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ABSTRACT 
We present a new algorithm for recommending alternatives to a 
given item in an e-commerce setting. Our algorithm is an 
incremental improvement over an earlier system, which 
recommends similar items by first assigning the input item to 
clusters and then selecting best quality items within those clusters. 
The original algorithm does not consider the recent context and 
our new algorithm improves the earlier system by personalizing 
the recommendations to user intentions. The system measures 
user intention using the recent queries, which are used to 
determine the level of abstraction in similarity and relative 
importance of similarity dimensions. We show that user 
engagement increases when recommended item titles share more 
terms with most recent queries. Moreover, the new algorithm 
increases query coverage without sacrificing input item similarity 
and item quality. 

Categories and Subject Descriptors 

H.3.3 Information Search and Retrieval – Information filtering; 
Clustering. 
Keywords 
eCommerce, Recommender Systems, Personalization, Context-
aware alternative item recommendations 

1. INTRODUCTION 
At e-commerce websites like eBay.com, the primary means of 
navigation involves user initiated activities like browsing a 
category, searching by entering keywords, or filtering search 
results by selecting values for a set of attributes the system 
provides. These actions often require users to understand the 
ontology organizing the inventory and guess keywords leading to 
desired results. This process can get frustrating for users who are 
not familiar with the content of the site and have only a general 
sense of what they are looking for. 

Recommendations provide an alternative approach to assist users 
in accessing relevant content faster. Unlike search engines that 
aim to answer user-formulated queries, recommendation engines 
provide content without requiring direct user input. However, this 
makes finding relevant content more challenging because user 
interest must be guessed based on indirect information sources 
such as short-term session history, long-term user behavioral data, 

ontology the site uses to organize inventory, and the state of active 
inventory.  As recommendation systems are gaining popularity 
with ever growing behavioral data and computational means to 
process them, research for specific recommendation 
circumstances becomes more important. 

In this paper, we are focusing on alternative item 
recommendations where we assume that the user has engaged 
with a seed item and the recommender engine aims to provide 
other options to the user that she/he could consider as alternatives 
to the original item. For example in an e-commerce site like eBay, 
a suitable opportunity for alternatives recommendations is when 
the user have selected to view the details of an item, but before 
she/he has started a transaction to purchase it. 

Alternative item recommendations are different than similar-taste 
recommendations (e.g. people who like “tents” also like 
“bicycles”), and complementary item recommendations (people 
who bought “iphone” may also buy an “iphone case”) which are 
typically tackled with methods like collaborative filtering [1] 
because these methods can recommend items that do not serve as 
replacement for the original item. In contrast, alternative items 
should bare similarity to the original item at some level of 
abstraction. On the other hand, content-similarity based methods 
alone (e.g. you lost the bid on this item, but we found another very 
similar one [8]) may not be entirely sufficient to tackle this 
problem either since they may not provide sufficiently diverse 
options to the user.  

We believe that alternative item recommendations should 
negotiate a trade-off between seed-item-similarity, diversity, and 
quality. To act as a replacement, the recommendations should 
have sufficient similarity to the seed item, yet differ in some 
dimensions (i.e. different price, color, capacity, etc.) to provide 
the user with new options. Furthermore, the recommended items 
should be potentially better than the seed item in some aspects 
(i.e. better price, better seller quality, better condition etc.) since 
otherwise the user would not have a reason to prefer them over the 
seed item. 1 

The central claim in this paper is that the level of similarity 
needed for alternative recommendations is subjective and relative 
to the intention of the user. For example, if a user is shopping for 
an electronics gift item, a smart phone device can be a viable 
alternative to a tablet device. On the other hand, if the user 
intention is to buy an ultra-light laptop of a particular brand, the 
alternatives should have a closer similarity to the seed item. 
Therefore, we state that capturing information about users’ 
intentions is key for improving alternative recommendations. 
Personalized recommendation systems often build models on user 

                                                                    
1 work done while working at eBay Inc. 
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Figure 1. Recommendations by SIR and NUQ 

 

profile/taste/preference models [3] using long-term behavioral 
data. While we believe that interpreting short-term intensions can 
benefit from such models, the system we discuss in this paper 
takes the other extreme and utilizes only short-term behavioral 
data to predict intention and personalize recommendations. 

In this paper, we describe an architecture that personalizes 
alternatives recommendations using short-term in-session data. In 
particular, we propose a method to determine the scope of items 
the user may be interested in and our architecture considers only 
recommendation candidates that are within that scope. Our system 

also detects item traits in recent user queries and prefers items that 
contain those when selecting the top few recommendations from 
the pool of candidates. We hypothesize that personalizing 
recommendations using recent user queries improves utility of the 
recommendation system compared to a similar system that does 
not utilize that information. 

We implemented the architecture described in this paper and 
evaluated it using data collected on the eBay.com site. At the time 
of evaluation, eBay was using an alternative recommendations 
algorithm that negotiates a trade-off between similarity to a seed 
item and quality of recommended items [8] but its 
recommendations are not contextualized to the actions of an 
individual user. We analyze data generated by this system and 
show that user engagement is higher when the recommendations 
are consistent with “scope of interest” as measured by our new 
algorithm. In the next section, we present a motivating example. 
Next, we describe our architecture followed by our evaluation and 
concluding remarks. 

2. A MOTIVATING EXAMPLE 
An opportunity for alternative item recommendations is when a 
user is looking at details of an item, but has not started the 
purchase process yet. At this point, the website may recommend 
alternatives to the current item to provide user with new options. 
SIR [8], a recommendation engine used in production at eBay.com 
in this kind of placement aims similarity to the seed item, but 
provides a customizable parameter to increase quality and 
diversity of recommended items by allowing reduction of 
similarity. The output of this algorithm does not depend on 
actions of the user prior to visiting the item page. In contrast, 
NUQ, the algorithm we describe in this paper, personalizes 
similarity by utilizing the query leading the user to the item details 
page.  

Figure 1 shows recommendations by SIR and NUQ for a seed 
item titled “New Useful Popular Baby Kid Animal Farm Piano 
Music Toy Development Hot”. The input item has multiple 
features and the challenge is to determine what dimensions the 
similarity should be based on and consequently, how much 
diversity will be allowed in the recommendations. 

SIR (Figure 1.a) returns items similar to the seed item and it 
generates that recommendation independent of the query that 
leads the user to the item detail page. On the other hand, the 
recommendations of NUQ depend on the user query. In the first 
case (Figure 1.b), the system prefers baby toys that have an 
animal farm theme to satisfy the query but it also ends up 
retrieving items that are developmental musical toys to increase 
similarity to the seed item. When the input query leading to this 
item is “baby piano” (Figure 1.c), the resulting impressions also 
change dramatically, this time returning items that are pianos for 
babies, while trying to satisfy item similarity, i.e. in 
“developmental toy” dimension. 

Both SIR and NUQ aim to find items similar to the seed item, but 
while the level of abstraction in similarity is controlled in SIR 
with a global parameter, in NUQ, the level of similarity and 
relative importance of similarity dimensions are gauged by user 
intention, for which the system uses user queries as an operational 
proxy. For example in Figure 1.b the dimension “animal farm” is 
prioritized over “piano” and similarity is abstracted by ignoring 
“piano” feature. 

3. BACKGROUND: SIR ENGINE 
The alternatives recommendation architecture we describe in this 
paper is based on SIR, a large-scale similar item recommendation 
engine that generated statistically significant business impact at 
eBay marketplaces after wide deployment compared to a naïve IR 
system [8]. The algorithm is efficient enough to cover hundreds of 
millions of items while serving tens of millions of active users.  

The core idea in SIR is learning cluster expressions with massive 
offline processing and using those expressions to increase 
relevance, quality and efficiency of online recommendations. In 
the first step of the runtime architecture of SIR (Figure 2), the 
system inputs a seed item and retrieves a small set of clusters that 
match to that item using an in memory cluster dictionary. Next, it 
uses those clusters to construct a search query, which it utilizes to 
retrieve a set of recommended items from a large inventory of 
items.  
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Figure 2. High-level architecture of SIR and NUQ. Dotted 
arrows are only part of NUQ. 

3.1 Cluster Expressions 
The SIR clusters are learned from a mixture of information 
sources including user queries, items in the inventory, user 
interaction with search filters. We will not describe that process 
here in detail because even though our work uses SIR clusters, it 
does not contribute how those clusters are learned. However, one 
important characteristic of SIR clusters is relevant for our 
discussion: SIR is biased to create clusters that group items that 
users view together in their search queries and therefore act as 
high-level features that represent subjective similarity. In 
particular, all SIR clusters are specializations of frequent user 
queries. Moreover, during constructing of clusters, SIR also uses 
data about search filters (i.e. color=red) people interact with in the 
search UI after entering a keyword query. Attributes associated 
stronger with a query q in that data set, are more like to be added 
to the cluster expressions that are constructed as specializations of 
q. 
The cluster expressions are explicit definitions that group a set of 
items. SIR clusters consist of bag of phrases, categories the item 
belongs to, and set of attribute value pairs that describe items. 
Table 1 shows example clusters, where each cluster label is linked 
to a bag of features and Table 2 shows the items that correspond 
to these clusters. Note that, attribute features (e.g. brand=Fisher 
Price) and category features (e.g. category=Baby Toys) are not 
reflected in these examples to simplify the discussion. 

Table 1. Cluster Expressions 

Clusters 

c1: {baby, piano } 

c2: { musical, animal, farm, toy } 

Table 2. Items and The Assigned Clusters 

Item Title Cluster(s) 

i1 Childs Grand Baby Piano with Kids Bench 
of Solid Wood Construction 

c1 

i2 22 Lot FISHER PRICE Little People 
Musical Sound Farm Barn Animals Tractor 
CLEAN 

c2 

i3 RED Baby Kids Toddler Musical 
Educational Animal Farm Piano 
Developmental Toy 

c1, c2 

 

3.2 Recall Expression 
SIR run-time engine first maps an input item to a small set of best 
matching cluster expressions, which it uses to construct a recall 
expression. The system uses the recall expression to retrieve a set 
of candidate recommended items.  
The system uses the cluster model to determine what dimensions 
are important for similarity to a particular item. The cluster 
expressions are stored in a Lucene index2 that retrieves clusters 
given a seed item’s features. The system takes a normalized 
vector (similar representation with cluster expressions) generated 
from a seed item, and retrieves n clusters that best match that 
item. Typically, the seed item contains tokens missing in the 
retrieved clusters, but the system often retrieves clusters that are 
fully contained in the seed item vector. For example the item i3 in 
Table 2 could retrieve clusters c1 and c2 in Table 1. The system is 
also capable of fuzzy matching and retrieves clusters that 
maximize inclusion of important terms in the seed item. The term 
importance is determined by the rareness of the term in the model. 
In the next step, the system selects the top n clusters and generates 
a search query using the tokens shared between the seed item and 
clusters. If for example, the matching tokens are {t11, t12, …} and 
{t21, t22, …}, where tij is the jth matching token of the ith best 
matching cluster, we construct the recall constraint expression:  
 

(t11 and t12 and  …) or (t21 and t22 and  …) or … 
 

Each conjunction in this expression retrieves items similar to the 
seed item in some general dimension. Moreover, further 
refinement on similarity is left to the next phase, which negotiates 
a trade-off between similarity and quality. 

3.3 Item Ranking 
In the next phase, the system retrieves a small ordered set of 
items, which are ranked by a tradeoff between quality and seed-
item-similarity: 

 
Score(seed,reco) = w1 *Sim(seed,reco)+w2 *Quality(reco)
 
Here, seed is the seed item and reco is the candidate item for 
recommendation. The ranking score is determined by a weighted 
average between a similarity function Sim and quality of the 
recommended item as measured by a Quality function. Even 
though calculating Sim and Quality functions can be complicated, 
SIR can scale the trade-offs between them to a very large volume 
of traffic because this calculation is conducted only on a small set 
of items retrieved with the recall expression rather than the whole 
inventory. SIR uses a similarity function Sim that compares the 
shared and not shared tokens between seed and reco, but weights 
the terms with domain specific importance [8]. The details of the 
Quality function are less important for our discussion. 

4. NUQ ARCHITECTURE 
In this section, we describe our personalized alternative item 
recommendation architecture NUQ (Near User Queries). NUQ is 
a run-time system that takes a seed item and a set of user search 
                                                                    
2 http://lucene.apache.org/core/4_10_1/index.html 
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queries as input and returns a small set of items that are similar to 
the seed item and are consistent with the user queries.  

At high-level, it works in two main phases that are similar to 
SIR’s main phases (Figure 2). In the first phase, NUQ assigns the 
seed item to clusters, creates recall expressions using those 
clusters, and in the second phase, it orders items that satisfy those 
expressions. However, the details of these phases differ in an 
important aspect: Both phases accept past user queries as an 
additional input and skew the results to maintain consistency with 
those. Consequently, NUQ customizes its recommendation closer 
to the short-term user intentions by preferring items that are 
consistent with recent queries. 

4.1 Boosting Cluster Assignment 
The cluster assignment phase starts by retrieving raw item 
features. In our use case, cluster assignment uses item title and 
category id, and item attributes as raw data. The category id refers 
to the ontology that organizes all items in the inventory into a 
hierarchy. The item title goes through a number of normalization 
steps identical to SIR [8] including spell correction, 
normalization, feature extraction, which results in an item feature 
vector consisting of a set of normalized phrases and feature value 
pairs.  

Unlike SIR, NUQ cluster assignment also inputs a query and runs 
it through the same normalization steps to create a query feature 
vector. Next, the algorithm selects a set of features in the query 
vector that are consistent with the item vector and marks them as 
context boosting factors (CBF). The algorithm aims to prioritize 
recommendations that are consistent with these boosting factors. 
Our current implementation creates CBF only using the last query, 
but a natural generalization is to use queries in the recent history 
and weight the effect of factors by recency. 

In cluster assignment step, like SIR, NUQ returns cluster 
expressions similar to the item vectors utilizing a TF-IDF 
measure, which prioritizes rare features over more frequent ones. 
However, unlike SIR, NUQ boosts item features that are 
consistent with the query vector such that given a pair of clusters 
C1 and C2, C1 is guaranteed to rank lower than C2, if C1 ∩ CBF is 
a subset of C2 ∩ CBF.  
For example if the last user query is “baby piano”, the system is 
guaranteed to prioritize cluster that contain both of the terms 
“baby” and “piano”, if any such cluster exists. Moreover, any 
cluster that contains “baby” or “piano”, is also guaranteed to be 
prioritized over clusters that do not have any of those terms. 
Finally, the relative importance of a cluster that contains “baby” 
(but not “piano”), over another cluster that contains “piano” (but 
not “baby”), is determined by the rareness of those terms in the 
cluster dictionary.  

Once the clusters are retrieved, a recall expression is generated 
similar to SIR as described in section 3.2, which is next used to 
retrieve a set of items from the inventory.  

4.2 Boosting Item Ranking 
In the second phase, like SIR, NUQ orders its results to select top 
few recommended items. However, unlike SIR ordering function 
that negotiates between seed item similarity and quality, NUQ 
also prefers items that have terms consistent with context boosting 
factors obtained from queries.  In particular, the Sim function 
describes in section 3.3¸ utilizes an importance weight for each 

term. In NUQ, these weights are boosted with a large number if 
the term belongs to the user query. 

If all clusters NUQ retrieves in the first phase contain all boosted 
query terms, all items that match the recall expression would 
contain all query terms. In that circumstance, boosting at ranking 
time would not have any utility because all retrieved items would 
contain these query terms and boosting would not have an effect 
on ranking. However, NUQ can retrieve clusters with missing 
query terms. This can happen when no cluster expression contain 
all of these query terms, for example when the query is a very 
specific one. In that case, it is still useful to try to satisfy user 
query terms in ranking time. SIR ranking already employs an 
algorithm that measures seed item similarity using weighted 
terms. NUQ only changes this scheme by boosting the weight of 
user query terms that are in CBF set. 

5.  EVALUATION 
We are hypothesizing that increasing relevance with respect to 
past queries increases relevance for users in alternative items 
recommendations. To evaluate this hypothesis we analyzed how 
users are interacting with the SIR system in an alternatives 
recommendation setting (prepurchase similar item 
recommendations on an item details page). We collected data 
when users search a query and enter item details page (seed item) 
and see impressions generated by SIR based on similarity to the 
item on the page. We show that recommendations consistent with 
query terms have stronger engagement and NUQ generates (as 
expected) recommendations more consistent with user queries. 

Normally, the seed item is consistent with the query terms, since 
the item is returned as a search result for the query. Exceptions 
can happen due to unusual navigation patterns or tracking errors 
and we kept them out of our analysis. We determined that 65% of 
recommendations do not contain all query terms even when the 
seed item contains 100% of query terms. This suggests that there 
is potential room for improvement if query term boosting is 
improving engagement. 

Next, we analyzed engagement on recommendations with respect 
to the number query terms they cover (Figure 3). Here the 
horizontal axis represents percentage of query terms the 
recommendations cover and the vertical axis shows the difference 
in click-through rate (CTR) (we report only relative percentage 
difference with respect to the average CTR in that placement 
because we are not allowed to publish absolute CTR values). This 
supports our claim that users are finding recommendations 
consistent with the query more engaging. Recommendations that 
contain all query terms have 60% higher CTR compared to 
recommendations that do not contain query terms. 
Next we investigated to what extent NUQ generates 
recommendations with better query coverage. We ran NUQ and 
SIR on a data set consisting of user queries and the items users 
viewed after these queries. We discovered that NUQ 
recommendations increase query term coverage by 43% over SIR. 
We have also measured similarity of the recommended items with 
the seed item between NUQ and SIR (measured by Jaccard 
similarity of titles) and found out that the difference is very small. 
Moreover, we compared the average quality of the recommend 
items as measured by an internal metric used in several eBay 
systems. NUQ was on par with SIR on item quality as well. As a 
result, NUQ is increasing query similarity, without sacrificing 
seed item similarity and quality.  
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Figure 3. CTR increases with recommendation query 
coverage 
Since seed item title contains all query terms, increase in 
similarity between seed item and recommendations can indirectly 
increase query term coverage of recommendations. To claim that 
CTR is increasing with query term coverage, we need to control 
for similarity between seed item and recommended items.  Figure 
4 shows change of CTR with respect to query term coverage for 
fixed seed-recommendation item similarity values. CTR’s are 
again reported as percentage differences with respect to mean 
CTR of this placement. In this graph, we observe that CTR 
increases with query term coverage when seed item similarity is 
kept fixed. 
In summary, we showed that SIR performs better in 
recommendations that include more query terms and NUQ 
generates recommendations with more query terms without 
sacrificing quality of seed item similarity. While this does not 
guarantee that NUQ will increase engagement or financial impact, 
it suggests that personalizing similarity recommendations with in-
session query information is a promising direction to explore 
better alternative recommendations systems. 

 

Figure 4. CTR vs. query coverage for fixed seed similarity 

6. RELATED WORK 
Large scale recommendation engines like Amazon’s product 
recommendations [1], YouTube video recommender system [2], 
and Google news personalization service [3] are popular and used 
routinely by a large volume of users.  

Anand and Mobasher [5] addresses the problem of incorporating 
context within recommendation systems. The paper distinguishes 
user’s short-term and long-term memories and defines a 
recommendation process that uses both of them. Our proposed 
work utilizes the user’s short-term contextual information. Some 
version of Netflix movie recommendations [4] utilizes the user’s 
long-term activity. Baltrunas et al. [6] introduces context related 
factors into matrix factorization for item rating predictions.  

    Most of the existing recommender systems address 
recommendations in a stable collection of items or products. 
Amazon’s recommender system [1] works in the space of  
products that are stable and do not expire in a short period time. 
Netflix recommends movies [7] from a slowly growing collection. 
Therefore, both of these systems can pre-compute item-item 
relationships using collaborative filtering methods.  The Google 
news personalization [3] is one of the few works that addresses 
the issue of recommendations when there is item-churn. 

7. CONCLUSION 
In this paper, we outlined NUQ, an algorithm to extend an 
existing similar item recommendation system SIR to make context 
sensitive alternative item recommendations. The new algorithm 
boosts its recommendations using user queries. We analyzed SIR 
recommendations with real transactional data and determined that 
it is performing better when the recommendations are consistent 
with the query. Moreover, we showed that NUQ generates 
significantly higher query coverage without sacrificing seed item 
similarity, which suggest that NUQ may outperform SIR in user 
engagement.  

Our current report is preliminary but it motives use of queries to 
personalize alternative item recommendations. Future work 
involves finding the right balance to boost query terms to obtain 
performance gain over SIR on live site traffic. 
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