
Subjective Similarity:
Personalizing Alternative Item Recommendations

Tolga Könik
eBay Inc.

San Jose, CA,USA
tkonik@ebay.com

Rajyashree Mukherjee
eBay Inc.

San Jose, CA, USA
rmukherjee@ebay.com

Jayasimha Katukuri1
University of Louisiana

Lafayette, LA, USA
jaykatukuri@gmail.com

ABSTRACT
We present a new algorithm for recommending alternatives to a
given item in an e-commerce setting. Our algorithm is an
incremental improvement over an earlier system, which
recommends similar items by first assigning the input item to
clusters and then selecting best quality items within those clusters.
The original algorithm does not consider the recent context and
our new algorithm improves the earlier system by personalizing
the recommendations to user intentions. The system measures
user intention using the recent queries, which are used to
determine the level of abstraction in similarity and relative
importance of similarity dimensions. We show that user
engagement increases when recommended item titles share more
terms with most recent queries. Moreover, the new algorithm
increases query coverage without sacrificing input item similarity
and item quality.

Categories and Subject Descriptors

H.3.3 Information Search and Retrieval – Information filtering;
Clustering.
Keywords
eCommerce, Recommender Systems, Personalization, Context-
aware alternative item recommendations

1. INTRODUCTION
At e-commerce websites like eBay.com, the primary means of
navigation involves user initiated activities like browsing a
category, searching by entering keywords, or filtering search
results by selecting values for a set of attributes the system
provides. These actions often require users to understand the
ontology organizing the inventory and guess keywords leading to
desired results. This process can get frustrating for users who are
not familiar with the content of the site and have only a general
sense of what they are looking for.

Recommendations provide an alternative approach to assist users
in accessing relevant content faster. Unlike search engines that
aim to answer user-formulated queries, recommendation engines
provide content without requiring direct user input. However, this
makes finding relevant content more challenging because user
interest must be guessed based on indirect information sources
such as short-term session history, long-term user behavioral data,

ontology the site uses to organize inventory, and the state of active
inventory. As recommendation systems are gaining popularity
with ever growing behavioral data and computational means to
process them, research for specific recommendation
circumstances becomes more important.

In this paper, we are focusing on alternative item
recommendations where we assume that the user has engaged
with a seed item and the recommender engine aims to provide
other options to the user that she/he could consider as alternatives
to the original item. For example in an e-commerce site like eBay,
a suitable opportunity for alternatives recommendations is when
the user have selected to view the details of an item, but before
she/he has started a transaction to purchase it.

Alternative item recommendations are different than similar-taste
recommendations (e.g. people who like “tents” also like
“bicycles”), and complementary item recommendations (people
who bought “iphone” may also buy an “iphone case”) which are
typically tackled with methods like collaborative filtering [1]
because these methods can recommend items that do not serve as
replacement for the original item. In contrast, alternative items
should bare similarity to the original item at some level of
abstraction. On the other hand, content-similarity based methods
alone (e.g. you lost the bid on this item, but we found another very
similar one [8]) may not be entirely sufficient to tackle this
problem either since they may not provide sufficiently diverse
options to the user.

We believe that alternative item recommendations should
negotiate a trade-off between seed-item-similarity, diversity, and
quality. To act as a replacement, the recommendations should
have sufficient similarity to the seed item, yet differ in some
dimensions (i.e. different price, color, capacity, etc.) to provide
the user with new options. Furthermore, the recommended items
should be potentially better than the seed item in some aspects
(i.e. better price, better seller quality, better condition etc.) since
otherwise the user would not have a reason to prefer them over the
seed item. 1

The central claim in this paper is that the level of similarity
needed for alternative recommendations is subjective and relative
to the intention of the user. For example, if a user is shopping for
an electronics gift item, a smart phone device can be a viable
alternative to a tablet device. On the other hand, if the user
intention is to buy an ultra-light laptop of a particular brand, the
alternatives should have a closer similarity to the seed item.
Therefore, we state that capturing information about users’
intentions is key for improving alternative recommendations.
Personalized recommendation systems often build models on user

1 work done while working at eBay Inc.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author's site if the Material is used in electronic media.
WWW’15 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741999

1275

Figure 1. Recommendations by SIR and NUQ

profile/taste/preference models [3] using long-term behavioral
data. While we believe that interpreting short-term intensions can
benefit from such models, the system we discuss in this paper
takes the other extreme and utilizes only short-term behavioral
data to predict intention and personalize recommendations.

In this paper, we describe an architecture that personalizes
alternatives recommendations using short-term in-session data. In
particular, we propose a method to determine the scope of items
the user may be interested in and our architecture considers only
recommendation candidates that are within that scope. Our system

also detects item traits in recent user queries and prefers items that
contain those when selecting the top few recommendations from
the pool of candidates. We hypothesize that personalizing
recommendations using recent user queries improves utility of the
recommendation system compared to a similar system that does
not utilize that information.

We implemented the architecture described in this paper and
evaluated it using data collected on the eBay.com site. At the time
of evaluation, eBay was using an alternative recommendations
algorithm that negotiates a trade-off between similarity to a seed
item and quality of recommended items [8] but its
recommendations are not contextualized to the actions of an
individual user. We analyze data generated by this system and
show that user engagement is higher when the recommendations
are consistent with “scope of interest” as measured by our new
algorithm. In the next section, we present a motivating example.
Next, we describe our architecture followed by our evaluation and
concluding remarks.

2. A MOTIVATING EXAMPLE
An opportunity for alternative item recommendations is when a
user is looking at details of an item, but has not started the
purchase process yet. At this point, the website may recommend
alternatives to the current item to provide user with new options.
SIR [8], a recommendation engine used in production at eBay.com
in this kind of placement aims similarity to the seed item, but
provides a customizable parameter to increase quality and
diversity of recommended items by allowing reduction of
similarity. The output of this algorithm does not depend on
actions of the user prior to visiting the item page. In contrast,
NUQ, the algorithm we describe in this paper, personalizes
similarity by utilizing the query leading the user to the item details
page.

Figure 1 shows recommendations by SIR and NUQ for a seed
item titled “New Useful Popular Baby Kid Animal Farm Piano
Music Toy Development Hot”. The input item has multiple
features and the challenge is to determine what dimensions the
similarity should be based on and consequently, how much
diversity will be allowed in the recommendations.

SIR (Figure 1.a) returns items similar to the seed item and it
generates that recommendation independent of the query that
leads the user to the item detail page. On the other hand, the
recommendations of NUQ depend on the user query. In the first
case (Figure 1.b), the system prefers baby toys that have an
animal farm theme to satisfy the query but it also ends up
retrieving items that are developmental musical toys to increase
similarity to the seed item. When the input query leading to this
item is “baby piano” (Figure 1.c), the resulting impressions also
change dramatically, this time returning items that are pianos for
babies, while trying to satisfy item similarity, i.e. in
“developmental toy” dimension.

Both SIR and NUQ aim to find items similar to the seed item, but
while the level of abstraction in similarity is controlled in SIR
with a global parameter, in NUQ, the level of similarity and
relative importance of similarity dimensions are gauged by user
intention, for which the system uses user queries as an operational
proxy. For example in Figure 1.b the dimension “animal farm” is
prioritized over “piano” and similarity is abstracted by ignoring
“piano” feature.

3. BACKGROUND: SIR ENGINE
The alternatives recommendation architecture we describe in this
paper is based on SIR, a large-scale similar item recommendation
engine that generated statistically significant business impact at
eBay marketplaces after wide deployment compared to a naïve IR
system [8]. The algorithm is efficient enough to cover hundreds of
millions of items while serving tens of millions of active users.

The core idea in SIR is learning cluster expressions with massive
offline processing and using those expressions to increase
relevance, quality and efficiency of online recommendations. In
the first step of the runtime architecture of SIR (Figure 2), the
system inputs a seed item and retrieves a small set of clusters that
match to that item using an in memory cluster dictionary. Next, it
uses those clusters to construct a search query, which it utilizes to
retrieve a set of recommended items from a large inventory of
items.

1276

Figure 2. High-level architecture of SIR and NUQ. Dotted
arrows are only part of NUQ.

3.1 Cluster Expressions
The SIR clusters are learned from a mixture of information
sources including user queries, items in the inventory, user
interaction with search filters. We will not describe that process
here in detail because even though our work uses SIR clusters, it
does not contribute how those clusters are learned. However, one
important characteristic of SIR clusters is relevant for our
discussion: SIR is biased to create clusters that group items that
users view together in their search queries and therefore act as
high-level features that represent subjective similarity. In
particular, all SIR clusters are specializations of frequent user
queries. Moreover, during constructing of clusters, SIR also uses
data about search filters (i.e. color=red) people interact with in the
search UI after entering a keyword query. Attributes associated
stronger with a query q in that data set, are more like to be added
to the cluster expressions that are constructed as specializations of
q.
The cluster expressions are explicit definitions that group a set of
items. SIR clusters consist of bag of phrases, categories the item
belongs to, and set of attribute value pairs that describe items.
Table 1 shows example clusters, where each cluster label is linked
to a bag of features and Table 2 shows the items that correspond
to these clusters. Note that, attribute features (e.g. brand=Fisher
Price) and category features (e.g. category=Baby Toys) are not
reflected in these examples to simplify the discussion.

Table 1. Cluster Expressions

Clusters

c1: {baby, piano }

c2: { musical, animal, farm, toy }

Table 2. Items and The Assigned Clusters

Item Title Cluster(s)

i1 Childs Grand Baby Piano with Kids Bench
of Solid Wood Construction

c1

i2 22 Lot FISHER PRICE Little People
Musical Sound Farm Barn Animals Tractor
CLEAN

c2

i3 RED Baby Kids Toddler Musical
Educational Animal Farm Piano
Developmental Toy

c1, c2

3.2 Recall Expression
SIR run-time engine first maps an input item to a small set of best
matching cluster expressions, which it uses to construct a recall
expression. The system uses the recall expression to retrieve a set
of candidate recommended items.
The system uses the cluster model to determine what dimensions
are important for similarity to a particular item. The cluster
expressions are stored in a Lucene index2 that retrieves clusters
given a seed item’s features. The system takes a normalized
vector (similar representation with cluster expressions) generated
from a seed item, and retrieves n clusters that best match that
item. Typically, the seed item contains tokens missing in the
retrieved clusters, but the system often retrieves clusters that are
fully contained in the seed item vector. For example the item i3 in
Table 2 could retrieve clusters c1 and c2 in Table 1. The system is
also capable of fuzzy matching and retrieves clusters that
maximize inclusion of important terms in the seed item. The term
importance is determined by the rareness of the term in the model.
In the next step, the system selects the top n clusters and generates
a search query using the tokens shared between the seed item and
clusters. If for example, the matching tokens are {t11, t12, …} and
{t21, t22, …}, where tij is the jth matching token of the ith best
matching cluster, we construct the recall constraint expression:

(t11 and t12 and …) or (t21 and t22 and …) or …

Each conjunction in this expression retrieves items similar to the
seed item in some general dimension. Moreover, further
refinement on similarity is left to the next phase, which negotiates
a trade-off between similarity and quality.

3.3 Item Ranking
In the next phase, the system retrieves a small ordered set of
items, which are ranked by a tradeoff between quality and seed-
item-similarity:

Score(seed,reco) = w1 *Sim(seed,reco)+w2 *Quality(reco)

Here, seed is the seed item and reco is the candidate item for
recommendation. The ranking score is determined by a weighted
average between a similarity function Sim and quality of the
recommended item as measured by a Quality function. Even
though calculating Sim and Quality functions can be complicated,
SIR can scale the trade-offs between them to a very large volume
of traffic because this calculation is conducted only on a small set
of items retrieved with the recall expression rather than the whole
inventory. SIR uses a similarity function Sim that compares the
shared and not shared tokens between seed and reco, but weights
the terms with domain specific importance [8]. The details of the
Quality function are less important for our discussion.

4. NUQ ARCHITECTURE
In this section, we describe our personalized alternative item
recommendation architecture NUQ (Near User Queries). NUQ is
a run-time system that takes a seed item and a set of user search

2 http://lucene.apache.org/core/4_10_1/index.html

Cluster	
Assignment

Item	
Retrieval

Recall	 	
Expressions

Recommendations

Cluster	
Dictionary Inventory

Web interface

Seed	 item Query

1277

queries as input and returns a small set of items that are similar to
the seed item and are consistent with the user queries.

At high-level, it works in two main phases that are similar to
SIR’s main phases (Figure 2). In the first phase, NUQ assigns the
seed item to clusters, creates recall expressions using those
clusters, and in the second phase, it orders items that satisfy those
expressions. However, the details of these phases differ in an
important aspect: Both phases accept past user queries as an
additional input and skew the results to maintain consistency with
those. Consequently, NUQ customizes its recommendation closer
to the short-term user intentions by preferring items that are
consistent with recent queries.

4.1 Boosting Cluster Assignment
The cluster assignment phase starts by retrieving raw item
features. In our use case, cluster assignment uses item title and
category id, and item attributes as raw data. The category id refers
to the ontology that organizes all items in the inventory into a
hierarchy. The item title goes through a number of normalization
steps identical to SIR [8] including spell correction,
normalization, feature extraction, which results in an item feature
vector consisting of a set of normalized phrases and feature value
pairs.

Unlike SIR, NUQ cluster assignment also inputs a query and runs
it through the same normalization steps to create a query feature
vector. Next, the algorithm selects a set of features in the query
vector that are consistent with the item vector and marks them as
context boosting factors (CBF). The algorithm aims to prioritize
recommendations that are consistent with these boosting factors.
Our current implementation creates CBF only using the last query,
but a natural generalization is to use queries in the recent history
and weight the effect of factors by recency.

In cluster assignment step, like SIR, NUQ returns cluster
expressions similar to the item vectors utilizing a TF-IDF
measure, which prioritizes rare features over more frequent ones.
However, unlike SIR, NUQ boosts item features that are
consistent with the query vector such that given a pair of clusters
C1 and C2, C1 is guaranteed to rank lower than C2, if C1 ∩ CBF is
a subset of C2 ∩ CBF.
For example if the last user query is “baby piano”, the system is
guaranteed to prioritize cluster that contain both of the terms
“baby” and “piano”, if any such cluster exists. Moreover, any
cluster that contains “baby” or “piano”, is also guaranteed to be
prioritized over clusters that do not have any of those terms.
Finally, the relative importance of a cluster that contains “baby”
(but not “piano”), over another cluster that contains “piano” (but
not “baby”), is determined by the rareness of those terms in the
cluster dictionary.

Once the clusters are retrieved, a recall expression is generated
similar to SIR as described in section 3.2, which is next used to
retrieve a set of items from the inventory.

4.2 Boosting Item Ranking
In the second phase, like SIR, NUQ orders its results to select top
few recommended items. However, unlike SIR ordering function
that negotiates between seed item similarity and quality, NUQ
also prefers items that have terms consistent with context boosting
factors obtained from queries. In particular, the Sim function
describes in section 3.3¸ utilizes an importance weight for each

term. In NUQ, these weights are boosted with a large number if
the term belongs to the user query.

If all clusters NUQ retrieves in the first phase contain all boosted
query terms, all items that match the recall expression would
contain all query terms. In that circumstance, boosting at ranking
time would not have any utility because all retrieved items would
contain these query terms and boosting would not have an effect
on ranking. However, NUQ can retrieve clusters with missing
query terms. This can happen when no cluster expression contain
all of these query terms, for example when the query is a very
specific one. In that case, it is still useful to try to satisfy user
query terms in ranking time. SIR ranking already employs an
algorithm that measures seed item similarity using weighted
terms. NUQ only changes this scheme by boosting the weight of
user query terms that are in CBF set.

5. EVALUATION
We are hypothesizing that increasing relevance with respect to
past queries increases relevance for users in alternative items
recommendations. To evaluate this hypothesis we analyzed how
users are interacting with the SIR system in an alternatives
recommendation setting (prepurchase similar item
recommendations on an item details page). We collected data
when users search a query and enter item details page (seed item)
and see impressions generated by SIR based on similarity to the
item on the page. We show that recommendations consistent with
query terms have stronger engagement and NUQ generates (as
expected) recommendations more consistent with user queries.

Normally, the seed item is consistent with the query terms, since
the item is returned as a search result for the query. Exceptions
can happen due to unusual navigation patterns or tracking errors
and we kept them out of our analysis. We determined that 65% of
recommendations do not contain all query terms even when the
seed item contains 100% of query terms. This suggests that there
is potential room for improvement if query term boosting is
improving engagement.

Next, we analyzed engagement on recommendations with respect
to the number query terms they cover (Figure 3). Here the
horizontal axis represents percentage of query terms the
recommendations cover and the vertical axis shows the difference
in click-through rate (CTR) (we report only relative percentage
difference with respect to the average CTR in that placement
because we are not allowed to publish absolute CTR values). This
supports our claim that users are finding recommendations
consistent with the query more engaging. Recommendations that
contain all query terms have 60% higher CTR compared to
recommendations that do not contain query terms.
Next we investigated to what extent NUQ generates
recommendations with better query coverage. We ran NUQ and
SIR on a data set consisting of user queries and the items users
viewed after these queries. We discovered that NUQ
recommendations increase query term coverage by 43% over SIR.
We have also measured similarity of the recommended items with
the seed item between NUQ and SIR (measured by Jaccard
similarity of titles) and found out that the difference is very small.
Moreover, we compared the average quality of the recommend
items as measured by an internal metric used in several eBay
systems. NUQ was on par with SIR on item quality as well. As a
result, NUQ is increasing query similarity, without sacrificing
seed item similarity and quality.

1278

Figure 3. CTR increases with recommendation query
coverage
Since seed item title contains all query terms, increase in
similarity between seed item and recommendations can indirectly
increase query term coverage of recommendations. To claim that
CTR is increasing with query term coverage, we need to control
for similarity between seed item and recommended items. Figure
4 shows change of CTR with respect to query term coverage for
fixed seed-recommendation item similarity values. CTR’s are
again reported as percentage differences with respect to mean
CTR of this placement. In this graph, we observe that CTR
increases with query term coverage when seed item similarity is
kept fixed.
In summary, we showed that SIR performs better in
recommendations that include more query terms and NUQ
generates recommendations with more query terms without
sacrificing quality of seed item similarity. While this does not
guarantee that NUQ will increase engagement or financial impact,
it suggests that personalizing similarity recommendations with in-
session query information is a promising direction to explore
better alternative recommendations systems.

Figure 4. CTR vs. query coverage for fixed seed similarity

6. RELATED WORK
Large scale recommendation engines like Amazon’s product
recommendations [1], YouTube video recommender system [2],
and Google news personalization service [3] are popular and used
routinely by a large volume of users.

Anand and Mobasher [5] addresses the problem of incorporating
context within recommendation systems. The paper distinguishes
user’s short-term and long-term memories and defines a
recommendation process that uses both of them. Our proposed
work utilizes the user’s short-term contextual information. Some
version of Netflix movie recommendations [4] utilizes the user’s
long-term activity. Baltrunas et al. [6] introduces context related
factors into matrix factorization for item rating predictions.

 Most of the existing recommender systems address
recommendations in a stable collection of items or products.
Amazon’s recommender system [1] works in the space of
products that are stable and do not expire in a short period time.
Netflix recommends movies [7] from a slowly growing collection.
Therefore, both of these systems can pre-compute item-item
relationships using collaborative filtering methods. The Google
news personalization [3] is one of the few works that addresses
the issue of recommendations when there is item-churn.

7. CONCLUSION
In this paper, we outlined NUQ, an algorithm to extend an
existing similar item recommendation system SIR to make context
sensitive alternative item recommendations. The new algorithm
boosts its recommendations using user queries. We analyzed SIR
recommendations with real transactional data and determined that
it is performing better when the recommendations are consistent
with the query. Moreover, we showed that NUQ generates
significantly higher query coverage without sacrificing seed item
similarity, which suggest that NUQ may outperform SIR in user
engagement.

Our current report is preliminary but it motives use of queries to
personalize alternative item recommendations. Future work
involves finding the right balance to boost query terms to obtain
performance gain over SIR on live site traffic.

REFERENCES
[1] Linden, G., B. Smith, and J. York. 2003, Amazon.com

Recommendations: Item-to-Item Collaborative Filtering.
IEEE Internet Computing. 7, 1, 76-80.

[2] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T.,
Gargi, U., Gupta, S., He, Y., Lambert, M. Livingston, B., and
Sampath, D. 2010. The YouTube video recommendation
system. In Proceedings of the Fourth ACM Conference on
Recommender Systems (Barcelona, Spain). ACM, New York,
NY, 293-296.

[3] Das, A. S., Datar, M., and Garg, A. 2007. Google news
personalization: scalable online collaborative filtering. In
Proceedings of the 16th International Conference on World
Wide Web (Banff, Alberta, Canada). ACM, New York, NY,
271-280.

[4] Amatriain, X. 2012. Mining large streams of user data for
Personalized Recommendations. SIGKDD Explorations.14,2.

[5] Anand, S. S. and Mobasher, B. 2007. Contextual
recommendation. In From Web to Social Web: Discovering
and Deploying User and Content Profiles. Springer-Verlag,
Berlin, Heidelberg, 142-160.

[6] Baltrunas, L., Ludwig, B., and Ricci, F. 2011. Matrix
factorization techniques for context aware recommendation.
In Proceedings of the fifth ACM conference on Recommender
systems. ACM, New York, NY, 301-304.

[7] Koren, Y. 2008. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of
the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (Las Vegas,
Nevada). ACM, New York, NY, 426-434.

[8] Katukuri, J., Könik, T., Mukherjee, R., and Kolay, S. 2014.
Recommending similar items in large-scale online
marketplaces. In 2014 IEEE International Conference on Big
Data, 868-876.

1279

