
Fast and Accurate Maximum Inner Product
Recommendations on Map-Reduce

Rob Hall
Etsy Inc

55 Washington St, Brooklyn NY
rhall@etsy.com

Josh Attenberg
Etsy Inc

55 Washington St, Brooklyn NY
jattenberg@etsy.com

ABSTRACT
Personalization has become a predominant theme in online
advertising; the internet allows advertisers to target only
those users with the greatest chances of engagement, maxi-
mizing the probability of success and user happiness. How-
ever, a näıve approach to matching users with their most
suitable content scales proportionally to the product of the
cardinalities of the user and content sets. For advertisers
with large portfolios, this quickly becomes intractable. In
this work, we address this more general top-k personalization
problem, giving a scalable method to produce recommen-
dations based on personalization models where the affinity
between a user and an item is captured by an inner product
(i.e., most matrix factorization models). We first transform
the problem into finding the k-nearest neighbors among the
items for each user, then approximate the solution via a
method which is particularly suited for use on a map-reduce
cluster. We empirically show that our method is between 1
and 2 orders of magnitude faster than previous work, while
maintaining excellent approximation quality. Additionally,
we provide an open-source implementation of our proposed
method, this implementation is used in production at Etsy
for a number of large-scale personalization systems, and is
the same code as used in the experiments below.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition

Keywords
Recommender systems; maximum inner product search; map-
reduce.

1. INTRODUCTION
Since the introduction of the internet, personalization has

transformed the way that people consume content. Rec-
ommender systems have become ubiquitous on e-commerce

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742000.

sites like Amazon [13, 19], and have become almost a neces-
sity for media curation, as exemplified but he success of sites
like Neflix [3]. Personalization has also become a powerful
tool of the advertiser [2, 20, 22], where personalized mod-
els attempt to improve ad relevance, thereby increasing the
chances of engaging with the user.

Personalization technology has benefitted from the inputs
of a vibrant research community motivated by clear business-
driven use cases, an abundance of data, and data mining
competitions like the million dollar Netflix prize [3]. This di-
verse research, along with the varying circumstances for ap-
plying personalization technology, has lead to a plethora of
mathematical personalization techniques. Item-based, user-
based, and collaborative filtering recommender systems have
all enjoyed success both in practice and in the results re-
ported in research literature. We encourage the reader to
consult [18] for a detailed treatment on personalization and
recommendation technology. In this paper, we focus on a
especially successful family of techniques for performing col-
laborative filtering, techniques based on matrix factoriza-
tion [10]. In particular, we deal with so-called top-k per-
sonalization, where we are interested with the k items we
believe to be most relevant to a particular user. Typically,
we seek to optimize some precision-like metric on the set of
k candidates generated for a user.

Specifically, we deal with the problem of generating rec-
ommendations (e.g., recommending products to users) from
models where the affinity between an item and a user is
captured by an inner product between the vector represen-
tations for each. Examples of such models are given in e.g.,
[3, 4, 6, 7, 10, 11, 15, 16]. The vector representations may
correspond to latent features of the users and items, or to
“topics” among the items which the users are interested in,
depending on how the model is fit.

Although the theory for the construction and fitting of
these kind of models is now well established, little attention
has been paid to the problem of actually finding the top
k recommendations for a user from the model. Selecting
the optimal content for a user requires finding those items
with the greatest value of an affinity score to that user. To
do this exactly requires a linear scan of all the available
items, which is prohibitive for large scale systems, where
there can be hundreds of millions of items [6]. Whats more,
this procedure is required for each user, who can number in
the billions [3]. Clearly, a brute force solution to the top-k
personalization problem is intractable.

The first work to deal with the problem of efficiently gen-
erating the top k recommendations from a matrix factoriza-

1263



tion recommender system is [17]. The authors describe a
data structure conceptually similar to a ball tree, but which
can be used to find points with maximum inner products
to a query point, rather than the nearest neighbors. This
method appears to suffer from the same curse of dimension-
ality which befalls the ball tree in high dimensions [8], and,
for high dimensional models, does not provide a sufficient
speedup over the brute force approach. However [17] may
be useful when the dimension of the personalization models
is small.

More recently [24] dealt with the problem via a reduction
to k-nearest neighbors, which they then approximated by
using Locality Sensitive Hashing [1, 21]. Our method is con-
ceptually very similar to [24]. We give a slightly simpler re-
duction to k-nearest neighbors, and then approximate these
on map-reduce using a method similar to [14]. We show that
the approach works well for various kinds of recommender
systems with different properties.

The method described below has been well tested in a
production setting, being used to build personalized datasets
for a number of recommender systems at Etsy1, an online
marketplace of handmade and vintage goods with tens of
millions of users and items. Additionally, an open-source
implementation of the method we describe is available as
part of our machine learning package called “Conjecture” 2,
implemented in the scala-based hadoop DSL, scalding.

2. SETUP
Suppose we have a model of n users and m items, in which

the affinity between user i and item j is captured by:

affinity(i, j) = u′
ivj , ui, vj ∈ Rd,

where u′
ivj , denotes the inner product between ui and vj .

The vectors describing the users u1, . . . un and items v1, . . . , vm
may have different properties and interpretations depending
on the nature of the fitted model. For example they can
be dense real vectors in the case of linear matrix factoriza-
tion models [7, 15, 16, 23] sparse non-negative vectors in the
case of Poisson non-negative matrix factorization [11], or
dense non-negative vectors in the case of LDA or Bayesian
Poisson models [4, 6]. In this setting, the goal of top-k per-
sonalization is to find the set of k items for each user which
maximizes the sum of affinity scores:

R(i) = arg max
π1 6=π2 6=...6=πk

k∑
j=1

affinity(i, πj). (1)

Here R returns the set of indices π1, . . . , πk corresponding
to the items with the highest affinity scores. Note that the
naive approach to computing R(i) for all users takes time
proportional to n ·m, since we must consider every user and
item pair. Approaches which build data structures to prune
the search space are typically not helpful when the goal is
to provide an exact solution, as they run into the “curse of
dimensionality” [8]. Similar to [24], we propose to approxi-
mate the solution to (1) in two stages: first we construct a
transformation of the user and item vectors so that the eu-
clidean distances to the items for a user are monotonically
decreasing as the inner product between the original vectors
increases. Then we use an approximate k-nearest neighbor

1www.etsy.com
2https://github.com/etsy/Conjecture

method to find the nearest items to each user, which corre-
spond to those items with the highest affinity score.

3. REDUCTION TO KNN
We can reduce the computation of R(i) to a k-nearest

neighbor computation. The basic idea is to map the users
and items to an augmented representation in Rd+1, in which
all the vectors describing the items have equal norms, and
where the inner product is preserved. In the below equations
the norm ‖ · ‖ is the `2 norm wherever it appears.

Let

c = max
j
‖vj‖ (2)

be the maximum norm among the item vectors. We define
the vectors:

ũi = (ui,1 · c, . . . , ui,d · c, 0) (3)

which is just the scaled original vector with a zero element
added to the end, and

ṽj = (
vj,1
c
, . . . ,

vj,d
c
,

√
1− ‖vj‖

2

c2
). (4)

These augmented item vectors all have unit length:

‖ṽj‖2 =
‖vj‖2

c2
+ (1− ‖vj‖

2

c2
) = 1, (5)

what’s more, in the augmented representation, the inner
products between each user and item vector is preserved:

ũ′
iṽj =

c

c
u′
ivj + 0 ·

√
1− ‖vj‖

2

c2
= u′

ivj , (6)

Therefore we have the following result

Proposition 3.1.

arg max
j
u′
ivj = arg min

j
‖ũi − ṽj‖2, (7)

Proof. Expanding the square norm, and substituting in (5)
then (6) we have

‖ũi − ṽj‖2 = ‖ũi‖2 + 1− 2ũ′
iṽj = (c2‖ui‖2 + 1)− 2u′

ivj ,

the norm ‖ui‖ is a constant in the minimization.

This leads to:

R(i) = arg min
π1 6=π2 6=...6=πk

k∑
j=1

‖ũi − ṽj‖2,

thus the problem of finding recommendations is reduced to
the problem of finding nearest neighbors in the augmented
representation.

Note that the role of c from (2) is to ensure that all the
item vectors are mapped to representations with unit length.
An upper bound on the true maximum norm among the
items would also work, and could potentially save having to
perform a scan of the items to find this value, however the
computation of c on a map-reduce cluster, the setting we
primarily consider, is trivial. Also the role of c in (3) is not
important, if we replace it with some other value d in that
definition then we obtain:

‖ũi − ṽj‖2 = (d2‖ui‖2 + 1)− 2
d

c
u′
ivj ,

1264



which can also be used to compute the recommendations,
since we have just scaled the affinity score by a constant.

We also note that a consequence of (6) is the possibility to
perform a kind of constrained matrix factorization, in which
the vectors describing the items are all constrained to have
unit norm, and the quality of the fit is no worse than that
of the unconstrained model in one fewer dimensions. This
applies irrespective of the type of model being used. To
see this, note that we can just fit a d − 1-dimensional un-
constrained model, then make it into a d-dimensional model
which has the same goodness of fit, and obeys the constraint.

Compared to [24] this method requires fewer additional
coordinates, although this is not a big concern since both
methods add relatively few extra dimensions when compared
to the size of the original vectors (which are typically on
the order of hundreds of dimensions). We note that the
method of [24] also requires the computation of (2). Finally
another small advantage of our proposed method is that
it preserves the inner products exactly, whereas the method
of [24] is an approximation, although one which can be made
arbitrarily tight at the cost of adding additional dimensions.
Our construction is conceptually simple, in essence the extra
dimension we add just pushes the items with small norms
away from all the users, so that items with large norms (i.e.,
those that have a chance to form high inner products to
the users) are more likely to be the nearest neighbors of the
users.

We implement the transformation described in (3) and
(4) as a pre-processing step, which requires two map-reduce
stages: one to compute c from (2) and then a second one
to produce the vectors. These take time proportional to the
sum of the number of items and users and are likely to be
trivial for even very large datasets.

4. APPROXIMATING THE KNN ON MAP-
REDUCE

Having transformed the problem of computing recommen-
dations to one of finding k-nearest neighbors, we now aim
to approximate the solution to the latter, which will yield
an approximate solution to (1). Like [24] we also use the
approach of Locality Sensitive Hashing [1, 21], however we
use a different method to hash the points, which adapts to
the distribution of the points in space.

We note that a consequence of both the transformation
given in Section 3 and [24] is that the items and users be-
come separated in space, that is, the distance between users
and items are much larger than those between pairs of points
of the same type. To see why, observe that both meth-
ods force the items and users apart from each other along
the new dimensions in the space. The result of this is that
standard techniques for locality sensitive hashing can break
down. There are two possible problems: first, a hash bucket
contains a great quantity of items, meaning that the tech-
nique reduces to a brute force approach (see [24] Figure 3,
which shows the number of dot products needed is between
a quarter to half as much as the brute force method – which
is intractable if we want to provide recommendations to
more than a handful of users), and second, collisions be-
tween items and users are unlikely, so we have to use many
different hash tables in order to have a good quality approx-
imation. The problem is exacerbated since increasing the
granularity of the hashing function to deal with problems of

overly full bins will lead to an even smaller probability of col-
lisions between the users and items. The theory developed
in [24] rests on the assumption that the top-k recommen-
dations for a user will have high score (bounded below by
S0), whereas we observe that many users’ top recommenda-
tions may have low scores. This could be a consequence of
the model uncertainty for the users who have not provided
much implicit feedback.

We give a method which produces approximate recom-
mendations for all the users irrespective of the scores of their
true top-k recommendations. The hashing strategy utilized
herein results in splitting the items into hash buckets of ap-
proximately equal size. The idea is to divide the space into
buckets corresponding to the cells of a voronoi diagram gen-
erated from a subset of the item vectors. To begin we select
s ≈ m1/2 items given by indices ρ1, ρs uniformly at random.
We then define the hash function:

h(x) = arg min
i∈{1,...,s}

‖x− ṽρi‖, x ∈ Rd+1. (8)

which returns the index to the closest item from among the
sampled set of items. This leads to buckets with approxi-
mately equal numbers of items in them. Buckets which are
too large can be further subdivided by selecting more points
from that bucket to be the centers of new cells.

We then map users and items to the same set of hash
buckets via h(·). It is intuitive that these buckets are likely
to contain the closest item vectors to each user vector, since
the buckets correspond to sets of items which are close to
each other in space, and where one of these items (the cho-
sen center) is the closest center to the user. Some initial
exploration of the theoretical validity of this approach is
given by [9], however strong theoretical guarantees are not
yet available to our knowledge, and are an area for future
work.

We can improve the quality of the approximation by con-
sidering e.g., the items in the p closest buckets to a user,
rather than just the closest one. We can implement this
by hashing each user vector into multiple hash buckets by
using:

hp(x) = arg min
i1 6=i2 6=...6=ip∈{1,...,s}

p∑
j=1

‖x− ṽρij ‖, (9)

where p is the number of hash codes produced for each user.
These are just the indices of the p closest items from the
subsample.

To implement this approach on map-reduce we first stage
the set of item vectors ṽρ1 , . . . , ṽρs to each mapper, where
we take as input the item and user vectors in the representa-
tion given in (3) and (4). These are hashed using the above
method, producing one hash code for each item and p hash
codes for each user. The vectors are then directed to reduc-
ers depending on these hash codes, so that all the items and
users within each bucket are available in memory in the re-
duce nodes. There we can just perform a brute force search,
since the amount of data is small.

We may, however, be in a situation where e.g., all the
users map to a single hash bucket, or where the distribution
of users to hash buckets is highly skewed. In such a case if
we implement the method described above then there is the
possibility for a few reducers to become overwhelmed with
work, whereas others do nothing. We can get around this
by implementing an analog to a fragment-replicate join on

1265



map reduce (see e.g., [25]). To do this we count the number
of users who are in each hash bucket, when we have more
than some pre-defined limit (e.g., 20,000 users) then we split
the users randomly into multiple “fragments” so that each
fragment obeys the limit on the number of users. We then
take the set of items associated with the hash bucket, and
replicate it once for each fragment of users. These fragments
of users and replicates of items are then distributed across
different reduce tasks, so that we still compute the brute
force solution for each user, but each mapper only has to
deal with a tractable amount of users. This means that we
avoid the problem of long-running reduce stages.

In summary the approach is:

• Compute (2) and create transformed user (3) and item
vectors (4).

• Select s ≈
√
m item vectors at random, and write those

to a file which can be put on all the mappers.

• Count how many items are in each bucket under (8),
if necessary add more items to the set of random ones.

• Count how many users are in each bucket under (9), if
necessary replicate the item buckets and fragment the
user buckets.

• Stage pairs of correpsonding user and item buckets to
reducers, where a brute force search for the KNN is
done.

• Finally combine the results from the different buckets
for all users.

Therefore overall, our approach involves performing a num-
ber of user-item comparisons which is proportional to nm1/2

first we compare each user to one of the m1/2 selected cen-
ters, then in each bin we have approximately m1/2 items
which we compare each user to. We also have to compute ap-
proximately m3/2 item-item distances to construct the item
bins (8). When the number of items is are large, this presents
a substantial saving over the brute force method, which take
time proportional to nm.

One thing to note is that the feasability of this approach
depends on being able to store the s chosen item vectors
ṽρ1 , . . . , ṽρs in memory on each map task for the first stage.
We experiment on a cluser where each task is allowed up to
3GB of ram. When the data are on the orders of hundreds
of millions, then we have tens of thousands of vectors, and
for vectors of moderate dimension (200) or higher diensional
sparse vectors, these fit in memory. To run this approach on
an even larger data set could be done by another application
of the replicate-fragment strategy, namely we could fragment
the set of cell centers, so mappers would find the closest
center to each point from among a subset of the centers. A
reduce stage would then combine these for each input point
and find the center which is the closest overall.

The above approach is similar to that considered in [14].
There, a similar procedure to form hash buckets is used,
with some additional work to actually compute the exact k-
nearest neighbors. Using their method in combination with
the reduction from Section 3 would in fact lead to an ex-
act method of producing recommendations, although at the
cost of performing more computation. However, since most
personalization tasks can tolerate some approximation, we
proceed with a simplified, computationally tractable version.

An open-source implementation of this approach is pro-
vided as part of our machine learning package “Conjecture”
(https://github.com/etsy/Conjecture)3. Conjecture pro-
vides efficient implementations of a number of common ma-
chine learning and data science tasks using the “Scalding”
scala-based Hadoop MapReduce DSL. Note that Scalding
itself is actually a wrapper around another flow-oriented
Hadoop DSL, “Cascading”, which provides most of the tool-
ing for planning and executing large computations where the
underlying primitive is the map-reduce job.

5. EXPERIMENTAL ANALYSIS
We experiment with two datasets, both of which gener-

ated from the implicit feedback of users“favoriting” items on
Etsy (see [6] for more details). The first dataset we consider
is called “SVD” and is generated by using the stochastic-
SVD method [5] on the binary matrix of users and items,
where a cell is one if the user favorited the item and zero
otherwise. We restrict to items and users with sufficient
favorites to produce a high quality model. This dataset cov-
ers approximately 27 million items, and 13 million users,
and the vectors are 200-dimensional. The second dataset is
a non-negative matrix factorization of the same matrix. We
implemented the Poisson NMF model of [11], constructing a
model with 1000 dimensions. We optimized this model us-
ing a projected gradient approach [12]. The model is sparse,
hence we can fit these vectors in memory despite the larger
dimension.

We implemented our approach with various values of p
(from 1 to 9) to trade off the approximation quality with
the size of the computation. While we ran the method for
all 13 million users, in order to do a comparison with the
true, best fit recommendations, we only considered 1000 of
the users chosen uniformly at random, since for this num-
ber we can brute force the true recommendations without
undue computational effort. Likewise we implemented the
technique of [24] to compare to using our datasets. We
found that these methods do not scale well enough to be
able to perform the computation of recommendations for all
the users at once, therefore in order to make a comparison
we just computed the approximate set of recommendations
for same set of users for whom we generated the true recom-
mendations. We implemented that approach with various
numbers of hash tables (25, 50, 100, 150), and various num-
bers of hashes per table (10 and 15). Using fewer hash codes
leads to the method becoming too computationally demand-
ing, and using more leads to a decrease in the approximation
quality since the hash buckets become too sparse.

As a measure for quality of the recommendations we use
the ratio of the score of the top approximate recommen-
dation to the top exact recommendation. When we con-
sider the top-k recommendations then we use the ratio of
the sums of scores. We average this across the users. The
reason we use this measure instead of e.g., the fraction of
the exact recommendations that were returned, is because
a user may have many good candidates for recommenda-
tions to which the model assigns similar scores. It is often
more important to retrieve items with high scores than to
necessarily retrieve the exact top scoring items. Results are
summarized in Figures 1 and 2. We show for our method
“Voronoi” and “LSH” of [24], the quality of the recommenda-

3The class which implements the method is called FastKNN.

1266



tions as the computational load is increased. To measure the
computational complexity we count the item-user dot prod-
ucts that we compute in each hash bucket for the methods,
and for our method we also add the user-item comparisons
that happened in the computation of (9) and the item-item
comparisons of (8). We report the fraction of this num-
ber of comparisons compared to the brute force approach,
which requires comparing every item and user. We do not
report the total running time of either method, since other
jobs which run on our computation cluster would potentially
skew the results.

We find that on both datasets our method requires be-
tween one and two orders of magnitude fewer user-item com-
parisons in order to achieve high quality recommendations.
Although the LSH method can produce precise results, we
note it would only be approximately ten times faster than
brute force, whereas our method is a over a thousand times
faster. In addition to performing fewer comparisons, the
amount of intermediate data between the map-reduce stages
is also greatly reduced under our method. The reason is that
we are far more conservative with how we replicate the item
vectors – doing so only as part of the fragment-replicate
strategy to ensure a fast computation. On the other hand
the LSH method essentially replicates each item once for
each hash table we use, which is significantly more. Like-
wise the user vectors are similarly replicated once for each
hash table under the LSH technique, and p times under our
method which we have shown can be much smaller.

5e-04 1e-03 2e-03 5e-03 1e-02 2e-02 5e-02 1e-01 2e-01 5e-01

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Fraction of work compared to brute force

R
el

at
iv

e 
sc

or
e 

of
 to

p 
re

co
m

m
en

da
tio

ns

LSH 1-nn
LSH 50-nn
Voronoi 1-nn
Voronoi 50-nn

Figure 1: Recommendation quality of the top-1 and
top-50 recommendation vs amount of computation
required, for the SVD dataset. Note that the x-
axis is on a log scale. The different points for each
method correspond to different settings of the pa-
rameters. The proposed method outperforms prior
work by 2 orders of magnitude.

It is not yet clear why the advantage of our approach is
slightly diminished when operating on the Poisson dataset.
It may be a consequence of the higher dimensionality of this
data compared to the SVD model.

6. CONCLUSION
We presented a method for generating personalized con-

tent from any model which captures user-item affinities via

5e-04 2e-03 5e-03 2e-02 5e-02 2e-01 5e-01

0.
3

0.
5

0.
7

0.
9

Fraction of work compared to brute force

R
el

at
iv

e 
sc

or
e 

of
 to

p 
re

co
m

m
en

da
tio

ns

LSH 1-nn
LSH 50-nn
Voronoi 1-nn
Voronoi 50-nn

Figure 2: Recommendation quality of the top-1 and
top-50 recommendation vs amount of computation
required, for the Poisson dataset.

and inner product between a user vector and an item vector.
We implemented our approach on map-reduce and showed
that despite the increased cost of hashing compared to LSH,
the overall computational burden of our method is much
smaller, while still providing high quality recommendations.

While our approach outperforms prior work empirically
on our datasets, it currently lacks the theoretical guarantees
which come with the LSH method. However given the good
performance of the method it is likely that some theoreti-
cal statement can be made about its approximation quality.
For example, as we increase the number of buckets then we
do better at retrieving the 1-nn (in the limit the method
just reduces to brute force which is exact). The choice of

m1/2 buckets which we suggested here is just to balance the
computational demand of the bucketing and the brute force
search within each bucket. It may be that there exists a bet-
ter choice for the number of buckets, which could depend on
the characteristics of the data, its size and dimensionality
etc.

It may also be possible to improve upon our bucketing
method, by considering the bounding sphere of each bucket,
and mapping users to the buckets for which they are clos-
est to the surface of the bounding sphere, rather than the
selected center. This would map users to the buckets where
they have the possibility of finding a close item if it exists.
We are actively researching the theory behind our model in
addition to developing practical improvements in model ef-
ficiency. We hope to include this ongoing work in a future
publication.

References
[1] A. Andoni and P. Indyk. Near-optimal hashing

algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 51(1):117–122, Jan.
2008.

[2] J. Attenberg, S. Pandey, and T. Suel. Modeling and
predicting user behavior in sponsored search. In
Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,

1267



KDD ’09, pages 1067–1076, New York, NY, USA,
2009. ACM.

[3] J. Bennett and S. Lanning. The netflix prize. In In
KDD Cup and Workshop in conjunction with KDD,
2007.

[4] P. Gopalan, J. M. Hofman, and D. M. Blei. Scalable
recommendation with poisson factorization. CoRR,
abs/1311.1704, 2013.

[5] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding
structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions.
SIAM Review, 53(2):217–288, 2011.

[6] D. J. Hu, R. Hall, and J. Attenberg. Style in the long
tail: Discovering unique interests with latent variable
models in large scale social e-commerce. In Proceedings
of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14,
pages 1640–1649, New York, NY, USA, 2014. ACM.

[7] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In Proceedings
of the 2008 Eighth IEEE International Conference on
Data Mining, ICDM ’08, pages 263–272, Washington,
DC, USA, 2008. IEEE Computer Society.

[8] P. Indyk. Nearest neighbors in high-dimensional
spaces. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry.
CRC Press LLC, Boca Raton, FL, 2nd edition, April
2004.

[9] B. Kang and K. Jung. Robust and efficient locality
sensitive hashing for nearest neighbor search in large
data sets, 2012.

[10] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, Aug. 2009.

[11] D. D. Lee and H. S. Seung. Algorithms for
non-negative matrix factorization. In In NIPS, pages
556–562. MIT Press, 2000.

[12] C.-J. Lin. Projected gradient methods for nonnegative
matrix factorization. Neural Comput.,
19(10):2756–2779, Oct. 2007.

[13] G. Linden, B. Smith, and J. York. Amazon. com
recommendations: Item-to-item collaborative filtering.
Internet Computing, IEEE, 7(1):76–80, 2003.

[14] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient
processing of k nearest neighbor joins using
mapreduce. Proc. VLDB Endow., 5(10):1016–1027,
June 2012.

[15] D. Oard and J. Kim. Implicit feedback for
recommender systems. In in Proceedings of the AAAI
Workshop on Recommender Systems, pages 81–83,
1998.

[16] L. Peska and P. Vojtas. Negative implicit feedback in
e-commerce recommender systems. In Proceedings of
the 3rd International Conference on Web Intelligence,
Mining and Semantics, WIMS ’13, pages 45:1–45:4,
New York, NY, USA, 2013.

[17] P. Ram and A. G. Gray. Maximum inner-product
search using cone trees. In Proceedings of the 18th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12,
pages 931–939, New York, NY, USA, 2012.

[18] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors. Recommender Systems Handbook. Springer,
2011.

[19] J. B. Schafer, J. Konstan, and J. Riedl. Recommender
systems in e-commerce. In Proceedings of the 1st ACM
conference on Electronic commerce, pages 158–166.
ACM, 1999.

[20] S. Schroed, A. Kesari, and L. Neumeyer. Personalized
ad placement in web search. In Proceedings of
ADKDD’10, ADKDD’10, 2010.

[21] G. Shakhnarovich, T. Darrell, and P. Indyk.
Nearest-Neighbor Methods in Learning and Vision:
Theory and Practice. The MIT Press, 2006.

[22] M. Shatnawi and N. Mohamed. Statistical techniques
for online personalized advertising: A survey. In
Proceedings of the 27th Annual ACM Symposium on
Applied Computing, SAC ’12, pages 680–687, New
York, NY, USA, 2012. ACM.

[23] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
N. Oliver, and A. Hanjalic. Climf: Learning to
maximize reciprocal rank with collaborative
less-is-more filtering. In Proceedings of the Sixth ACM
Conference on Recommender Systems, RecSys ’12,
pages 139–146, New York, NY, USA, 2012. ACM.

[24] A. Shrivastava and P. Li. Asymmetric lsh (alsh) for
sublinear time maximum inner product search (mips).
In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages
2321–2329. Curran Associates, Inc., 2014.

[25] J. W. Stamos and H. C. Young. A symmetric fragment
and replicate algorithm for distributed joins. IEEE
Trans. Parallel Distrib. Syst., 4(12):1345–1354, 1993.

1268




