mapping. For Example, the query “total
recall schwarzenegger” is modeled as several Wikipage docu-
ments including two Total Recall movies, and several people
with the Schwarzenegger surname, but the final output of
the algorithm is Arnold Schwarzenegger5 and Total Recall6

Wikipages, which are then categorized.
In addition to representing queries by Wikipedia entities,

which is achieved by our entity search approach [6], we also
detect n-grams representing categories directly in queries.
The majority of queries misinterpreted by our initial ap-
proach are type queries (according to the terminology used
in [7]), as they contain terms strongly associated with a cat-
egory (e.g. “Louisiana state jobs” or “funny videos”). The
“type queries” require a different approach, as the standard
“entity search” approaches often fail to get the correct re-
sults. The type queries state their “type” directly – they
contain terms characteristic of a category within the query
itself. Those queries are quite easily categorized by using
simple matching of keywords characteristic of distinct cat-
egories, when good keywords (n-grams) are available. We
describe how we generate good n-grams to represent cate-
gories in section 5.2.

The impact of detecting n-grams directly in query is shown
in Figure 1. To give a concrete example, consider the “total
recall movie” query. Here we would simply detect the query
category by noticing the “movie” n-gram, which is strongly
related to the “Entertainment/Movies” category.

4.1 Algorithm Specification
In this section, we describe the algorithm for combin-

ing search result scores of Wikipedia entities representing
queries. When “Arnold Schwarzenegger” and “Total Re-
call” are found for the “total recall schwarzenegger” query,
we categorize them and get categories with scores for each
Wikipage document, which need to be combined to return

5http://en.wikipedia.org/wiki/Arnold_Schwarzenegger
6http://en.wikipedia.org/wiki/Total_Recall

the query category. (We combine n-grams in the categoriza-
tion process the same way).

Given a query q, we search for it in the corpus, producing
matching documents D and similarity scores s > 0. Each
document D is assigned to categories c with probabilities p.
We assign categories to the query as follows.

We start with filtering the set of matching documents for
the each query by discarding all the matches which have a
similarity score below the square root of the best similarity
score to reduce the number of returned documents.

Next, we treat the similarly scores s > 0 as if they were
odds and interpret them to mean P(R(q,D)) = s/(1 + s)
where P is probability and R(q,D) means that query q is
related to the document D.

We also assume that the matching of queries and docu-
ments is probabilistically independent from the assignment
of documents to categories, therefore

P(A(q, c)) = 1−
∏
D

(1− P(R(q,D))P(A(D, c))) (1)

where P(A(x, c)) is the probability that entity (query or doc-
ument) x should be assigned to category c.

Note that adding an extra document, which is either un-
related to q (i.e., P(R(q,D)) = 0), or should not be assigned
to c (i.e., P(A(D, c)) = 0), to the product above does not
change the value of the product, so the result is well-defined.

5. DOCUMENT CATEGORIZATION
Our approach relies on modeling a user query with

Wikipedia concepts and subsequently classifying text doc-
uments associated with given Wikipedia concepts to target
categories. For the document classification (DC), we have
evaluated several different approaches:

1. classical DC approaches (tf, tf-idf, LSI),
2. DC based on n-grams characteristic for categories,
3. taxonomy bridging (mapping DBPedia and Freebase

entity types to target categories.)

5.1 Exploiting vector-based similarities
Document categorization is a well studied field of com-

puter science. We have evaluated several standard methods
used in the literature for the document classification task
in our problem domain. We have built a vector represen-
tation of documents and we have used the cosine similarity
to determine the document-to-document similarity. We ex-
perimented with a) term frequency (tf) vectors, b) tf-idf
vectors, c) topical vectors generated by latent semantic in-
dexing (LSI) [8].

We need to compute a similarity of a given text to a cate-
gory from a given taxonomy. We have to represent categories
by other, richer means than category name. In this work
we represent categories by Wikipedia articles. We manu-
ally assigned representative Wikipedia articles to distinct
categories; we will refer to articles assigned to a category as
“category seed documents”. This labor-intensive process can
be assisted by exploiting the Wikipedia index search. It is a
one-time job (for each taxonomy) and the time required for
manual assignment is not prohibitive (e.g. for a taxonomy
size similar to the one used in KDD CUP 2005 data set – 67
categories7 – the job can be done in under two hours). For
example, for the Computers/Mobile Computing category we

7http://ikt.ui.sav.sk/research/QC/KDD_wikipedia.txt

1283



have assigned the following seed Wikipedia articles: Mobile
computing ; Smartphone; Mobile phone; Camera phone.

The text of “Wikipedia seed articles” was used as a text
representing categories in our experiments with standard
categorization methods (tf, tf-idf, LSI). To categorize an in-
put text into a given taxonomy, we first transform the text
to its vector representation. Then, we compute the similar-
ity of the text vector to vectors of representative category
documents. Categories related to the top-scoring vectors are
considered to be the categories related to the input textual
content. We have used tf, tf-idf and LSI vectors to represent
texts as vectors. We did not directly evaluate the Wikipedia
page categorization; rather we measured the effect of differ-
ent categorization approaches on the overall QC process.
With all three evaluated methods, we were achieving results
lower than 30% for the F1 score.

5.2 Representing Categories by Keywords
Methods described in the previous section operate on the

level of terms, single words. To capture richer information
from the input text, we were looking for an option that
would exploit term n-grams. We use the term n-gram to
denote an ordered sequence of words commonly used to-
gether to denote or describe a concept. The underlying idea
is that n-grams represent categories much better than sin-
gle words contained in an n-gram; e.g. presence of 2-grams
“real estate” or “human rights” represents particular cate-
gories very well, while being very generic when used as sin-
gle keywords. Additionally, n-grams can be used to detect
the category directly from the query. The principal chal-
lenge is how to obtain n-grams that are representative for
a given category. In our previous work [1], we extracted
n-grams from Wikipedia using the indexing and search ap-
proach, and categorized documents into DBPedia categories.
Here, we propose a new way of extracting n-grams based on
Wikipedia link similarity and utilizing them for document
categorization. As discussed in the previous subsection, we
have manually assigned “seed Wikipedia pages” to all cate-
gories, which provided us with a rich textual representation
of categories. Our initial approach was to use existing key-
word extraction tools to mine the representative keywords
and n-grams directly from the text. However, we were not
able to achieve results competitive with methods discussed
in the previous subsection.

Instead of extracting representative keywords and n-
grams from the text, we have turned to the link-graph of
Wikipedia. The link graph represents the structure formed
by the hyperlinks between Wikipedia articles. A link usu-
ally denotes a relationship between the two linked concepts.
In fact, it encodes human knowledge on the relation of the
given concept with the rest of the content in the Wikipedia.
We have generated the set of concepts related to the seed
concepts of a category as follows:
• For a seed article A, we construct a set of concepts

s(A) that A links to.
• Based on the DBPedia and Freebase categories, we

remove from s(A), all the concepts of the types: Lo-
cation, Person, Organization and Work (this resulted
in fewer n-grams and had none or minor impact on re-
sults; additionally, Location-based similarity was mis-
leading).
• For all remaining members of s(A), we compute the

cosine similarity with the concept A, where we use

link adjacency as vectors for the computation. The
computed value is used as a concept similarity score
to the target category.
• We construct a list of pairs < name, score >, where

name (n-gram keyword) is the name of the Wikipedia
concepts and score is value of its cosine similarity with
a seed category concept.
• We extend the list by the alternative names (defined

by titles of Wikipedia redirect pages pointing to the
concept) of each concept.

An example of a small portion of a list produced for cate-
gory Computers/Mobile Computing is provided below. The
score 1.0 indicates that the concept has been assigned as a
seed concept (in this case 4 seed articles have been assigned).
The rest of the concepts are derived from the neighborhoods
of the seed concepts in the Wikipedia link graph. The score
is the value of the cosine similarity of the adjacency vectors.
(The example provided below does not contain list extension
by alternative names of the concepts.)

Computers/Mobile Computing
Mobile computing 1.0
Mobile phone 1.0
Smartphone 1.0
Camera phone 1.0
Mobile operating system 0.3413
Feature phone 0.2679
Android (operating system) 0.2098
...

In this way, we have generated a list of keywords and n-
grams related to different categories. Such an approach al-
lows us to unlock knowledge encoded in Wikipedia to rep-
resent categories by meaningful n-grams with probability
scores. Based on the produced data set, we have devel-
oped a simple classification algorithm, described in the next
section.

5.3 Text Classification Procedure
Our classification method consists of applying the algo-

rithm described in section 4.1 to n-grams instead of queries,
followed by combining the n-gram categories into the query
categories, and then filtering out low probability categories.

5.3.1 Combining Categories
We assign a query to a category if we assign any of its

n-grams to the category. This means that, as in (1),

P(A(q, c)) = 1−
∏
g

(1− P(A(g, c))) (2)

Observe that if a category cannot be assigned to any n-gram
(i.e., ∀g P(A(g, c)) = 0), then P(A(q, c)) = 0, and if we are
certain of an assignment of an n-gram to a category (i.e.,
∃g P(A(g, c)) = 1), then P(A(q, c)) = 1.

Note that the same formula (2) is used to combine cat-
egories from Freebase and DBPedia with the n-gram cate-
gories (see section 5.4).

Implementation Remarks: The approach for n-gram
matching is a simple gazetteer-based solution used in in-
formation extraction. We have used an implementation
based on an in-memory char-tree, where all n-grams were
loaded into memory creating an efficient character-tree
structure [3]. This allowed us to have linear performance
in n-gram detection in text, where we read text representing
the Wikipedia article only once, firing detected n-grams and
categories represented by a score.

1284



Table 1: Evaluation of Solution on Wikipedia index
with various approach for Categorization

TF
Cos-
Sim

Tf-
idf
Cos-
Sim LSI

DB,
FB

n-gs
text

n-gs
sent.

n-gs
abst.

n-gs
abst.
&

type
DB
FB

P 15.1 27.0 17.7 33.7 31.4 34.2 33.7 45.9 46.7
R 24.3 31.6 29.4 30.4 41.5 38.7 40.7 35.1 41.8
F1 18.4 28.8 21.8 31.6 35.5 36.0 36.6 39.5 43.8

5.4 Mapping different categorization schemes
In addition to n-gram keywords, we have also provided

a manual mapping of DBPedia and Freebase categories
to KDD categories. For example, we have mapped DB-
Pedia Celebrity or MusicalArtist category into Entertain-
ment/Celebrities category. We have experimented with doc-
ument categorization also using these mappings alone or in
combination with n-gram keyword categorization. Results
are combined by applying the same formula (2) as when
combining scores of detected n-grams or categories of search
results. Experiments are described in the next section.

5.5 Evaluation of Categorization
In this section, we evaluate various categorization algo-

rithms and their settings in the context of the whole QC
process. We discuss how different options influenced the
quality of results. We summarize results of different tested
document categorization approaches in Table 1 and visualize
them in Figure 1. In Table 1, the first three columns show
cosine similarity of 1) term frequency (TF) vectors, 2) Tf-
Idf vectors, and 3) LSI vectors, when applied in our query
categorization process (methods described in Section 5.1).
Categories were represented as text of relevant Wikipedia
articles. With TF vectors, results were quite low; with Tf-idf
we have reached almost 29% for the F1 score. Surprisingly,
the usage of LSI vectors yielded quite low scores as well. The
fourth column of Table 1 shows the results of categorizations
using the manual mapping of DBPedia and Freebase cate-
gories to KDD categories (the method is described in the
previous section 5.4). F1 was almost 31%, which is better
than evaluated text categorization techniques. The highest
score was achieved when using the n-gram matching tech-
nique (with automatically generated keywords and n-grams,
process described in Section 5.2). We believe this is mainly
because the n-grams were identified based on the human
knowledge encoded in the Wikipedia topology.

We have tested suitability of various representations of
Wikipedia pages for the categorization task. In Table 1 and
Figure 1, we can see evaluation of various n-gram matching
settings, where we have tested categorization on the text of
whole Wikipedia articles, the first sentence of an article or
the article abstract. The best results were achieved with
article abstract. Using the whole Wikipedia page text gave
us sometimes misleading results. The inclusion of larger
content often brings more noise and marginally related top-
ics are often detected. For example, a document about a
person might be categorized within the Football category,
while the person’s main occupation has nothing to do with
football. This can happen just because the Wikipedia ar-
ticle mentions that the person was playing football for the
college where he studied. We have tried to use just the
first sentence of Wikipedia articles. This approach did not

F1
Precision

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

CosSim
WikiText

Tf−Idf
WikiText LSI DBPedia,

Freebase
N−grams,

text

N−grams,
first

sentence

N−grams,
abstract

N−grams,
abstract,

type
query

FB DB

Figure 1: Various categorization approaches

work especially well; the main reason being that often the
first sentence contained very little information. This is why
we have ended up using Wikipedia abstracts, achieving bet-
ter results compared to a full article text or just the first
sentence. The “type query” approach of the query under-
standing workflow was turned on in the n-gs abst & type

column. The important fact is that the results of the process
for generating characteristic n-grams for categories can also
be exploited for “type query” of the query understanding
workflow. The n-gs abst & type column of Table 1 shows
the score where we have used generated category n-grams for
document classification and also for the type query mapping
(detecting category-related n-grams directly in query). This
led to further improvements in the F1 score. With n-gram
categorization techniques we have reached 39.49% of F1 on
the KDD dataset. Since we have also done manual map-
ping of Freebase and DBPedia categories, we have tested
how they can be used in improving categorization results.
We have combined the n-gram matching technique with the
taxonomy mapping technique. The results are summarized
in last columns of Figure 1 and Table 1. We have used DB-
Pedia and Freebase (DB/FB) categories only for a limited
number of categories that could not be detected well by the
automatically generated n-grams. E.g., n-gram based clas-
sification did poorly for identification of the Celebrity cat-
egory; whereas DBPedia/Freebase categorization was very
helpful for this particular category. Similarly, the usage of
DBPedia/Freebase categorization yielded very good results
for Shopping, Travel and Local & Regional categories.

We have used a mapping limited to a small subset of cat-
egories for which the n-gram matching solution performed
poorly. With the limited category mapping, we have al-
most achieved 44% F1 score. This result is comparable with
state-of-the-art approaches that use the whole web as the
intermediate corpus. We also provide the data from our ex-
periments and model used on the paper support page8, to
facilitate reproducibility of the experiments.

6. SCALABILITY
The goal of the presented research effort was to provide

a query categorization approach that would deliver decent
results and would be scalable to process thousands of queries
per second.

We tested the speed and scalability of our solution. Eval-
uation was done on a single machine with the following con-
figuration: Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz; 2x6
cores processors; 32GB RAM. We have used the popular

8http://ikt.ui.sav.sk/research/QC/

1285



5 10 15 20

50

100

150

200

qu
er

ie
s 

pe
r s

ec
on

d

threads

Figure 2: QC scalability with multiple threads

information retrieval library Apache Lucene to create and
interact with the index of the intermediate corpus. The in-
dex was loaded in memory to avoid costly disk operations.
The developer version of our Wikipedia index has about
14 GB, when all information for on-line categorization is
stored in the index (by online categorization we mean cat-
egorizing Wikipedia pages on the fly, when retrieved from
the index). A production index with pre-computed cate-
gories was smaller in size, taking about 8.5 GB; it can be
loaded in memory on a standard machine.

When running QC in a single thread, one query is catego-
rized in about 37 milliseconds. With a number of threads,
it scales almost linearly with number of available cores. We
have evaluated the solution with up to 24 threads, since we
have 12 physical cores with hyper-threading. In Figure 2
we summarize the results. It shows that Lucene scales well
and can categorize about 230 queries per second on a ma-
chine with 2x6 cores when running on a number of threads
a bit higher than the number of cores. For an experiment
with a query log containing 3,000 unique queries and with
14 threads, one query is categorized in 4.3 milliseconds. We
have also evaluated the solution on 1 million queries taken
from AOL query logs9, where some queries are repeated. We
have run experiments on the same machine with 14 threads.
One million queries were categorized in 57 minutes, so one
query was categorized in 3.41 milliseconds. The presented
approach could handle about 293 queries per second.

When this approach was deployed in production using
Apache Solr, it was able to categorize in average 400 queries
per second on one server. When combined with a Varnish
caching server, it stabilized at around 2,500 queries because
of repeating queries in real workloads. Additional boxes can
be added to scale it horizontally.

7. CONCLUSION AND PERSPECTIVE
In this paper, we describe a fast and scalable method for

search query categorization. While the best performing so-
lutions use the entire web as a corpus, we proposed a so-
lution based on simple information retrieval methods using
Wikipedia as a corpus for query categorization, and cate-
gories represented using scored n-grams. The F1 score of
our method is 5.1% lower than the best known approach
(43.76% ours; 46.1% the best) but with an 8.4% increase
in precision (46.63% - ours; 43% - the best). While web
search-based approaches can be applied effectively by sev-
eral major companies, our approach is fast and scalable with
limited data resources

The main contributions lie in: 1) scalability 2) apply-
ing entity search on QC task, where query is modeled by
Wikipedia instead of entire web, as well as 3) novel n-gram

9http://jeffhuang.com/search_query_logs.html

categorization method, where n-grams are detected based
on human knowledge encoded in Wikipedia.

In real settings, we categorize 3 types of searches: natural
searches, navigational searches, and page keywords. In On-
line Advertising, it is important to serve relevant ads and
not waste resources or upset users by irrelevant ads. This is
why the algorithm is tuned to higher Precision, above 70%,
in production, even when reaching lower Recall. Wikipedia
does not cover all topics well, but it still contains a huge
amount of human knowledge, including well known prod-
ucts and brands. Even when a search contains entities not
covered in Wikipedia, the query often contains keywords
related to generic Wikipedia concepts or n-grams directly
related to category, which can still be categorized well. For
under-performing domains the knowledge base can be ex-
tended with additional sources. An example of well-covered
domain in Wikipedia is Automotive, where we are able to
categorize queries with both Precision and Recall over 90%.

8. ACKNOWLEDGMENTS
This work is supported by Magnetic and by projects:

VEGA 2/0185/13, CLAN APVV-0809-11, FP7-284984. We
would like to thank Tom Comerford for editing the paper.

9. REFERENCES
[1] M. Ciglan, M. Laclavik, and A. Dorman. Reusing

knowledge hidden in wikipedia for scalable text
categorization. In Proceedings of WSDM Workshops:
WSCBD, WSDM’14 Workshops, 2014.

[2] E. Diemert and G. Vandelle. Unsupervised query
categorization using automatically-built concept
graphs. WWW ’09, pages 461–470, 2009.

[3] S. Dlugolinsky, G. Nguyen, M. Laclavik, and
M. Seleng. Character gazetteer for named entity
recognition with linear matching complexity. In
Proceedings of WICT, WICT’13, pages 364–368, 2013.

[4] J. Hu, G. Wang, F. Lochovsky, J.-t. Sun, and Z. Chen.
Understanding user’s query intent with wikipedia.
WWW ’09, pages 471–480, 2009.

[5] M. Kouylekov, L. Dini, A. Bosca, and M. Trevisan.
Wikipedia-based unsupervised query classification. In
IIR, pages 116–119, 2013.

[6] M. Laclavik, M. Ciglan, A. Dorman, S. Dlugolinsky,
S. Steingold, and M. Šeleng. A search based approach
to entity recognition: Magnetic and iisas team at erd
challenge. In Proceedings of the ERD ’14, pages 63–68,
New York, NY, USA, 2014. ACM.

[7] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc object
retrieval in the web of data. WWW ’10, pages
771–780, 2010.

[8] R. Rehurek. Subspace tracking for latent semantic
analysis. ECIR’11, pages 289–300, 2011.

[9] D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin,
and Q. Yang. Q2c@ust: Our winning solution to query
classification in kddcup 2005. SIGKDD Explor.
Newsl., 7(2):100–110, Dec. 2005.

[10] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. Building
bridges for web query classification. In Proceedings of
SIGIR Conference, SIGIR ’06, pages 131–138, 2006.

[11] P. V. Ullegaddi and V. Varma. Learning to rank
categories for web queries. CIKM ’11, pages
2065–2068, 2011.

1286




