
Serving Ads to “Yahoo Answers” Occasional Visitors

Michal Aharon
Yahoo Labs, Haifa, Israel

michala@yahoo-inc.com

Amit Kagian
Yahoo Labs, Haifa, Israel

akagian@yahoo-inc.com

Yohay Kaplan
∗

Technion, Haifa, Israel
yohayk@cs.technion.ac.il

Raz Nissim
Yahoo Labs, Haifa, Israel
raz@yahoo-inc.com

Oren Somekh
Yahoo Labs, Haifa, Israel

orens@yahoo-inc.com

ABSTRACT
Modern ad serving systems can benefit when allowed to accumu-
late user information and use it as part of the serving algorithm.
However, this often does not coincide with how the web is used.
Many domains will see users for only brief interactions, as users
enter a domain through a search result or social media link and
then leave. Having access to little or no user information and no
ability to assemble a user profile over a prolonged period of use,
we would still like to leverage the information we have to the best
of our ability.

In this paper we attempt several methods of improving ad serving
for occasional users, including leveraging user information that is
still available, content analysis of the page, information about the
page’s content generators and historical breakdown of visits to the
page. We compare and combine these methods in a framework of
a collaborative filtering algorithm, test them on real data collected
from Yahoo Answers, and achieve significant improvements over
baseline algorithms.

1. INTRODUCTION
Online advertising is booming in recent years and is expected to

keep on growing dramatically in the future. Modern web scale ad
serving platforms manage a vibrant electronic marketplace where
advertisers introduce their campaigns and bids, and ads are matched
dynamically to users according to their inferred interests and previ-
ous interactions [8]. Such marketplaces rely heavily on the ability
of the system to accurately and quickly predict click probability.
Machine learning techniques in general, and especially personal-
ization and recommendation algorithms, are proven to be quite suc-
cessful at the task of predicting ad click probability.

One of the most successful approaches for personalization and
recommendation tasks is collaborative filtering (CF) [18]. This
technique relies only on past user behavior (e.g., previous trans-
actions or feedback) and does not require the creation of explicit
profiles. It requires no domain knowledge or content analysis, and
excels at exploiting popularity trends, which drive much of the ob-

∗This work was done during a summer internship at Yahoo Labs.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741997.

served users’ interactions. A fundamental problem that arises when
employing CF techniques is the cold-start problem. In a nutshell,
the cold-start problem is caused by the system’s incapability of
dealing with new items or new users due to the lack of relevant
transaction history.

In [2], a novel approach for ad ranking named OFF-Set was in-
troduced. This CF low-ranked matrix factorization (MF) based al-
gorithm is designed to handle an extreme setting of perpetual cold-
start problem where users are being encountered only a few times
by the system. OFF-Set deals with this extreme scenario by rep-
resenting users as a combination of latent vectors of their demo-
graphic features (such as age, gender, geo, and device).

Here, we consider an even more severe scenario than that of [2],
where basic user demographic features may be unknown as well.
This scenario is quite common at the popular Yahoo Answers web-
site, where a significant portion of traffic is generated by external
search engines. In these cases, ad personalization (or even segmen-
tation) via ad click prediction becomes a challenging task due to
insufficient user information.

To mitigate the lack of user information and limited user feed-
back, we take advantage of the fact that the user has chosen to visit
this specific Yahoo Answers page that includes a collection of top
rated answers to a specific question (see Section 3). It may be that
this page was ranked high in a search results page or that a Yahoo
Answers user wanted to answer a specific question in his area of in-
terest or expertise. Therefore, we can infer some of the missing de-
mographic information by incorporating contextual attributes and
features extracted from the content of the visited Yahoo Answers
page. These features are then used by a standard CF low-ranked
MF latent model to predict the ad click probability. Offline exper-
imental evaluation is performed to demonstrate the benefits of our
algorithms over several simple baselines. For the evaluation pro-
cess we have used data collected from real Yahoo Answers pages
and actual Yahoo Answers traffic. The evaluation is done incre-
mentally so the contribution of individual features can be assessed.

The rest of this work is organized as follows. Section 2 briefly
surveys related work. Background on Yahoo Answers and LDA is
provided in Section 3. A formal definition of the ad serving prob-
lem at hand is included in Section 4. Section 5 holds a detailed
explanation of our selected approach for modeling, while baseline
algorithms are described in Section 6. The experimental setup,
dataset, and results of our evaluation are presented in Section 7.
We conclude in Section 8.

2. RELATED WORK

Collaborative Filtering.
As mentioned earlier, CF is one of the most successful tech-

1257

niques for constructing a recommender system. The two major
fields of CF are neighborhood methods and Latent Factor Models
(LFM). Neighborhood methods compute the relationships among
users or between items. For example, the item-item approach [20,
26] predicts the user’s preference of an item by inspecting her rat-
ings of “neighboring” items (items that are rated similarly by users).

LFM characterizes both items and users as vectors in a space
which is inferred from observed data patterns. The latent space
representations strive to capture the semantics of items and users,
which are derived from their observed interactions. One of the most
successful realizations of LFM, which combines good scalability
with predictive accuracy, is based on low-rank MF (e.g., see [18]).
In particular, low-rank MF provides substantial expressive power
that allows modeling specific data characteristics such as temporal
effects [17], item taxonomy [7], and attributes [1]. Recently, an
online low-rank MF based CF algorithm was also used for ad rank-
ing [2]. In this paper we use an approach similar to that of [2] and
predict ad click probabilities of Yahoo Answers occasional users.

Cold-Start Problem of CF techniques.
An inherent limitation of CF is the need for historical user-item

interactions. When such history is limited, CF-based recommenders
cannot reliably model new entities, leading to the item and user
cold-start problems. Despite users and items being usually repre-
sented similarly in the latent space, these two problems are essen-
tially different. The main difference comes from the ability to inter-
view new users when joining the service in order to bootstrap their
modeling. Another difference is that in most settings the number
of users is much larger than the number of items. Hence, a typical
item usually gets more ratings than an individual user provides.

To mitigate the item cold-start problem of CF, a common prac-
tice involves utilizing external content on top of users’ feedback.
The basic approach is to leverage item attributes and combine them
with the CF model in a way that allows treating new items [1, 12,
13, 22]. In [1] the authors proposed a regression-based latent factor
model for cold-start recommendation. In a later work [22], the au-
thors improve on [1] by solving a convex optimization problem that
estimates the weight matrices, instead of computing the low-rank
matrix decomposition of [1]. Another approach to tackle the item
cold-start issue by combining content information with CF, based
on Boltzmann machines, is considered in [12, 13]. When no item
content or context information is available new items’ latent vec-
tors can be estimated by a linear combination of the latent vectors
of their raters and their respective ratings [23, 16, 3, 4].

Modeling the preferences of new users can be done most effec-
tively by asking them to rate several carefully selected items of a
seed set during a short interview [15, 24, 25, 11]. Item seed sets
were constructed according to various criteria such as popularity
(items should be known to the users), contention (items should be
indicative of users’ tendencies), and coverage (items should pos-
sess predictive power on other items). The importance of adaptive
interviewing process using adaptive seed sets was already recog-
nized in [24]. Adaptive interviewing is commonly implemented
by decision trees algorithms [25, 19, 10]. A method for solving
the problem of initial interview construction within the context of
learning user and item profiles is presented in [28].

Ad Click Prediction.
As mentioned earlier, machine learning techniques in general,

and especially personalization and recommendation algorithms, are
proven to be quite successful for the task of personalized ad rank-
ing. A selection of case studies and topics drawn from recent ex-
periments in the setting of a deployed ad click prediction system

by Google are presented in [21]. These include improvements
in the context of traditional supervised learning based on a Fol-
low the regularized Leader (FTRL)-Proximal online learning al-
gorithm (which has excellent sparsity and convergence properties)
and the use of per-coordinate learning rates. Practical lessons from
experimenting with Facebook ads data are presented in [14]. Ex-
plore/ exploit approach using multi-armed bandits algorithms (i.e.,
Thompson Sampling) combined with standard regularized regres-
sion model is used in [6] to predict ad click probability. Recently,
an online low-rank MF based CF algorithm was also used to com-
pute personalized ad ranking [2]. To overcome data sparsity (ad
click probability are of an order of magnitude smaller than news
click probability) ads are represented by latent vectors while users
latent vectors are constructed from their features’ (such as age and
gender) latent vectors.

3. BACKGROUND

Yahoo Answers.
Yahoo Answers is a platform for users (askers) to post questions

and to get answers from other users (answerers). It has millions of
active users who interact on a large variety of topics. A user can
post any question in free language and the provided answers are
typically ranked by users in order to have the best answers easily
available. Users also assign their questions to a specific category
within a predefined category hierarchy. For example, the question
how to stop my dog from barking? was assigned to the category
Pets/Dogs.

A substantial portion of Yahoo Answer’s traffic is composed of
users that are redirected from commercial search engines. A typical
user will first submit a question into a search engine and later click
a search result that leads to an already answered question in Yahoo
Answers. As a result of this behavior, a considerable portion of
the users that visit Yahoo Answers pages are occasional users that
are unfamiliar to the page. This creates a user cold-start challenge
for ad-serving: regularly having a vast amount of users with very
limited information known about them. We address this challenge
by relying on user features from click modeling as described below.

Latent Dirichlet Allocation (LDA).
LDA is a generative probabilistic model of a corpus, originally

proposed for modeling text documents [5]. The intuition behind
this model is that documents exhibit multiple topics, which are dis-
tributions over a fixed vocabulary W . The LDA algorithm performs
data analysis to compute an approximation of the conditional dis-
tributions of the hidden variables (topics), given the observed vari-
ables (words of the documents). In its standard application, LDA
gets as input a set of documents, along with their bag-of-words rep-
resentation, often represented as a sparse matrix in which the (i, d)
entry is the number of times the word i appeared in the document d.
It produces a set of n topics, where each topic is a multinomial dis-
tribution vector in R|W | representing the probability of each word
to appear in a document discussing that topic. The documents’ la-
tent topics can later be inferred according to the words they contain.
Here, we apply LDA to Yahoo Answers pages’ content (see [27]).

4. PROBLEM DEFINITION
Each ‘event’ in our data is represented by a tuple (u, a, IC), that

consists of a user u, an ad a and an action indicator IC ∈ {0, 1}
(either a click or a skip). An event for which IC = 1 is called a
‘click event’. We refer to C as the set of all click events, and I as
the set of all events.

1258

The problem setting is as follows: The algorithm gets as input
an ordered set of events (the ordering is done by the time of the
event). For each such event, the algorithm first provides a predic-
tion for the CTR probability, and only afterwards uses this event to
update the model and tune it for future predictions. The provided
probability is later used to evaluate the algorithm’s performance.
This settings simulates an on-line learning approach in which the
algorithm performs a single pass over the events.

The goal of the algorithm is to maximize the Area Under a ROC
Curve (AUC) value (that reflects the ad ranking quality). For bi-
nary scores, the AUC value is equivalent to the probability that
a randomly chosen positive event (click) is ranked higher than a
randomly chosen negative event (non-click impression). The AUC
value ranges between 0-1, where a random model has an AUC
score of 0.5. Further details, including an algorithm to compute
AUC, is provided in [9].

5. MODELING
In this section we present our approach for Click-Through Rate

(CTR) prediction using collaborative filtering. We later describe
how we applied this approach on Yahoo Answers data.

5.1 Collaborative Filtering for CTR Modeling

5.1.1 Predicted Click-Through Rate
In many online advertising platforms, most served ads use the

Cost-Per-Click (CPC) pricing type mechanism, i.e., an advertiser
pays only when its ads are clicked. For simplicity reasons we will
refer to this pricing type mechanism only. In a CPC pricing system,
the revenue received from each click on an ad is approximated by
the bid that the advertiser sets for this ad. The approximation is due
to the Generalized Second Price mechanism used by many adver-
tising platforms [8], as well as other considerations that are out of
the scope of this paper.

revenue ≈
∑

(user,ad)∈C

bid(ad) =
∑

(user,ad)∈I

CTR(user,ad) ·bid(ad)

where C is the set of click events, and I is the set of all events
and CTR(user, ad) is the click-through rate of a given user on a
given ad. Since the bids are known in advance, we would like to
compute a model which predicts the click probability of user u on
ad a, denoted by pCTR(u, a) (predicted CTR).

5.1.2 Latent Factor Modeling
In order to generate a model for CTR prediction, we apply an on-

line collaborative filtering approach. We train a latent factor model
in which each user and each ad are represented by a vector of di-
mension d. If pu ∈ Rd is the vector representing a user u, and
pa ∈ Rd is the vector representing an ad a, then the probability of
u to click on ad a is approximated by applying a sigmoid function
over the inner product of the two corresponding vectors,

pCTR(u, a) =
1

1 + exp−(b+〈pu,pa〉)

where b is the model’s bias. Note that this sigmoid function is
monotonous increasing and outputs values in the range [0,1].

The model is trained to maximize the log-likelihood of the train-
ing data, using Stochastic Gradient Descent (SGD), to optimize the
following LogLoss function,∑
{u,a,IC}∈I

−IC ·log pCTR(u, a)−(1− IC)·(1− log pCTR(u, a))

5.1.3 Feature Based User Representation
There are hundreds of millions of users in our dataset, however,

most of the users do not click on ads at all. Therefore, we refer to
user features in order to construct latent user representations even
for users that have never clicked on any ad. For example, we may
employ the fact that a user u is a 20 year old female from New York
in order to predict u’s click probability on a given ad.

Each user feature is represented in the model with its own la-
tent vector pf ∈ Rd. The vectors corresponding to a user’s set of
features are averaged to construct the final vector

pu =
1

k

k∑
i=1

pfi

where {f1,...,fk} is the set of k features describing user u. The
latent vectors of the features are trained using SGD with the above
LogLoss function.

5.2 Click Modeling for Yahoo Answers
Our approach was to combine several methods of generating or

approximating user information. The initial set of user features was
all the available user information. For each event we had access to
the following user information:
User location - Domain size of a few thousands with 100% cover-
age, derived from the IP address used by the user.
User device - The type of device the user is using. Domain size is
150 with 100% coverage.
Age - User age, bucketed into a domain of size 12 with 25% cov-
erage.

To compliment the available user information, we characterize
the user by the page that he visits, therefore further characterizing
the user as ‘a user that is interested in this page’. Using this ap-
proach, the user features can be expanded using available features
of the pages of Yahoo answers. The following features were con-
sidered as additional user features under the CF framework:
Category - The category the page is associated with on Yahoo An-
swers. There are about~2000 categories arranged in a hierarchy
with 30 categories at the top level. The algorithm used these top
level categories as a feature.
Page content LDA - An LDA topic breakdown of the content of
the page. There are ~3000 possible LDA topics. Each page is as-
sociated with up to 15 top topics along with a weight measure for
each (sum of these weights < 1).

To handle features such as LDA topics, in which there are several
weighted entries per user (instead of the usual single, unweighted
value), we consider the feature vector to be the weighted sum of the
vectors for each feature type appearing for that page, normalized by
the sum of all the weights. So if a user had n weighted LDA entries
(ai, wi) (where ai being the topic index, and wi being its weight),

the vector for its LDA feature would be
n∑

i=1
wi·pai/

n∑
i=1

wi. The com-

bination of the above two sets of features (user and page features)
led to almost the best results we were able to get. An additional set
of features we considered were ad features. The ad vector is com-
posed as a normalized sum of vectors, one for each of the different
possible ad features. The following ad features were used:
Ad ID - A unique ad identifier.
Campaign ID - An identifier for the campaign the ad is part of.
Advertiser ID - An identifier for the advertiser.
Several other approaches were tried, but without showing improve-
ment in the results. We detail them below as we do consider them
interesting on their own merit and they might be useful in other
similar types of ad targeting problems.

We tried considering the history of the page. Here, statistical

1259

breakdowns of the age and gender (based on available coverage) of
users landing on the page were generated for each page. Then, un-
known users were considered to have a gender/age corresponding
to that breakdown. So if a page had received 90 male events and 10
female events, each unknown user was considered to have a gen-
der vector which was 0.9 times the male latent vector and 0.1 times
the female latent vector. These vectors can then also be optimized
using SGD for this event even though we didn’t actually have the
user information.

This approach, unfortunately, did not yield further improvements,
though it is possible that this is due to the relative sparsity of rele-
vant information in the available data. We do consider this also a
viable approach to attempt on future instances of similar problems.

Another attempted approach was to consider features based on
the content generators of the page, i.e., the users who asked or an-
swered the question on that page. In this approach the data about
the generator (or generators) of the content on the landed page is
considered as part of the user features. This approach seems appli-
cable to a wide range of similar problems, as blogging platforms,
forums, photo hosting sites and many other popular web destina-
tions. They are all faced with a similar situation, in which events
are generated by unknown users in pages where the content was
generated by a registered user, so data is available for the content
generator, but not for the user generating the event.

The following information about the page’s content generators
was available, all at 100% coverage:
Asker’s age: - The age of the question asker, was bucketed into a
domain of size 12.
Asker’s gender - Gender of question asker (male/female/unknown).
Answerer’s gender - The genders of the answerers for that page.
Answerer’s age - A list of the ages of the question answerers.
Features such as Answerer’s age or gender, which hold multiple
values per event, are handled in a similar way to LDA topics or the
statistical breakdown described above. So, for instance, if the page
had 8 male answerers and 3 female answerers, each user was con-
sidered to have an answerer gender vector which was 8

11
times the

male latent vector and 3
11

times the female latent vector. While this
approach did not improve our results, we do consider it as some-
thing to attempt in future problems of this type.

6. BASELINE ALGORITHMS
The following algorithms were considered as baseline algorithms:

Popularity: We score each ad based on its popularity, hence the
pCTR of each ad is number of clicks

number of impressions . To compensate for variations
in popularity over time, we apply an exponential decay function,
i.e., we multiply the current totals by 0.9 after each time period.
Popularity per category (PPC): Here, we consider the popular-
ity of an ad separately for each category (see category feature in
section 5). Thus, the score of an ad on an event for a category is:

number of clicks for the ad in this category
number of events for the ad in this category

When little information is available for an ad in a particular cate-
gory, its overall popularity is used instead.

7. EVALUATION

7.1 The Dataset
Our dataset is comprised of a random sample of event data logged

from 12 days of traffic at Yahoo Answers, averaging 9.8 million
impressions per day (varying from 7.5 to 10.9). The frequency of
visits per user during the observed period of 12 days is depicted in

Figure 1: Visits frequencies per user. More than 77% of users
has a single visit over the observed period of 12 days.

Figure 2: Daily AUC lifts of CF-UserPageAd and PPC baseline
over the popularity baseline.

Figure 1. During this time, over 77% of the observed events were
of one-time visitors – these users were served only once during the
observed time period.

7.2 Experimental Setup
For each event in the dataset, the tested algorithm first provides

a CTR prediction. Then, the event is used for training the tested
algorithm, before continuing to the next event. At the end of each
day of data, the algorithm’s performance was evaluated for that day
of data, based on the computed scores of that day. The algorithms’
model was preserved from one day of data to the next.

7.3 Results
In this section we present the results of our testing. In each vari-

ant of our algorithms we consider the best performance achieved
after parameter tuning. Each algorithm must handle the cold start
problem as it trains a new model from scratch. Therefore, it can
be noticed that our results fluctuate for the first few days before
settling into clearly distinguished patterns. As such, we will only

1260

Figure 3: Daily AUC lifts of algorithm variants (user and page
features based) and PPC baseline over the popularity baseline.

consider the results on the latter parts of the data.
As an overview of our results, in Figure 2 we first take a look at

how the best performing instance of our algorithm compared with
the baseline algorithms. The AUC lifts provided by the following
algorithms over the popularity baseline are shown in this figure:
PPC - the popularity per category baseline algorithm.
CF-UserPageAd - our best performing configuration. This version
of our algorithm combines user, page and ad features (as described
in section 5), but doesn’t use content generators based features or
statistics gathered about the landed page.

We can see that CF-UserPageAd starts out worse than the popu-
larity baseline, as cold start is more of a problem for it. However, it
catches up and begins improving during the second day (after 12-15
million events) and by the third day it has settled into a consistent
and significant 6-8% improvement over the popularity baseline, and
nearly that much improvement over the PPC baseline (which only
slightly outperforms popularity).

Next, we examine the contribution of each type of feature to CF-
UserPageAd’s improvement. As is soon to be shown, almost all
of this improvement comes from the page and user features. We
continue with an analysis of these.

Figure 3 depicts the temporal AUC lifts for the following config-
urations over the Popularity baseline:
CF-Page - CF algorithm using only the page features.
CF-User - CF algorithm using only the user features.
CF-UserPage - CF algorithm using both page and user features.
PPC - the popularity per category baseline algorithm.

Here, we can see that each type of feature contributes a signif-
icant portion of the algorithm’s gains, but neither is enough to ac-
count for all of them. User features provide the more significant lift,
despite the lack of what would traditionally be considered “strong”
signals, while page features provide an additional, significant and
consistent lift.

We also note that these lifts are nearly orthogonal, as the sum
of the lifts from CF-User and CF-Page separately are only slightly
larger than the total lift. And that each separately is already signif-
icantly better than baseline algorithms.

Next, we examine in Figure 4 how adding the different page fea-
tures contributes to the improvement in performance. The curves
depicted in this figure present the daily AUC lifts over the popular-
ity baseline.

Figure 4: Daily AUC lifts of algorithm variants (incorporating
various page features) over popularity baseline.

CF-User - CF algorithm using only the user features.
CF-UserLDA - CF algorithm using all user features as well as the
content LDA topics.
CF-UserCAT - CF algorithm using all user features as well as the
page category.
CF-UserGEN - CF algorithm using all user features as well as the
content generator features.
CF-UserPage - CF algorithm using both page and user features.

We can first see that the content generators’ features provide only
a small lift, which can be considered evidence that in our setting,
content generators may not provide a good model for content con-
sumers. The lift provided by these feature is also completely con-
tained in the lift provided by the page features (i.e., using content
generator features on top of page features provides no lift).

Of the two page features, category and content LDA, there seems
to be a slight edge in lift to the category (as the figure shows). Over-
all it seems neither gives a consistent boost over user features, and
that the overlap between them is large. This might be as expected,
as both come from attempts to catalog the text by subject, and both
seem to have succeeded to similar degrees.

A small additional improvement is gained by incorporating ad
features. This is demonstrated in Figure 5, where temporal AUC
lifts of the following configurations over the popularity baseline
are presented:
CF-UserPage - CF algorithm using both page and user features.
CF-UserPageAd - CF algorithm using page, user and ad features.

It can be seen that the improvement gained with ad features,
though small, is consistent and therefore, noteworthy. Adding con-
tent generators features at this point have no effect.

8. CONCLUDING REMARKS
In this work we examined the problem of ad-serving with little

or no access to user information. We considered approaches that
combine textual analysis and content categorization of the page,
information about the content generators for that page, statistical
breakdowns of past known visitors to the page and available user
information. Extensive testing was performed on a real instance of
this problem, Yahoo Answers, which receives a large portion of its
page-views from unknown users clicking through external search
results. Results show that combining available user information
with analysis of the page content yielded significant and consistent

1261

Figure 5: Daily AUC lifts of algorithm variants (incorporating
various ad features) over popularity based baseline.

improvement over baseline algorithms (see CF-UserPageAd in sec-
tion 7.3). Future work includes online evaluation of our methods on
live traffic as well as experimenting with more elaborated models.

Acknowledgments
The authors would like to thank Yuval Pinter, Alex Nus, Dan Pe-
leg, and Natalie Aizenberg for their help in generating the “Yahoo
Answers” dataset used for the evaluation process.

9. REFERENCES
[1] D. Agarwal and B.-C. Chen. Regression-based latent factor

models. In Proc. SIGKDD’2009, pages 19–28. ACM, 2009.
[2] M. Aharon, N. Aizenberg, E. Bortnikov, R. Lempel,

R. Adadi, T. Benyamini, L. Levin, R. Roth, and O. Serfaty.
OFF-set: one-pass factorization of feature sets for online
recommendation in persistent cold start settings. In Proc.
RecSys’2013.

[3] M. Aharon, A. Kagian, Y. Koren, and R. Lempel. Dynamic
personalized recommendation of comment-eliciting stories.
In Proc. of RecSys’2012.

[4] N. Aizenberg, Y. Koren, and O. Somekh. Build your own
music recommender by modeling internet radio streams. In
Proc. WWW’2012.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[6] O. Chapelle and L. Li. An empirical evaluation of Thompson
sampling. In Proc. NIPS’2011.

[7] G. Dror, N. Koenigstein, and Y. Koren. Yahoo! music
recommendations: Modeling music ratings with temporal
dynamics and item. In Proc. RecSys’2011.

[8] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
advertising and the generalized second price auction: Selling
billions of dollars worth of keywords. Technical report,
National Bureau of Economic Research, 2005.

[9] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861–874, June 2006.

[10] N. Golbandi, Y. Koren, and R. Lempel. Adaptive
bootstrapping of recommender systems using decision trees.
In Proc. WSDM’2011.

[11] N. Golbandi, Y. Koren, and R. Lempel. On bootstrapping
recommender systems. In Proc. CIKM’2010.

[12] A. Gunawardana and C. Meek. Tied Boltzmann machines for
cold start recommendations. In Proc. RecSys’2008.

[13] A. Gunawardana and C. Meek. A unified approach to
building hybrid recommender systems. In Proc.
RecSys’2009.

[14] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah,
R. Herbrich, S. Bowers, et al. Practical lessons from
predicting clicks on ads at facebook. In Proc. SIGKDD’2014.

[15] A. Kohrs and B. Merialdo. Improving collaborative filtering
for new users by smart object selection. In Proc. ICMF’2001.

[16] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proc.
KDD’2008.

[17] Y. Koren. Collaborative filtering with temporal dynamics.
Communications of the ACM, 53(4):89–97, 2010.

[18] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. IEEE Computer,
42(8):30–37, 2009.

[19] S.-L. Lee. Commodity recommendations of retail business
based on decision tree induction. Expert Systems with
Applications, 37(5):3685–3694, 2010.

[20] G. Linden, B. Smith, and J. York. Amazon. com
recommendations: Item-to-item collaborative filtering.
Internet Computing, IEEE, 7(1):76–80, 2003.

[21] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner,
J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, et al.
Ad click prediction: a view from the trenches. In Proc.
SIGKDD’2013.

[22] S.-T. Park and W. Chu. Pairwise preference regression for
cold-start recommendation. In Proc. RecSys’2009.

[23] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In Proc. KDD Cup
2007.

[24] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee,
J. A. Konstan, and J. Riedl. Getting to know you: learning
new user preferences in recommender systems. In Proc.
International Conference on Intelligent User Interfaces,
2002.

[25] A. M. Rashid, G. Karypis, and J. Riedl. Learning preferences
of new users in recommender systems: an information
theoretic approach. ACM SIGKDD Explorations Newsletter,
10(2):90–100, 2008.

[26] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Proc.
WWW’2001.

[27] I. Szpektor, Y. Maarek, and D. Pelleg. When relevance is not
enough: promoting diversity and freshness in personalized
question recommendation. In Proc. WWW’2013.

[28] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix
factorizations for cold-start recommendation. In Proc.
SIGIR’2011.

1262

